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Overview of two talks

 This talk:
• Several AMR challenges that Chapel makes easy

 Next talk:
• A difficult part of AMR that Chapel sets us up to solve
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What is adaptive mesh refinement (AMR)?

 Method for solving partial differential equations (PDEs) in which 

resolution is adaptively increased near “interesting” features
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Movie omitted to reduce file size
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Language Parallelism SLOC1 Tokens Relative size (tokens)

C++ (D≤6) 3 Dist. mem. 40200 261427 100%

Fortran (2D+3D) 2

2D

3D

Serial 16562

8297

8265

151992

71639

80353

58%

27%

31%

1 source lines of code, 2 AMRClaw, 3 Chombo BoxTools+AMRTools

 Chapel made many challenges of AMR easy with little-to-no additional 

infrastructure required, while providing a large head start on the really 

hard parts

 Code size compares very favorably to existing AMR frameworks -- but 

keep in mind that the Chapel version is a “minimal” implementation!
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Language Parallelism SLOC1 Tokens Relative size (tokens)
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80353
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27%

31%

Chapel (any D) Shared mem. 1988 13783 5%

1 source lines of code, 2 AMRClaw, 3 Chombo BoxTools+AMRTools

 Chapel made many challenges of AMR easy with little-to-no additional 

infrastructure required, while providing a large head start on the really 

hard parts

 Code size compares very favorably to existing AMR frameworks -- but 

keep in mind that the Chapel version is a “minimal” implementation!

Reflects limitations of developer 
time, not Chapel itself
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grid

Roughly:

Operations on grids

Operations on rectangular 

(Chapel) domains
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AMR terminology
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top level

(covers entire 

domain)
AMR

hierarchy
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1 32 4

1

3

2 const cells = [1..4, 1..3];

Rectangular domain: Multidimensional index space

 Supports storage:

var my_array: [cells] real;

 Supports (parallel) iteration:

for(all) cell in cells do …
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Grids: Indexing

 Conventional indexing – number grid cells sequentially

(23)

1 32 4

1

3

2 const cells = [1..4, 1..3];

 Problem with conventional indexing: How are the interfaces indexed?
• Usual approach: Interface has the same index as the cell above it

(2,3)

(2,3) (2,3)

(2,3) Many objects will have the 

same indices
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Grids: Indexing

 Modified approach – denser index space

(29)

const cells        = [1..7 by 2, 1..5 by 2];

const y_interfaces = [1..7 by 2, 0..6 by 2];

const x_interfaces = [0..8 by 2, 1..5 by 2];

const vertices     = [0..8 by 2, 0..6 by 2];

Strided domains

 Array and iteration syntax are unchanged

 Chapel helps describe the mathematical problem much more robustly



Grids: Dimension independence
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 Use the same code to produce results in 2D, 3D, 6D, 17D…
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 Goal: Use rank-independent domain construction to define a grid of 

arbitrary spatial dimension
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 Begin by setting
config param dimension: int;

Specifies a compile-time constant (param) that may be specified at the 

command line (config).

 A grid is defined by:

const x_low, x_high: dimension*real;

const n_cells: dimension*int;

const ghost_layer_width: int;

const i_low: dimension*int;

Coordinate bounds

Coordinate bounds

Width of ghost cell layer

Lower index bound

Types dimension*real and dimension*int are tuples, 

a native type.



Grids: Dimension independence

 Domain of interior cells:

var subranges: dimension*range(stridable=true);

for d in 1..dimension do

subranges (d) = (i_low(d)+1 .. by 2) #n_cells(d);

var cells: domain(dimension, stridable=true);

cells = subranges;

(35)

Temporary variable to store sub-ranges 

of the domain as they are defined



Grids: Dimension independence

 Domain of interior cells:

var subranges: dimension*range(stridable=true);
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Assign subranges in each dimension; this is 

the only place that the dimensions are unrolled



Grids: Dimension independence

 Domain of interior cells:

var subranges: dimension*range(stridable=true);

for d in 1..dimension do

subranges(d) = (i_low(d)+1 .. by 2) #n_cells(d);

var cells: domain(dimension, stridable=true);

cells = cell_ranges;

(37)

Unbounded range with correct 

lower bound and stride

Count operator: Extracts 
n_cells(d) elements



Grids: Dimension independence

 Domain of interior cells:

var subranges: dimension*range(stridable=true);

for d in 1..dimension do

subranges(d) = (i_low(d)+1 .. by 2) #n_cells(d);
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(38)

Define the domain cells
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 Domain of interior cells:

var subranges: dimension*range(stridable=true);

for d in 1..dimension do

subranges(d) = (i_low(d)+1 .. by 2) #n_cells(d);

var cells: domain(dimension, stridable=true);

cells = subranges;
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 Domain of all cells, including ghost cells (spatial variables will be 

defined here):

var extended_cells = cells.expand(2*ghost_layer_width);

Cell centers are two 

indices apart

 Array declarations are automatically rank-independent:


var spatial_variable: [extended_cells] real;
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Levels

 Essentially a union of grids
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var grids: domain(Grid);

Associative domain

 List of indices of any type

 Array and iteration syntax are unchanged
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 Calculating the overlaps between siblings:

var neighbors: domain(Grid);

var overlaps:  [neighbors] domain(dimension,stridable=true);

for sibling in parent_level.grids {

var overlap = extended_cells( sibling.cells );

if overlap.numIndices > 0 && sibling != this {

neighbors.add(sibling);

overlaps(sibling) = overlap;

}

}

Declare associative domain to store 

neighbors; initializes to empty.

 A grid’s layer of ghost cells will, in general, 

overlap some of its siblings.  Data will be 

copied into these overlapped ghost cells prior 

to mathematical operations.
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 Calculating the overlaps between siblings:

var neighbors: domain(Grid);

var overlaps:  [neighbors] domain(dimension,stridable=true);

for sibling in parent_level.grids {

var overlap = extended_cells( sibling.cells );

if overlap.numIndices > 0 && sibling != this {

neighbors.add(sibling);

overlaps(sibling) = overlap;

}

}

An array of domains; stores one 

domain for each neighbor.

New space allocated as 
neighbors grows.

 A grid’s layer of ghost cells will, in general, 
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copied into these overlapped ghost cells prior 

to mathematical operations.
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 Calculating the overlaps between siblings:

var neighbors: domain(Grid);

var overlaps:  [neighbors] domain(dimension,stridable=true);

for sibling in parent_level.grids {

var overlap = extended_cells( sibling.cells );

if overlap.numIndices > 0 && sibling != this {
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overlaps(sibling) = overlap;

}

}

Loop over all grids on the 

same level, checking for 

neighbors.
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 Calculating the overlaps between siblings:

var neighbors: domain(Grid);

var overlaps:  [neighbors] domain(dimension,stridable=true);

for sibling in parent_level.grids {

var overlap = extended_cells( sibling.cells );

if overlap.numIndices > 0 && sibling != this {

neighbors.add(sibling);

overlaps(sibling) = overlap;

}

}

Computes intersection of the domains extended_cells

and sibling.cells.

Take a moment to appreciate what this calculation would 

look like without domains!

 A grid’s layer of ghost cells will, in general, 

overlap some of its siblings.  Data will be 

copied into these overlapped ghost cells prior 

to mathematical operations.



Levels: Sibling overlaps
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 Calculating the overlaps between siblings:

var neighbors: domain(Grid);

var overlaps:  [neighbors] domain(dimension,stridable=true);

for sibling in parent_level.grids {

var overlap = extended_cells( sibling.cells );

if overlap.numIndices > 0 && sibling != this {

neighbors.add(sibling);

overlaps(sibling) = overlap;

}

}

If overlap is nonempty, and 

sibling is distinct from this 

grid, then update stored data.

 A grid’s layer of ghost cells will, in general, 

overlap some of its siblings.  Data will be 

copied into these overlapped ghost cells prior 

to mathematical operations.
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AMR Hierarchy: Brief overview

 Three major challenges
• Data coarsening

• Data refinement

• Regridding

(56)

 Coarsening
• Data transfer occurs on intersection

of coarse grid and fine grid

• Region is rectangular – transfer
is relatively easy

 Refinement and regridding
• Involve unions and subtractions of rectangles

• Much harder; subject of next talk



Conclusion

 Chapel domains make many fundamental AMR calculations very easy, 

even in a dimension-independent setting

(57)



Conclusion

 Chapel domains make many fundamental AMR calculations very easy, 

even in a dimension-independent setting

(58)

 Rectangular domains and associative domains are both very important



Conclusion

 Chapel domains make many fundamental AMR calculations very easy, 

even in a dimension-independent setting

(59)

 Rectangular domains and associative domains are both very important

 Haven’t discussed objects for data storage, but Chapel’s link between 

domains and arrays makes them easy to define and use



Conclusion

 Chapel domains make many fundamental AMR calculations very easy, 

even in a dimension-independent setting

(60)

1 source lines of code, 2 AMRClaw, 3 Chombo BoxTools+AMRTools

 Rectangular domains and associative domains are both very important

 Haven’t discussed objects for data storage, but Chapel’s link between 

domains and arrays makes them easy to define and use

Language Parallelism SLOC1 Tokens Relative size (tokens)

C++ (D≤6) 3 Dist. mem. 40200 261427 100%

Fortran (2D+3D) 2

2D

3D

Serial 16562

8297

8265

151992

71639

80353

58%

27%

31%

Chapel (any D) Shared mem. 1988 13783 5%

 A recap of code size, now that you’ve seen some of the interesting parts:



Thank You.

Questions?
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This material is based upon work supported by the Defense 

Advanced Research Projects Agency under its Agreement No. 

HR0011-07-9-0001. Any opinions, findings and conclusions or 

recommendations expressed in this material are those of the 

author(s) and do not necessarily reflect the views of the Defense 

Advanced Research Projects Agency.


