Hewlett Packard
Enterprise

3en McDonald,

é Cha%rlam

‘Michelle MI”S‘:STM?\'?‘_‘__
E{'o’r Ronaghan a,_',f

Chapel in User Appluca’rlons
February 24, 2022

CHAPEL TEAM

Chapel is truly a feam effort—we’re currently at 19 employees (+ a director), and we are hiring

Chapel Development Team at HPE

see: https://chapel-lang.org/contributors.html

2

https://chapel-lang.org/contributors.html

TAKEAWAY FOR THIS TALK

Chapel is a parallel programming language that provides
ease of programming,
high performance, and
portability.

And is being used in applications in various ways:
refactoring existing codes,
developing new codes,
serving high performance to Python codes (Chapel server with Python client), and
providing distributed and shared memory parallelism for existing codes.

3

R S e o

° ° o ‘Eﬁ-a 2 3%, .“‘?3-
. Scientific Computing Challenge

’

. ™y
= e -
S A > o7 2 N -
X " —% - A e ad %]
.- ’n,_ o <3 £ X
o . - 3 - b
b Py) X - S . p !

”~ 5 L

. >\ » .
S S ST

- How ns
-1"{‘,. ey < ’?
\.‘.',\"‘,"

SCIENTIFIC COMPUTING CHALLENGES

» Steep learning curve to effectively achieve high performance

e Distributed-memory parallelism across nodes (MPI)
 Parallelism within a node (OpenMP, Pthreads, CUDA, ...)
« Vectorization (intrinsics that are architecture specific)

e Preferred development model is on a laptop and then run on a cluster, cloud, or
supercomputer

e Goal is to have ...

» Ease of programming,
« High performance, and
» Portability

» Chapel achieves all three of these goals

—

5

EASE OF PROGRAMMING AND HIGH PERFORMANCE

|
1
STREAM TRIAD: C + MPI + OPENMP use BlockDist:
o ! STREAM Performance (GB/s)
_ 01010
. > | config const m = 1000, MPI+OpenMP —»—
static double fﬁi';:((gﬁtéfifi; Fetied o sticeate nenory 25000 - Chape| EP —— - - - - - - - - - = - - ———mm—— == == g
et & alpha = 3.0; Chapel Global - —+ -
| 20000 |- e o
S pneeiin 2o const Dom = {1l..m} dmapped ..; | @
m ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
var A, B, C: [Dom] real; 5] 15000
ot x5 ' 10000 f-------"--- e oo
int HPCC_Stream (HPCC_Params *params, int doI0) { B — 2 . O ; 5000 ,,
params, 3, sizeof(double), 0); iPCCﬁfVee(’c)i o C = 1 . O ,' O)
o i 1632 64 128 256
— ‘ A = B + alpha * C; Locales (x 36 cores / locale)
J

HPCC RA: MPI KERNEL

RA Performance (GUPS)

14
12
10
forall (, r) in zip(Updates, RAStream()) do .
T[r & indexMask].xor (r); 8 6
4
2
O L 1

16 32 64 128 256
Locales (x 36 cores / locale)

PORTABILITY

e On a laptop, cluster, or supercomputer prompt> chpl helloTaskPar.
(Shared-memory parallelism) prompt> ./helloTaskPar

Hello from task 1 of 4

Hello from task 4 of 4
Hello from task 3 of 4
Hello from task 2 of 4

prompt> chpl helloTaskPar.chpl

prompt> ./helloTaskPar —numLocales=4
e On a cluster or supercomputfer Hello from task 1 of 4 on nl032

(Distributed-memory parallelism) Hello from task 4 of 4 on nl032
Hello from task of on nl1034

Hello from task of on nl1032
Hello from task of on nl033
Hello from task of on nl1034
Hello from task of on nl035

TRANSITIONING FROM LAPTOP TO SUPERCOMPUTER

e Data Analysis Example
 Per file word count on all the files in a directory
« Serial to threaded and distributed by using a forall over a parallel distributed array
» Good scaling even for file I/O (below is for 100 files at 3MB each)

Word Count Time
Cray CS (HDR IB)

e e GREREEEEE R P T S

20 Chapel —+—

6 ¢ ¢ 3 > X
B B
£ A0 Jromm
=

) k ““““““““““““““““““““““““““

0 —_— — & ——————

1 128 256 512 1024
— Cores (128 Cores / Node)

9

ANALYZING MULTIPLE FILES USING PARALLELISM

word-count.chpl

use FileSystem;

var flist = findfiles(dir);
var filenames

filenames = flist;

// per file word count
forall £ in filenames {

while reader.readline(line)
for word in line.split (%
wordCount [word] += 1;

config const dir = “DataDir”;

{
II)

= newBlockArr (0..#fList.size,string);

{

prompt> chpl --fast word-count.chpl
prompt> ./word-count
prompt> ./word-count -nl 4

Shared and Distributed-Memory
Parallelism using forall, a distributed
array, and command line options to

indicate number of locales

10

LAPTOP TO SUPERCOMPUTERS BASED ON ARRAY DISTRIBUTION

for loop: each iteration is executed serially by the current task
 predictable execution order, similar to conventional languages

forall loop: all iterations are executed by one or more tasks in no specific order
« implemented using one or more tasks, locally or distributed, as determined by the iterand expression

forall elem in myLocArr do .. // task-level parallelism over local arrays

forall elem in myDistArr do .. // distributed arrays use tasks on each locale owning part of the array

Version of Parquet 1 Locale Performance 16 Locale
reader Performance
Original 0.85 GiB/s 10.75 GiB/s

Parallel+Batch 7.46 GiB/s 23.26 GiB/s

benchmark uses 400 files of size 0.25 GiB each

11

HOW APPLICATIONS ARE USING CHAPEL

Refactoring existing codes
into Chapel (-48K lines of Chapel)

CHAMPS: 3D Unstructured CFD

Eric Laurendeau, Simon Bourgault-C6té,
Matthieu Parenteau, et al.
Ecole Polytechnique Montréal

Chapel server for a Python
client (~16K lines of Chapel)

Arkouda: NumPy at Massive Scale

Writing code in Chapel (-10k
lines of including parallel FFT)

ChplUItra: Simulating Ultralight

Dark Matter

Nikhil Padmanabhan, J. Luna Zagorac, et
al.

Yale University / University of Auckland

Chapel providing
distributed parallelism for
- ML training (~8k lines of Chapel)

Mike Merrill, Bill Reus, et al. CrayAl: Distributed Machine Learning
US DoD Hewlett Packard Enterprise

FUTURE OPPORTUNITIES AND CHALLENGES FOR CHAPEL

« Generate code for GPUs (see Engin talk in MS79) // HECC Stream
// Variables stored on GPU

// forall’s are executed on GPU

. . on here.getChild (1) {
» Rearchitect the compiler var A, B, C: [1..n] real;

e Shed cruft from research prototype days to harden the compiler const alpha = 2.0;
e Reduce compile times

« How will the compiler need to evolve? Will the language need t0?

— potentially via separate compilation / incremental recompilation? torall b in B do b
. . . . forall ¢ in C do c
o Support interpreted / interactive Chapel programming

 Continue to optimize performance SRS @ By € Em ol By B) G2
= b + alpha * c;

* Release Chapel 2.0

« guarantee backwards-compatibility for core language and library

» Foster a growing Chapel community

— .

SUMMARY

Chapel cleanly supports...

ease of programming,
high performance, and
portability

Chapel is being used for productive parallel applications at scale
e recent users have reaped its benefits in 10k-48k-line applications

Chapel provides clean ways to transition from laptop development to a cluster/supercomputer

The Chapel Development Team is
e ...at 19 people and is hiring!
e ...working on a number of exciting initiatives!
e ... looking forward to hearing from you!

— -

CHIUW 2022 SUBMISSIONS DUE APRIL 15TH

The Chapel Parallel Programming Language

CHIUW 2022

Home

e The 9th Annual

et bl Chapel Implementers and Users Workshop
Upcoming Events

ng Oppogrtunities June 10, 2022

How Can | Learn Chapel? free and online in a virtual format

Contributing to Chapel
Community

il Call For Papers and Talks

|15

CHAPEL RESOURCES

Chapel homepage: hitps://chapel-lang.org
 (points to all other resources)

Social Media:

o Twitter: @ChapelLanguage
e Facebook: @ChapelLanguage

e YouTube: http://www.youtube.com/c/ChapelParallelProgramminglLangquage

Community Discussion / Support:

e Discourse: https://chapel.discourse.group/
o Gitter: https://gitter.im/chapel-lang/chapel

o Stack Overflow: https://stackoverflow.com/questions/tagged/chapel

o GitHub Issues: https://github.com/chapel-lang/chapel/issues

—

What is Chapel?
What's New?

Upcoming Events
Job Opportunities

How Can | Learn Chapel?
Contributing to Chapel

Download Chapel
Try Chapel Online

Documentation
Release Notes

Performance
Powered by Chapel

User Resources
Developer Resources

Social Media / Blog Posts
Press

Presentations
Papers / Publications

CHIuw
CHUG

Contributors / Credits

chapel_info@cray.com

O - A
vyEHD

What is Chapel?

Chapel is a programming language designed for productive parallel computing at scale.

Why Chapel? Because it simplifies parallel programming through elegant support for:

« distributed arrays that can leverage thousands of nodes' memories and cores

« a global namespace supporting direct access to local or remote variables

« data parallelism to trivially use the cores of a laptop, cluster, or supercomputer
« task parallelism to create concurrency within a node or across the system

Chapel Characteristics

« productive: code tends to be similarly readable/writable as Python
« scalable: runs on laptops, clusters, the cloud, and HPC systems

« fast: performance competes with or beats C/C++ & MPI & OpenMP
« portable: compiles and runs in virtually any *nix environment

* open-source: hosted on GitHub, permissively licensed

New to Chapel?

As an introduction to Chapel, you may want to...

« watch an overview talk or browse its slides

read a blog-length or chapter-length introduction to Chapel
learn about projects powered by Chapel

check out performance highlights like these:

PRK Stencil Performance (Glop's) NPB-FT Performance (Gop's)

Giop/'s
) §
L A\“‘ evi
\ |
\
Gopis
st
\
1

Locales (x 36 cores / locale) Locales (x 36 cores / locale)

* browse sample programs or learn how to write distributed programs like this one:

use CyclicDist; // use the Cyclic distribution Llibrary
config const n = 100; // use --n=<val> when executing to override this default

forall i in {1..n} dmapped Cyclic(startIdx=1) do
writeln("Hello from iteration ", i, " of ", n,

" running on node ", here.id);

C e The Chapel Parallel Programming Language
| [=

16

https://chapel-lang.org/
https://twitter.com/ChapelLanguage
https://www.facebook.com/ChapelLanguage/
http://www.youtube.com/c/ChapelParallelProgrammingLanguage
https://chapel.discourse.group/
https://gitter.im/chapel-lang/chapel
https://stackoverflow.com/questions/tagged/chapel
https://github.com/chapel-lang/chapel/issues

a

/c

ps

1t

h

»

4
~

-~

