
PAW-ATM 2024
November 17, 2024

Michael P. Ferguson, Bonnie Hurwitz, Shreyas
Khandekar

Exploring Suffix Array Algorithms in Chapel

What is a microbiome?

A microbiome is a
complex mixture of
microorganisms that
reside in a specific
environmental niche.

OHMI: https://doi.org/10.1186/s13326-019-0217-1

@thescientist

The human microbiome is an essential
organ whose functions are central to
human health

Microbial metagenomics allows us to
explore the complex interaction
between microbiota and host health

Metagenomics is the genomic analysis of microbial communities by extracting and sequencing their DNA.
Metagenomics allows to study complex communities of microorganisms directly in their natural environment

Which
bacterial
species?

Which
bacterial
strains?

• Gather lots of genomes for known bacteria

• Analyze these genomes to find k-mers that identify a particular microbial strain
• A k-mer is just snippet of the DNA sequence of length k; e.g. ACGTTATA is an 8-mer
• An identifying k-mer should ideally only be present in the genome of a single microbial strain

• Search for these identifying k-mers within metagenomic samples to learn about microbial
communities

5

Computational Approach

Focus of
this talk

• Suffix Arrays are used in several bioinformatics applications including bowtie2 and MUMmer4
[1,2]

• We are exploring how suffix arrays can help to identify subsequences for strain-level detection
• What is a suffix array?

6

Suffix Array

Suffix Offset
seeresses 0
eeresses 1
eresses 2
resses 3
esses 4
sses 5
ses 6
es 7
s 8

Suffix Offset
eeresses 1
eresses 2
es 7
esses 4
resses 3
s 8
seeresses 0
ses 6
sses 5

Suffixes of ‘seeresses’ Sorted Suffixes

The Suffix
Array

7

The Chapel Parallel Programming Language

"We ask students at the master's degree to do stuff that would take 2 years and they
do it in 3 months." Eric Laurendeau, Professor of Mechanical Engineering

HPE Cray EX, HPE Apollo, Cray XC, *nix systems, Mac, NVIDIA and AMD GPUs

Achieved 8,500 GiB/s when sorting 256 TiB in 31 seconds on 8192 HPE Cray EX Nodes

Team at HPE actively interacts with Chapel community at chapel-
lang.org

Easy to Use

Portable

GPU-Ready

Open source

Fast & Scalable

Chapel is a language designed for produc<ve parallel programming,
par<cularly on large-scale systems. Chapel is ...

Real-world applications were ported on GPUs with few changes, and run on
leadership-class systems such as Frontier and Perlmutter

http://chapel-lang.org/

• We implemented several tools to explore how suffix arrays can be applied to strain detection

• Suffix Array Construction in Chapel
• Implemented the Difference Cover algorithm [3] focusing on v=133
• Also implemented parallel sparse PLCP array construction [4,5]

• Computing Similarity based on the Suffix Array
• Use case: detect reference genomes that are too related to be useful for strain identification
• Explored & implemented several parallel algorithms to compute all-to-all similarity for a set of genomes

• Finding Unique Substrings based on the Suffix Array
• Use case: finding identifying k-mers for strain-level detection
• Implemented a parallel algorithm to find all substrings that appear in just one genome
• If no unique substrings can be found for a genome, uses similarity computation to drop near-duplicate

genomes

8

What did we do?

• We were able to implement all 3 tools in less than a month

• We can compare the suffix array construction code against an earlier C++ implementation [6]
• Chapel version is about 2000 lines while the C++ implementation is closer to 8000 lines

• Both implement the Difference Cover algorithm & have the same primary author
• C++ implementation was parallel with MPI + OpenMP & optionally an external memory algorithm
• The Chapel version is parallel and distributed (in-memory only)
• Improvements are needed in both cases to achieve good scaling in distributed memory

• Challenges: hit occasional bugs, tricky to identify and fix problems with distributed memory
performance

• Benefits:
• High level parallel loops with ‘forall’ help with straightforward and portable code
• Generic programming to make it easier to implement

–Difference covers that are compiled in based on ‘param’
–When switching some arrays to be distributed, existing functions can accept & work with the distributed arrays

9

Experience Report: Productivity

This chart compares the performance of the
C++ and Chapel versions running in-memory
on a single node

• On AMD Ryzen 9 7950X, 32 threads
• The C++ in-memory version is mostly serial
• Chapel version is parallel throughout

10

Experience Report: Performance of the Suffix Array Construction

0

5

10

15

20

25

30

35

0 32 64 96 128
M

B/
s

Number of Threads

0

10

20

30

40

50

60

C++ DC133 Chapel DC133

M
B/

s

This chart shows single-node strong scaling
• On AMD EPYC 7543P 32-core processor
• Memory-intensive & can hit memory

bottlenecks

• Spent only a week making suffix array construction run multi-node
• Starting to use distributed arrays and run distributed was easy
• Trickier part was to identify and resolve performance issues
• Found the ‘local’ block in Chapel useful for identifying unexpected communication

• Needed to arrange to do communication in a separate region for this strategy to work
• Achieved some scalability for a version with minimal random access (similar to external memory

version)
• This version is slower single-node & more memory intensive but reduces communication multi-node
• Need both algorithmic improvements & implementation tuning to do better

11

Experience Report: Distributed Performance of the Suffix Array
Construction

0

20

40

60

0 10 20 30 40 50 60 70

M
B/

s

Number of Nodes

Suffix Array Construction Rate with 32 MB per node on a Cray
XC

• This talk has shown some early results from our efforts
• We are using Chapel to implement tools to support strain-level metagenomic analysis

• We feel that Chapel has been particularly useful
• for algorithmic exploration
• to easily write parallel code
• to easily move to distributed memory

• Scalable distributed-memory suffix array construction needs more work

• We are working towards publishing about our new tools in a bioinformatics journal

• Code is open-source & available at https://github.com/femto-dev/femto/tree/main/src/ssort_chpl

12

Conclusion and Future Work

https://github.com/femto-dev/femto/tree/main/src/ssort_chpl

[1] B. Langmead, S. Salzberg, “Fast gapped-read alignment with BowPe 2,” in Nat Methods vol 9, pp 357–359, 2012, doi: 10.1038/nmeth.1923
[2] G. Marçais, A. L. Delcher, A. M. Phillippy, R. Coston, S. L. Salzberg, and A. Zimin, “MUMmer4: a fast and versaPle genome alignment system,” in PLoS computa2onal biology, vol 14
no 1, 2018
[3] J. Kärkkäinen, P. Sanders, and S. Burkhardt, “Linear work suffix array construcPon,” in J. ACM vol. 53, no. 6, pp 918–936, Nov. 2006, doi: 10.1145/1217856.1217858
[4] J. Shun, "Fast parallel computaPon of longest common prefixes," SC '14: Proceedings of the InternaPonal Conference for High Performance CompuPng, Networking, Storage and
Analysis, New Orleans, LA, USA, 2014, pp. 387-398, doi: 10.1109/SC.2014.37
[5] Juha Kärkkäinen, Giovanni Manzini, and Simon J. Puglisi. 2009. Permuted Longest-Common-Prefix Array. In Proceedings of the 20th Annual Symposium on Combinatorial Paiern
Matching - Volume 5577. Springer-Verlag, Berlin, Heidelberg, 181–192.
[6] M. P. Ferguson, “FEMTO: fast search of large sequence collecPons,” CPM 2012: Combinatorial Paiern Matching 2012, in Lecture Notes in Computer Science, vol 7354, doi:
10.1007/978-3-642-31265-6_17 . ImplementaPon available at hips://github.com/femto-dev/femto/

13

References

https://github.com/femto-dev/femto/

