
An Overview of Chapel

Jonathan Turner

University of Colorado at Boulder

(Cray Summer Intern 2010)



Before we get started

 This talk is an overview of some of Chapel’s unique features, later talks 

will go into more detail

 Disclaimer: This presentation assumes the newest, yet unreleased, 

Chapel syntax, so there are keyword differences with the latest released 

version of the language

(2)



What is Chapel?

 Modern distributed, parallel (and concurrent) language
• Uses partitioned global address space (PGAS) as its communication layer

• Includes affinity control

 Compiled, general purpose language
• Has many of the conveniences of a dynamic language

 Has first-class support for multidimensional arrays, as well as sparse 

and strided arrays

 Open-source implementation
• Available now at https://sourceforge.net/projects/chapel/

(3)

https://sourceforge.net/projects/chapel/


What are Chapel’s Goals?

 Main Goal: Improve programmer productivity
• Improve the programmability of parallel computers

• Match or beat the performance of current programming models

• Provide better portability than current programming models

• Improve robustness of parallel codes

 Be familiar to the seasoned Fortran/C/C++ developer as well as the new 

crop of Java/Matlab/Python programmers
• Allows both OOP and traditional imperative styles

 Allow users to work with algorithms and concurrency at various levels of 

detail

(4)



OVERVIEW OF CHAPEL

A source-driven

(5)



Generics

proc add_or_concat(x, y) {

return x + y;

}

writeln(add_or_concat(3, 4));

writeln(add_or_concat(“3”, “4”));

(6)

• One function can mean many 

things

• Compiler works with what you 

call the function with

• The example prints the number 

7 followed by the string “34”



Tuples

var y: 3*int = (4, 5, 6);

var (a, b, c) = y;  

//assigns a=4, b=5, c=6

var d = ((...y), (...y));

//d = (4, 5, 6, 4, 5, 6)

var z = y + y;

//z = (8, 10, 12)

(7)

• Tuples are a powerful 

first-class citizen in 

Chapel

• Allow for destructuring, 

expansion, and a 

number of operations 

(including 

lexicographical 

ordering)



Iterators

iter squares(n:int) : int {

for i in 1..n do

yield i * i;

}

}

for s in squares(10) {

writeln(s);

}

(8)

• Iterators are like functions but

produce a “stream” of values

• Can be used in for statements



…AND THEN THE FUN BEGINS

(9)



Task Parallelism: Sync and Begin

sync {

begin treeSearch(root);

}

proc treeSearch(node) {

if node == nil then return;

begin treeSearch(node.right);

begin treeSearch(node.left);

}

(10)

• sync joins all begin commands

• Much more implicit than dealing 

with threads and locks

• Also more composable than 

threads and locks



Forall and Coforall

for x in 1..n do

expensive_operation(x);

forall x in 1..n do

expensive_operation(x);

coforall x in 1..n do

expensive_operation(x);

(11)

• Like for, but now each

iteration can be done in 

parallel

• forall hints that each iteration 

can be done in parallel using 

a “recipe” but the loop must 

be serializable

• coforall requires that each 

iteration be done in parallel



A New Way of Looking at Indices

Traditional

0 Value

1 Value

2 Value

Chapel

(12)

Domain Array 
Values



Domains

var D: domain(1) = [1..1000];

var a: [D] int;

var b: [D] string;

a[5] = 10;

b[5] = “test”;

var D: domain(2) = [1..m, 
1..n];

var Inner: subdomain(D) = 
[2..m-1, 2..n-1];

var Strided = D by (2, 2);

(13)

• Abstract index sets

• For example: 1-based or 0-

based, you pick

• Can be strided, multi-

dimensional

• Can also span multiple 

machines (which we’ll see later)

• First example can also be 

written: var a: [1..1000] int



Domains Come in Many Shapes

(14)

var Vertices: 
domain(Vertex);

var D: domain(2) = 
[1..m, 1..n];

var Strided = 
D by (2, 4);

var Sparse: 
sparse subdomain(D);

var Names: 
domain(string);



…and Support Set-like Operations

(15)

Domain Intersection



Associative Domains

var D: domain(int);

D.add(3);

D.add(5);

var a: [D] int;

var b: [D] string;

a[3] = 100;

b[5] = “test”;

var D2: domain(Shape);

D2.add(triangle);

D2.add(square);

(16)

• We can now handle arbitrary 

indices, not just ones based on a 

range of values

• Work like other arrays, we can 

iterate through it just as simply

• Also works with any value type, 

not just integers and integers



Domain Maps

use CyclicDist;

const tpl = 2;

var myCyclicDist = 

new dmap(new Cyclic(

startIdx=(1,1)

dataParTasksPerLocale=tpl));

var dom : 

domain(2) dmapped myCyclicDist = 

[1..n, 1..n];

(17)

• Domain maps allow us to 

connect our domain to multiple 

processing units

• Domain maps can pick from a 

variety of distribution methods 

(Cyclic distribution shown)

• Users can create their own

distributions



Summary

 Chapel has a lightweight, familiar syntax

 It has powerful abstractions that let us handle arrays and their indices in 

new ways

 These abstractions allow the user to focus on the problem and the 

distribution separately

(18)



Thank You.

Questions?

(19)


