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Chapel: A modern parallel programming language
• portable & scalable
• open-source & collaborative

Goals:
• Support general parallel programming
• Make parallel programming at scale far more productive

What is Chapel?
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chapel-lang.org

http://chapel-lang.org/
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Programming GPUs with Chapel
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  var A: [1..10] int;

  for elem in A do
    elem += 1;
 

GPU Core

Memory

CPU Core

Local, non-distributed array allocation

Sequential iteration over the array
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Programming GPUs with Chapel
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  var A: [1..10] int;

  forall elem in A do
    elem += 1;
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Parallel iteration over the array
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Programming GPUs with Chapel
GPU Core

Memory
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use BlockDist;
  var Arr = blockDist.createArray(1..10, int);

  forall elem in Arr do
    elem += 1;
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A:

Block-distributed array allocation

Distributed, parallel iteration over 
the array
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Programming GPUs with Chapel
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  var A: [1..10] int;

  forall elem in A do
    elem += 1;
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Programming GPUs with Chapel
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on Locales[1] {
  var A: [1..10] int;

  forall elem in A do
    elem += 1;
}

A:
The 'on' statement moves the execution 

to a remote locale
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Programming GPUs with Chapel
GPU Core

Memory

CPU Core

on Locales[1].gpus[0] {
  var A: [1..10] int;

  forall elem in A do
    elem += 1;
}

Locale 0

GPU 0

A:

GPU 1

Locale 1

GPU 0

GPU 1

Each locale object has a 
'gpus' array that store GPU sublocales
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Programming GPUs with Chapel
GPU Core

Memory

CPU Core

on here.gpus[0] {
  var A: [1..10] int;

  forall elem in A do
    elem += 1;
}

Locale 0

GPU 0

A:

GPU 1

Locale 1

GPU 0

GPU 1

'here' is a built-in representing
the current execution locale



• Using distributed arrays to distribute data on multiple GPUs is an active work area

• GPUs are supported only with the LLVM backend, which is the default
• Chapel can also use C backend

• NVIDIA and AMD GPUs are supported with no special code needed from the user
• We are on holding pattern to add Intel support

• How does the performance compare?
• TL;DR Comparable to other technologies, with some exceptions, which we are aware
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Frequently Asked Questions

Using single GPU, compares against
CUDA, HIP, OpenMP, Kokkos

Milthorpe et al. IPDPSW 2024

Using Frontier and Perlmutter, compares against
CUDA, HIP

Carneiro et al. Euro-Par 2024
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Learn More

Meet us at the
HPE Booth (2219)

Watch a hands-on demo

Watch a
Chapel+GPU tutorial

Read blog articles

youtube.com/watch?v=1gMFtJN-4_E

chapel-lang.org/blog/series/gpu-programming-in-chapel/

Watch a talk+demo

chapel-lang.org

youtube.com/watch?v=5OqjQhfGKes youtube.com/watch?v=nj-WqhGEy24

https://www.youtube.com/watch?v=1gMFtJN-4_E
https://chapel-lang.org/blog/series/gpu-programming-in-chapel/
http://chapel-lang.org/
https://www.youtube.com/watch?v=5OqjQhfGKes
https://www.youtube.com/watch?v=nj-WqhGEy24
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Thank you!


