
Adaptive Mesh Refinement in
Chapel

Part I: Hard problems made easy

Jonathan Claridge

University of Washington

March 2, 2011

Overview of two talks

 This talk:
• Several AMR challenges that Chapel makes easy

 Next talk:
• A difficult part of AMR that Chapel sets us up to solve

(2)

What is adaptive mesh refinement (AMR)?

 Method for solving partial differential equations (PDEs) in which

resolution is adaptively increased near “interesting” features

(3)

Movie omitted to reduce file size

Development overview

 Developed working, dimension-independent AMR infrastructure in just

under 4 months, beginning with no Chapel experience

(4)

Development overview

 Developed working, dimension-independent AMR infrastructure in just

under 4 months, beginning with no Chapel experience

(5)

 Chapel made many challenges of AMR easy with little-to-no additional

infrastructure required, while providing a large head start on the really

hard parts

Development overview

 Developed working, dimension-independent AMR infrastructure in just

under 4 months, beginning with no Chapel experience

(6)

Language Parallelism SLOC1 Tokens Relative size (tokens)

C++ (D≤6) 3 Dist. mem. 40200 261427 100%

Fortran (2D+3D) 2

2D

3D

Serial 16562

8297

8265

151992

71639

80353

58%

27%

31%

1 source lines of code, 2 AMRClaw, 3 Chombo BoxTools+AMRTools

 Chapel made many challenges of AMR easy with little-to-no additional

infrastructure required, while providing a large head start on the really

hard parts

 Code size compares very favorably to existing AMR frameworks -- but

keep in mind that the Chapel version is a “minimal” implementation!

Development overview

 Developed working, dimension-independent AMR infrastructure in just

under 4 months, beginning with no Chapel experience

(7)

Language Parallelism SLOC1 Tokens Relative size (tokens)

C++ (D≤6) 3 Dist. mem. 40200 261427 100%

Fortran (2D+3D) 2

2D

3D

Serial 16562

8297

8265

151992

71639

80353

58%

27%

31%

Chapel (any D) Shared mem. 1988 13783 5%

1 source lines of code, 2 AMRClaw, 3 Chombo BoxTools+AMRTools

 Chapel made many challenges of AMR easy with little-to-no additional

infrastructure required, while providing a large head start on the really

hard parts

 Code size compares very favorably to existing AMR frameworks -- but

keep in mind that the Chapel version is a “minimal” implementation!

Development overview

 Developed working, dimension-independent AMR infrastructure in just

under 4 months, beginning with no Chapel experience

(8)

Language Parallelism SLOC1 Tokens Relative size (tokens)

C++ (D≤6) 3 Dist. mem. 40200 261427 100%

Fortran (2D+3D) 2

2D

3D

Serial 16562

8297

8265

151992

71639

80353

58%

27%

31%

Chapel (any D) Shared mem. 1988 13783 5%

1 source lines of code, 2 AMRClaw, 3 Chombo BoxTools+AMRTools

 Chapel made many challenges of AMR easy with little-to-no additional

infrastructure required, while providing a large head start on the really

hard parts

 Code size compares very favorably to existing AMR frameworks -- but

keep in mind that the Chapel version is a “minimal” implementation!

Reflects limitations of developer
time, not Chapel itself

AMR terminology

(9)

grid

AMR terminology

(10)

grid

Roughly:

Operations on grids

Operations on rectangular

(Chapel) domains

AMR terminology

(11)

(refinement)

level

AMR terminology

(12)

fine

level

coarse

level

AMR terminology

(13)

fine

level

coarse

level

AMR terminology

(14)

top level

(covers entire

domain)
AMR

hierarchy

Grids: Indexing

 Conventional indexing – number grid cells sequentially

(15)

1 32 4

1

3

2

Grids: Indexing

 Conventional indexing – number grid cells sequentially

(16)

1 32 4

1

3

2 const cells = [1..4, 1..3];

Grids: Indexing

 Conventional indexing – number grid cells sequentially

(17)

1 32 4

1

3

2 const cells = [1..4, 1..3];

Rectangular domain: Multidimensional index space

 Supports storage:

var my_array: [cells] real;

 Supports (parallel) iteration:

for(all) cell in cells do …

Grids: Indexing

 Conventional indexing – number grid cells sequentially

(18)

1 32 4

1

3

2 const cells = [1..4, 1..3];

 Problem with conventional indexing: How are the interfaces indexed?
• Usual approach: Interface has the same index as the cell above it

Grids: Indexing

 Conventional indexing – number grid cells sequentially

(19)

1 32 4

1

3

2 const cells = [1..4, 1..3];

 Problem with conventional indexing: How are the interfaces indexed?
• Usual approach: Interface has the same index as the cell above it

(2,3)

Grids: Indexing

 Conventional indexing – number grid cells sequentially

(20)

1 32 4

1

3

2 const cells = [1..4, 1..3];

 Problem with conventional indexing: How are the interfaces indexed?
• Usual approach: Interface has the same index as the cell above it

(2,3)
(2,3)

Grids: Indexing

 Conventional indexing – number grid cells sequentially

(21)

1 32 4

1

3

2 const cells = [1..4, 1..3];

 Problem with conventional indexing: How are the interfaces indexed?
• Usual approach: Interface has the same index as the cell above it

(2,3)

(2,3)

(2,3)

Grids: Indexing

 Conventional indexing – number grid cells sequentially

(22)

1 32 4

1

3

2 const cells = [1..4, 1..3];

 Problem with conventional indexing: How are the interfaces indexed?
• Usual approach: Interface has the same index as the cell above it

(2,3)

(2,3) (2,3)

(2,3)

Grids: Indexing

 Conventional indexing – number grid cells sequentially

(23)

1 32 4

1

3

2 const cells = [1..4, 1..3];

 Problem with conventional indexing: How are the interfaces indexed?
• Usual approach: Interface has the same index as the cell above it

(2,3)

(2,3) (2,3)

(2,3) Many objects will have the

same indices

Grids: Indexing

 Modified approach – denser index space

(24)

1 53 7

1

5

3

0 2 4 6 8

0

2

4

6

Grids: Indexing

 Modified approach – denser index space

(25)

1 53 7

1

5

3

0 2 4 6 8

0

2

4

6

const cells = [1..7 by 2, 1..5 by 2];

Grids: Indexing

 Modified approach – denser index space

(26)

1 53 7

1

5

3

0 2 4 6 8

0

2

4

6

const cells = [1..7 by 2, 1..5 by 2];

const x_interfaces = [0..8 by 2, 1..5 by 2];

Grids: Indexing

 Modified approach – denser index space

(27)

1 53 7

1

5

3

0 2 4 6 8

0

2

4

6

const cells = [1..7 by 2, 1..5 by 2];

const y_interfaces = [1..7 by 2, 0..6 by 2];

const x_interfaces = [0..8 by 2, 1..5 by 2];

Grids: Indexing

 Modified approach – denser index space

(28)

1 53 7

1

5

3

0 2 4 6 8

0

2

4

6

const cells = [1..7 by 2, 1..5 by 2];

const y_interfaces = [1..7 by 2, 0..6 by 2];

const x_interfaces = [0..8 by 2, 1..5 by 2];

const vertices = [0..8 by 2, 0..6 by 2];

Grids: Indexing

 Modified approach – denser index space

(29)

const cells = [1..7 by 2, 1..5 by 2];

const y_interfaces = [1..7 by 2, 0..6 by 2];

const x_interfaces = [0..8 by 2, 1..5 by 2];

const vertices = [0..8 by 2, 0..6 by 2];

Strided domains

 Array and iteration syntax are unchanged

 Chapel helps describe the mathematical problem much more robustly

Grids: Dimension independence

(30)

 Use the same code to produce results in 2D, 3D, 6D, 17D…

Grids: Dimension independence

 Goal: Use rank-independent domain construction to define a grid of

arbitrary spatial dimension

(31)

Grids: Dimension independence

 Goal: Use rank-independent domain construction to define a grid of

arbitrary spatial dimension

(32)

 Begin by setting
config param dimension: int;

Specifies a compile-time constant (param) that may be specified at the

command line (config).

Grids: Dimension independence

 Goal: Use rank-independent domain construction to define a grid of

arbitrary spatial dimension

(33)

 Begin by setting
config param dimension: int;

Specifies a compile-time constant (param) that may be specified at the

command line (config).

 A grid is defined by:

const x_low, x_high: dimension*real;

const n_cells: dimension*int;

const ghost_layer_width: int;

const i_low: dimension*int;

Coordinate bounds

Coordinate bounds

Width of ghost cell layer

Lower index bound

Grids: Dimension independence

 Goal: Use rank-independent domain construction to define a grid of

arbitrary spatial dimension

(34)

 Begin by setting
config param dimension: int;

Specifies a compile-time constant (param) that may be specified at the

command line (config).

 A grid is defined by:

const x_low, x_high: dimension*real;

const n_cells: dimension*int;

const ghost_layer_width: int;

const i_low: dimension*int;

Coordinate bounds

Coordinate bounds

Width of ghost cell layer

Lower index bound

Types dimension*real and dimension*int are tuples,

a native type.

Grids: Dimension independence

 Domain of interior cells:

var subranges: dimension*range(stridable=true);

for d in 1..dimension do

subranges (d) = (i_low(d)+1 .. by 2) #n_cells(d);

var cells: domain(dimension, stridable=true);

cells = subranges;

(35)

Temporary variable to store sub-ranges

of the domain as they are defined

Grids: Dimension independence

 Domain of interior cells:

var subranges: dimension*range(stridable=true);

for d in 1..dimension do

subranges(d) = (i_low(d)+1 .. by 2) #n_cells(d);

var cells: domain(dimension, stridable=true);

cells = cell_ranges;

(36)

Assign subranges in each dimension; this is

the only place that the dimensions are unrolled

Grids: Dimension independence

 Domain of interior cells:

var subranges: dimension*range(stridable=true);

for d in 1..dimension do

subranges(d) = (i_low(d)+1 .. by 2) #n_cells(d);

var cells: domain(dimension, stridable=true);

cells = cell_ranges;

(37)

Unbounded range with correct

lower bound and stride

Count operator: Extracts
n_cells(d) elements

Grids: Dimension independence

 Domain of interior cells:

var subranges: dimension*range(stridable=true);

for d in 1..dimension do

subranges(d) = (i_low(d)+1 .. by 2) #n_cells(d);

var cells: domain(dimension, stridable=true);

cells = subranges;

(38)

Define the domain cells

Grids: Dimension independence

 Domain of interior cells:

var subranges: dimension*range(stridable=true);

for d in 1..dimension do

subranges(d) = (i_low(d)+1 .. by 2) #n_cells(d);

var cells: domain(dimension, stridable=true);

cells = subranges;

(39)

 Domain of all cells, including ghost cells (spatial variables will be

defined here):

var extended_cells = cells.expand(2*ghost_layer_width);

Cell centers are two

indices apart

Grids: Dimension independence

 Domain of interior cells:

var subranges: dimension*range(stridable=true);

for d in 1..dimension do

subranges(d) = (i_low(d)+1 .. by 2) #n_cells(d);

var cells: domain(dimension, stridable=true);

cells = subranges;

(40)

 Domain of all cells, including ghost cells (spatial variables will be

defined here):

var extended_cells = cells.expand(2*ghost_layer_width);

Cell centers are two

indices apart

 Array declarations are automatically rank-independent:

var spatial_variable: [extended_cells] real;

Levels

 Essentially a union of grids

(41)

Levels

 Essentially a union of grids

(42)

var grids: domain(Grid);

Levels

 Essentially a union of grids

(43)

var grids: domain(Grid);

Associative domain

 List of indices of any type

 Array and iteration syntax are unchanged

Levels: Sibling overlaps

(44)

 A grid’s layer of ghost cells will, in general,

overlap some of its siblings. Data will be

copied into these overlapped ghost cells prior

to mathematical operations.

Levels: Sibling overlaps

(45)

 Calculating the overlaps between siblings:

 A grid’s layer of ghost cells will, in general,

overlap some of its siblings. Data will be

copied into these overlapped ghost cells prior

to mathematical operations.

Levels: Sibling overlaps

(46)

 Calculating the overlaps between siblings:

var neighbors: domain(Grid);

var overlaps: [neighbors] domain(dimension,stridable=true);

for sibling in parent_level.grids {

var overlap = extended_cells(sibling.cells);

if overlap.numIndices > 0 && sibling != this {

neighbors.add(sibling);

overlaps(sibling) = overlap;

}

}

Declare associative domain to store

neighbors; initializes to empty.

 A grid’s layer of ghost cells will, in general,

overlap some of its siblings. Data will be

copied into these overlapped ghost cells prior

to mathematical operations.

Levels: Sibling overlaps

(47)

 Calculating the overlaps between siblings:

var neighbors: domain(Grid);

var overlaps: [neighbors] domain(dimension,stridable=true);

for sibling in parent_level.grids {

var overlap = extended_cells(sibling.cells);

if overlap.numIndices > 0 && sibling != this {

neighbors.add(sibling);

overlaps(sibling) = overlap;

}

}

An array of domains; stores one

domain for each neighbor.

New space allocated as
neighbors grows.

 A grid’s layer of ghost cells will, in general,

overlap some of its siblings. Data will be

copied into these overlapped ghost cells prior

to mathematical operations.

Levels: Sibling overlaps

(48)

 Calculating the overlaps between siblings:

var neighbors: domain(Grid);

var overlaps: [neighbors] domain(dimension,stridable=true);

for sibling in parent_level.grids {

var overlap = extended_cells(sibling.cells);

if overlap.numIndices > 0 && sibling != this {

neighbors.add(sibling);

overlaps(sibling) = overlap;

}

}

Loop over all grids on the

same level, checking for

neighbors.

 A grid’s layer of ghost cells will, in general,

overlap some of its siblings. Data will be

copied into these overlapped ghost cells prior

to mathematical operations.

Levels: Sibling overlaps

(49)

 Calculating the overlaps between siblings:

var neighbors: domain(Grid);

var overlaps: [neighbors] domain(dimension,stridable=true);

for sibling in parent_level.grids {

var overlap = extended_cells(sibling.cells);

if overlap.numIndices > 0 && sibling != this {

neighbors.add(sibling);

overlaps(sibling) = overlap;

}

}

Computes intersection of the domains extended_cells

and sibling.cells.

Take a moment to appreciate what this calculation would

look like without domains!

 A grid’s layer of ghost cells will, in general,

overlap some of its siblings. Data will be

copied into these overlapped ghost cells prior

to mathematical operations.

Levels: Sibling overlaps

(50)

 Calculating the overlaps between siblings:

var neighbors: domain(Grid);

var overlaps: [neighbors] domain(dimension,stridable=true);

for sibling in parent_level.grids {

var overlap = extended_cells(sibling.cells);

if overlap.numIndices > 0 && sibling != this {

neighbors.add(sibling);

overlaps(sibling) = overlap;

}

}

If overlap is nonempty, and

sibling is distinct from this

grid, then update stored data.

 A grid’s layer of ghost cells will, in general,

overlap some of its siblings. Data will be

copied into these overlapped ghost cells prior

to mathematical operations.

AMR Hierarchy: Brief overview

 Three major challenges
• Data coarsening

• Data refinement

• Regridding

(51)

AMR Hierarchy: Brief overview

 Three major challenges
• Data coarsening

• Data refinement

• Regridding

(52)

 Coarsening
• Data transfer occurs on intersection

of coarse grid and fine grid

AMR Hierarchy: Brief overview

 Three major challenges
• Data coarsening

• Data refinement

• Regridding

(53)

 Coarsening
• Data transfer occurs on intersection

of coarse grid and fine grid

AMR Hierarchy: Brief overview

 Three major challenges
• Data coarsening

• Data refinement

• Regridding

(54)

 Coarsening
• Data transfer occurs on intersection

of coarse grid and fine grid

AMR Hierarchy: Brief overview

 Three major challenges
• Data coarsening

• Data refinement

• Regridding

(55)

 Coarsening
• Data transfer occurs on intersection

of coarse grid and fine grid

• Region is rectangular – transfer
is relatively easy

AMR Hierarchy: Brief overview

 Three major challenges
• Data coarsening

• Data refinement

• Regridding

(56)

 Coarsening
• Data transfer occurs on intersection

of coarse grid and fine grid

• Region is rectangular – transfer
is relatively easy

 Refinement and regridding
• Involve unions and subtractions of rectangles

• Much harder; subject of next talk

Conclusion

 Chapel domains make many fundamental AMR calculations very easy,

even in a dimension-independent setting

(57)

Conclusion

 Chapel domains make many fundamental AMR calculations very easy,

even in a dimension-independent setting

(58)

 Rectangular domains and associative domains are both very important

Conclusion

 Chapel domains make many fundamental AMR calculations very easy,

even in a dimension-independent setting

(59)

 Rectangular domains and associative domains are both very important

 Haven’t discussed objects for data storage, but Chapel’s link between

domains and arrays makes them easy to define and use

Conclusion

 Chapel domains make many fundamental AMR calculations very easy,

even in a dimension-independent setting

(60)

1 source lines of code, 2 AMRClaw, 3 Chombo BoxTools+AMRTools

 Rectangular domains and associative domains are both very important

 Haven’t discussed objects for data storage, but Chapel’s link between

domains and arrays makes them easy to define and use

Language Parallelism SLOC1 Tokens Relative size (tokens)

C++ (D≤6) 3 Dist. mem. 40200 261427 100%

Fortran (2D+3D) 2

2D

3D

Serial 16562

8297

8265

151992

71639

80353

58%

27%

31%

Chapel (any D) Shared mem. 1988 13783 5%

 A recap of code size, now that you’ve seen some of the interesting parts:

Thank You.

Questions?

(61)

This material is based upon work supported by the Defense

Advanced Research Projects Agency under its Agreement No.

HR0011-07-9-0001. Any opinions, findings and conclusions or

recommendations expressed in this material are those of the

author(s) and do not necessarily reflect the views of the Defense

Advanced Research Projects Agency.

