
An Overview of Chapel

Jonathan Turner

University of Colorado at Boulder

(Cray Summer Intern 2010)

Before we get started

 This talk is an overview of some of Chapel’s unique features, later talks

will go into more detail

 Disclaimer: This presentation assumes the newest, yet unreleased,

Chapel syntax, so there are keyword differences with the latest released

version of the language

(2)

What is Chapel?

 Modern distributed, parallel (and concurrent) language
• Uses partitioned global address space (PGAS) as its communication layer

• Includes affinity control

 Compiled, general purpose language
• Has many of the conveniences of a dynamic language

 Has first-class support for multidimensional arrays, as well as sparse

and strided arrays

 Open-source implementation
• Available now at https://sourceforge.net/projects/chapel/

(3)

https://sourceforge.net/projects/chapel/

What are Chapel’s Goals?

 Main Goal: Improve programmer productivity
• Improve the programmability of parallel computers

• Match or beat the performance of current programming models

• Provide better portability than current programming models

• Improve robustness of parallel codes

 Be familiar to the seasoned Fortran/C/C++ developer as well as the new

crop of Java/Matlab/Python programmers
• Allows both OOP and traditional imperative styles

 Allow users to work with algorithms and concurrency at various levels of

detail

(4)

OVERVIEW OF CHAPEL

A source-driven

(5)

Generics

proc add_or_concat(x, y) {

return x + y;

}

writeln(add_or_concat(3, 4));

writeln(add_or_concat(“3”, “4”));

(6)

• One function can mean many

things

• Compiler works with what you

call the function with

• The example prints the number

7 followed by the string “34”

Tuples

var y: 3*int = (4, 5, 6);

var (a, b, c) = y;

//assigns a=4, b=5, c=6

var d = ((...y), (...y));

//d = (4, 5, 6, 4, 5, 6)

var z = y + y;

//z = (8, 10, 12)

(7)

• Tuples are a powerful

first-class citizen in

Chapel

• Allow for destructuring,

expansion, and a

number of operations

(including

lexicographical

ordering)

Iterators

iter squares(n:int) : int {

for i in 1..n do

yield i * i;

}

}

for s in squares(10) {

writeln(s);

}

(8)

• Iterators are like functions but

produce a “stream” of values

• Can be used in for statements

…AND THEN THE FUN BEGINS

(9)

Task Parallelism: Sync and Begin

sync {

begin treeSearch(root);

}

proc treeSearch(node) {

if node == nil then return;

begin treeSearch(node.right);

begin treeSearch(node.left);

}

(10)

• sync joins all begin commands

• Much more implicit than dealing

with threads and locks

• Also more composable than

threads and locks

Forall and Coforall

for x in 1..n do

expensive_operation(x);

forall x in 1..n do

expensive_operation(x);

coforall x in 1..n do

expensive_operation(x);

(11)

• Like for, but now each

iteration can be done in

parallel

• forall hints that each iteration

can be done in parallel using

a “recipe” but the loop must

be serializable

• coforall requires that each

iteration be done in parallel

A New Way of Looking at Indices

Traditional

0 Value

1 Value

2 Value

Chapel

(12)

Domain Array
Values

Domains

var D: domain(1) = [1..1000];

var a: [D] int;

var b: [D] string;

a[5] = 10;

b[5] = “test”;

var D: domain(2) = [1..m,
1..n];

var Inner: subdomain(D) =
[2..m-1, 2..n-1];

var Strided = D by (2, 2);

(13)

• Abstract index sets

• For example: 1-based or 0-

based, you pick

• Can be strided, multi-

dimensional

• Can also span multiple

machines (which we’ll see later)

• First example can also be

written: var a: [1..1000] int

Domains Come in Many Shapes

(14)

var Vertices:
domain(Vertex);

var D: domain(2) =
[1..m, 1..n];

var Strided =
D by (2, 4);

var Sparse:
sparse subdomain(D);

var Names:
domain(string);

…and Support Set-like Operations

(15)

Domain Intersection

Associative Domains

var D: domain(int);

D.add(3);

D.add(5);

var a: [D] int;

var b: [D] string;

a[3] = 100;

b[5] = “test”;

var D2: domain(Shape);

D2.add(triangle);

D2.add(square);

(16)

• We can now handle arbitrary

indices, not just ones based on a

range of values

• Work like other arrays, we can

iterate through it just as simply

• Also works with any value type,

not just integers and integers

Domain Maps

use CyclicDist;

const tpl = 2;

var myCyclicDist =

new dmap(new Cyclic(

startIdx=(1,1)

dataParTasksPerLocale=tpl));

var dom :

domain(2) dmapped myCyclicDist =

[1..n, 1..n];

(17)

• Domain maps allow us to

connect our domain to multiple

processing units

• Domain maps can pick from a

variety of distribution methods

(Cyclic distribution shown)

• Users can create their own

distributions

Summary

 Chapel has a lightweight, familiar syntax

 It has powerful abstractions that let us handle arrays and their indices in

new ways

 These abstractions allow the user to focus on the problem and the

distribution separately

(18)

Thank You.

Questions?

(19)

