
Adaptive Mesh Refinement in
Chapel

Part II: A really hard problem,
greatly simplified

Jonathan Claridge

University of Washington

March 2, 2011

Overview of two talks

Á Previous talk:
Å Several AMR challenges that Chapel makes easy

Á This talk:
Å A difficult part of AMR that Chapel sets us up to solve

(2)

Data refinement

(3)

Á Data from a coarse grid provides boundary values to fine

grids that it overlaps

Data refinement

(4)

Á Data from a coarse grid provides boundary values to fine

grids that it overlaps

Á Only need to fill fine ghost cells

that are not overlapped by a fine

sibling grid

Data refinement

(5)

Á Data from a coarse grid provides boundary values to fine

grids that it overlaps

Á Only need to fill fine ghost cells

that are not overlapped by a fine

sibling grid

Data refinement

(6)

Á Data from a coarse grid provides boundary values to fine

grids that it overlaps

Á Only need to fill fine ghost cells

that are not overlapped by a fine

sibling grid

Data refinement

(7)

Á Data from a coarse grid provides boundary values to fine

grids that it overlaps

Á Only need to fill fine ghost cells

that are not overlapped by a fine

sibling grid

Á Resulting region is a union of

rectangles, most naturally

defined by set subtraction

Data refinement

(8)

Á Data from a coarse grid provides boundary values to fine

grids that it overlaps

Á Only need to fill fine ghost cells

that are not overlapped by a fine

sibling grid

Á Resulting region is a union of

rectangles, most naturally

defined by set subtraction

Á Chapel: Define an object to

store unions of domains, which

supports domain subtraction in

a set-minus fashion

Regridding

(9)

Á New grids determined by a partitioning algorithm (Berger & Rigoutsos,

1991)

Regridding

(10)

Á New grids determined by a partitioning algorithm (Berger & Rigoutsos,

1991)

set of flagged

points

set of rectangles

covering them

Regridding

(11)

Á New grids determined by a partitioning algorithm (Berger & Rigoutsos,

1991)

set of flagged

points

set of rectangles

covering them

Boolean

array on a

large domain

set of subdomains
containing all true

entries

Chapel:

Regridding

(12)

Á As with refinement, unions of rectangles (domains) are essential

Regridding

(13)

Á Subtractions in Berger-Rigoutsos always remove a subset that spans a
domain in rank - 1 dimensions; general domain subtraction is

convenient, but not necessary

Á As with refinement, unions of rectangles (domains) are essential

Regridding

(14)

Á Subtractions in Berger-Rigoutsos always remove a subset that spans a
domain in rank - 1 dimensions; general domain subtraction is

convenient, but not necessary

Á However, domain subtraction is important after partitioning, when

refining data onto a newly created level

Á As with refinement, unions of rectangles (domains) are essential

Unions of domains: MultiDomain class

(15)

Precedents in AMR libraries:

Unions of domains: MultiDomain class

(16)

Precedents in AMR libraries:

Á Chombo BoxTools library

Å Class Box represents rectangular sets of integer tuples (IntVects)

Å Class IntVectSet represents irregular sets of integer tuples, supporting

full set calculus

Unions of domains: MultiDomain class

(17)

Precedents in AMR libraries:

Á Chombo BoxTools library

Å Class Box represents rectangular sets of integer tuples (IntVects)

Å Class IntVectSet represents irregular sets of integer tuples, supporting

full set calculus

Á SAMRAI Hierarchy library

Å Class Box (see above)

Å Classes BoxArray , BoxList , BoxTree represent unions of boxes,

supporting various set operations

Unions of domains: MultiDomain class

(18)

Á MultiDomain fields:

param rank: int ;

param stridable : bool = false ;

var stride: rank* int ;

var subindices : domain (1);

var domains: [subindices] domain (rank, stridable =stridable);

Parameters to specify child

domains; compile time constants

Child domains will have equal stride

Indices for array of child domains

Array of child domains

Unions of domains: MultiDomain class

(19)

Á MultiDomain fields:

param rank: int ;

param stridable : bool = false ;

var stride: rank* int ;

var subindices : domain (1);

var domains: [subindices] domain (rank, stridable =stridable);

Parameters to specify child

domains; compile time constants

Child domains will have equal stride

Indices for array of child domains

Array of child domains

Unions of domains: MultiDomain class

(20)

Á MultiDomain fields:

param rank: int ;

param stridable : bool = false ;

var stride: rank* int ;

var subindices : domain (1);

var domains: [subindices] domain (rank, stridable =stridable);

Parameters to specify child

domains; compile time constants

Child domains will have equal stride

Indices for array of child domains

Array of child domains

Unions of domains: MultiDomain class

(21)

Á MultiDomain fields:

param rank: int ;

param stridable : bool = false ;

var stride: rank* int ;

var subindices : domain (1);

var domains: [subindices] domain (rank, stridable =stridable);

Parameters to specify child

domains; compile time constants

Child domains will have equal stride

Indices for array of child domains

Array of child domains

Unions of domains: MultiDomain class

(22)

Á MultiDomain fields:

param rank: int ;

param stridable : bool = false ;

var stride: rank* int ;

var subindices : domain (1);

var domains: [subindices] domain (rank, stridable =stridable);

Parameters to specify child

domains; compile time constants

Child domains will have equal stride

Indices for array of child domains

Array of child domains

Unions of domains: MultiDomain class

(23)

Á MultiDomain fields:

param rank: int ;

param stridable : bool = false ;

var stride: rank* int ;

var subindices : domain (1);

var domains: [subindices] domain (rank, stridable =stridable);

Parameters to specify child

domains; compile time constants

Child domains will have equal stride

Indices for array of child domains

Array of child domains

Á In principle, domains could be an associative domain of rectangular

domains

Unions of domains: MultiDomain class

(24)

Á MultiDomain fields:

param rank: int ;

param stridable : bool = false ;

var stride: rank* int ;

var subindices : domain (1);

var domains: [subindices] domain (rank, stridable =stridable);

Parameters to specify child

domains; compile time constants

Child domains will have equal stride

Indices for array of child domains

Array of child domains

Á In principle, domains could be an associative domain of rectangular

domains

Á Tree-based storage of domains, with bounding boxes at nodes, will

allow better performance for set operations; direction for future

improvement

Unions of domains: MultiDomain class

(25)

Á MultiDomain operations:

MultiDomain = domain;

MultiDomain.add (domain);

MultiDomain = domain ï domain;

MultiDomain.subtract (domain);

MultiDomain.intersect (domain);

etcé

Á Most operations allow a MultiDomain as an argument as well

Domain subtraction

(26)

Á Recursive procedure, reducing to rank - 1 subtraction at each step

Domain subtraction

(27)

Á Recursive procedure, reducing to rank - 1 subtraction at each step

Á Calculate Yellow - Red, working along the horizontal:

Domain subtraction

(28)

Á Recursive procedure, reducing to rank - 1 subtraction at each step

Á Calculate Yellow - Red, working along the horizontal:

Å Yellow splits into 3 pieces: Y_lower , Y_inner , and Y_upper , any of

which may be empty

Y_lower Y_upperY_inner

Domain subtraction

(29)

Á Recursive procedure, reducing to rank - 1 subtraction at each step

Á Calculate Yellow - Red, working along the horizontal:

Å Yellow splits into 3 pieces: Y_lower , Y_inner , and Y_upper , any of

which may be empty

Å Y_lower and Y_upper consist of 0 or 1 domains, disjoint from Red

Y_lower Y_upperY_inner

Domain subtraction

(30)

Á Recursive procedure, reducing to rank - 1 subtraction at each step

Á Calculate Yellow - Red, working along the horizontal:

Å Yellow splits into 3 pieces: Y_lower , Y_inner , and Y_upper , any of

which may be empty

Å Y_lower and Y_upper consist of 0 or 1 domains, disjoint from Red

Å Now calculate Y_inner - Red, but project onto remaining dimensions since

Y_inner.dim (1) == Red.dim (1)

Y_lower Y_upperY_inner

Y_inner - Red is much more

complicated than this in higher

dimensions

Class GridCFGhostRegion

(31)

Á Represents ghost cells of a fine grid that

will receive data from ñcoarse neighborò

grids

Class GridCFGhostRegion

(32)

Á Represents ghost cells of a fine grid that

will receive data from ñcoarse neighborò

grids

Class GridCFGhostRegion

(33)

Á Represents ghost cells of a fine grid that

will receive data from ñcoarse neighborò

grids
Á Fields are:

const grid: Grid;

const coarse_neighbors : domain(Grid);

const multidomains : [coarse_neighbors]

MultiDomain (dimension, stridable =true);

The fine grid in question

Class GridCFGhostRegion

(34)

Á Represents ghost cells of a fine grid that

will receive data from ñcoarse neighborò

grids
Á Fields are:

const grid: Grid;

const coarse_neighbors : domain(Grid);

const multidomains : [coarse_neighbors]

MultiDomain (dimension, stridable =true);

The fine grid in question

Á Constructor also needs to know:

Å parent_level of grid

Å coarse_level

Å ref_ratio , the refinement ratio between
coarse_level and parent_level

Class GridCFGhostRegion

(35)

for coarse_grid in coarse_level.grids {

var fine_intersection =

grid.extended_cells (refine(coarse_grid.cells , ref_ratio));

if fine_intersection.numIndices > 0 {

var boundary_multidomain = fine_intersection - grid.cells ;

for (neighbor, region) in parent_level.sibling_ghost_regions (grid)

{

if fine_intersection (region). numIndices > 0 then

boundary_multidomain.subtract (region);

}

if boundary_multidomain.length > 0 {

coarse_neighbors.add (coarse_grid);

multidomains (coarse_grid) = boundary_multidomain ;

}

else delete boundary_multidomain ;

}

}

Iterate over coarse grids; all are

potentially coarse neighbors

Class GridCFGhostRegion

(36)

for coarse_grid in coarse_level.grids {

var fine_intersection =

grid.extended_cells (refine(coarse_grid.cells , ref_ratio));

if fine_intersection.numIndices > 0 {

var boundary_multidomain = fine_intersection - grid.cells ;

for (neighbor, region) in parent_level.sibling_ghost_regions (grid)

{

if fine_intersection (region). numIndices > 0 then

boundary_multidomain.subtract (region);

}

if boundary_multidomain.length > 0 {

coarse_neighbors.add (coarse_grid);

multidomains (coarse_grid) = boundary_multidomain ;

}

else delete boundary_multidomain ;

}

}

Intersect the coarse grid (interior only) ïin fine index

space ïwith the fine grid (ghost cells included)

