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Overview of two talks

Á Previous talk:
Å Several AMR challenges that Chapel makes easy

Á This talk:
Å A difficult part of AMR that Chapel sets us up to solve
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Data refinement
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Á Data from a coarse grid provides boundary values to fine 

grids that it overlaps

Á Only need to fill fine ghost cells 

that are not overlapped by a fine 

sibling grid

Á Resulting region is a union of 

rectangles, most naturally 

defined by set subtraction

Á Chapel: Define an object to 

store unions of domains, which 

supports domain subtraction in 

a set-minus fashion
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Á New grids determined by a partitioning algorithm (Berger & Rigoutsos, 

1991) 

set of flagged 

points

set of rectangles 

covering them

Boolean 

array on a 

large domain

set of subdomains 
containing all true

entries

Chapel:



Regridding

(12)

Á As with refinement, unions of rectangles (domains) are essential



Regridding

(13)

Á Subtractions in Berger-Rigoutsos always remove a subset that spans a 
domain in rank - 1 dimensions; general domain subtraction is 

convenient, but not necessary

Á As with refinement, unions of rectangles (domains) are essential



Regridding
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Á Subtractions in Berger-Rigoutsos always remove a subset that spans a 
domain in rank - 1 dimensions; general domain subtraction is 

convenient, but not necessary

Á However, domain subtraction is important after partitioning, when 

refining data onto a newly created level

Á As with refinement, unions of rectangles (domains) are essential
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Precedents in AMR libraries:

Á Chombo BoxTools library

Å Class Box represents rectangular sets of integer tuples (IntVects )

Å Class IntVectSet represents irregular sets of integer tuples, supporting 

full set calculus

Á SAMRAI Hierarchy library

Å Class Box (see above)

Å Classes BoxArray , BoxList , BoxTree represent unions of boxes, 

supporting various set operations
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Á MultiDomain fields:

param rank:     int ;

param stridable : bool = false ;

var stride:  rank* int ;

var subindices : domain ( 1);

var domains: [ subindices ] domain (rank, stridable =stridable );

Parameters to specify child 

domains; compile time constants

Child domains will have equal stride

Indices for array of child domains

Array of child domains
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Á MultiDomain fields:

param rank:     int ;

param stridable : bool = false ;

var stride:  rank* int ;

var subindices : domain ( 1);

var domains: [ subindices ] domain (rank, stridable =stridable );

Parameters to specify child 

domains; compile time constants

Child domains will have equal stride

Indices for array of child domains

Array of child domains

Á In principle, domains could be an associative domain of rectangular 

domains

Á Tree-based storage of domains, with bounding boxes at nodes, will 

allow better performance for set operations; direction for future 

improvement
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Á MultiDomain operations:

MultiDomain = domain;

MultiDomain.add (domain);

MultiDomain = domain ï domain;

MultiDomain.subtract (domain);

MultiDomain.intersect (domain);

etcé

Á Most operations allow a MultiDomain as an argument as well
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Domain subtraction
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Á Recursive procedure, reducing to rank - 1 subtraction at each step

Á Calculate Yellow - Red, working along the horizontal:

Å Yellow splits into 3 pieces: Y_lower , Y_inner , and Y_upper , any of 

which may be empty

Å Y_lower and Y_upper consist of 0 or 1 domains, disjoint from Red

Å Now calculate Y_inner - Red, but project onto remaining dimensions since 

Y_inner.dim (1) == Red.dim (1)

Y_lower Y_upperY_inner

Y_inner - Red is much more 

complicated than this in higher 

dimensions
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Á Represents ghost cells of a fine grid that 

will receive data from ñcoarse neighborò 

grids
Á Fields are:

const grid: Grid;

const coarse_neighbors : domain(Grid);

const multidomains : [ coarse_neighbors ]

MultiDomain (dimension, stridable =true);

The fine grid in question

Á Constructor also needs to know:

Å parent_level of grid

Å coarse_level

Å ref_ratio , the refinement ratio between 
coarse_level and parent_level
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for coarse_grid in coarse_level.grids {

var fine_intersection = 

grid.extended_cells ( refine( coarse_grid.cells , ref_ratio ) );

if fine_intersection.numIndices > 0 {

var boundary_multidomain = fine_intersection - grid.cells ;

for (neighbor, region) in parent_level.sibling_ghost_regions ( grid) 

{

if fine_intersection (region). numIndices > 0 then

boundary_multidomain.subtract (region);     

}

if boundary_multidomain.length > 0 {

coarse_neighbors.add ( coarse_grid );

multidomains ( coarse_grid ) = boundary_multidomain ;

}

else delete boundary_multidomain ;

}

}

Iterate over coarse grids; all are 

potentially coarse neighbors
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for coarse_grid in coarse_level.grids {

var fine_intersection = 

grid.extended_cells ( refine( coarse_grid.cells , ref_ratio ) );

if fine_intersection.numIndices > 0 {

var boundary_multidomain = fine_intersection - grid.cells ;

for (neighbor, region) in parent_level.sibling_ghost_regions ( grid) 

{

if fine_intersection (region). numIndices > 0 then

boundary_multidomain.subtract (region);     

}

if boundary_multidomain.length > 0 {

coarse_neighbors.add ( coarse_grid );

multidomains ( coarse_grid ) = boundary_multidomain ;

}

else delete boundary_multidomain ;

}

}

Intersect the coarse grid (interior only) ïin fine index 

space ïwith the fine grid (ghost cells included)


