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What is Chapel?

Chapel: A modern parallel programming language ~\
» portable & scalable
e open-source & collaborative —y,
Goals:

chapel-lang.org

e Support general parallel programming
o Make parallel programming at scale far more productive


http://chapel-lang.org/

Programming GPUs with Chapel

CPU Core GPU Core

. Memory

Locale 0 Locale 1

o

var A: [1..10] int; Local, non-distributed array allocation

GPUO GPUO for elem in A do Sequential iteration over the array

GPU 1 GPU 1

—

elem += 1;
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var A: [1..10] int;

forall elem in A do
elem += 1;

EIENE iteration over the array
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GPUO

GPU 1

CPU Core GPU Core
. Memory
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GPU O
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use BlockDist;

Block-distributedEIFENA: el o]y

var Arr = blockDist.createArray(1l..10, int);

forall elem in Arr do
elem += 1;

B iglel0i(=el, parallel iteration over

the array
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var A: [1..10] int;

forall elem in A do
elem += 1;



Programming GPUs with Chapel

CPU Core GPU Core

. Memory

Locale 0 Locale 1

o
O

The 'on' statement [=ERia=R=Cebki(e])

on lLocales[1l] {

) to a remote locale
var A: [1..10] int;

GPUO GPUO forall elem in A do

GPU 1 GPU 1

—

elem += 1;




Programming GPUs with Chapel

CPU Core GPU Core

. Memory

Locale 0 Locale 1

on Locales[1].gpus[0] {
var A: [1..10] int; Each locale object has a

that store GPU sublocales

GPUO

GPU 1

—

forall elem in A do
elem += 1;




Programming GPUs with Chapel

CPU Core GPU Core

- Memory
is a built-in representing
the current execution locale
Locale O Locale 1

on here.gpus[0] {
var A: [1..10] int;

GPUO forall elem in A do

GPU 1

elem += 1;




Frequently Asked Questions

e Using distributed arrays to distribute data on multiple GPUs is an active work area

e GPUs are supported only with the LLVM backend, which is the default

e Chapel can also use C backend

» NVIDIA and AMD GPUs are supported with no special code needed from the user

e We are on holding pattern to add Intel support

» How does the performance compare?

» TL;DR Comparable to other technologies, with some exceptions, which we are aware

Milthorpe et al. IPDPSW 2024

Carneiro et al. Euro-Par 2024
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Using single GPU, compares against
CUDA, HIP, OpenMP, Kokkos

—

Using Frontier and Perlmutter, compares against
CUDA, HIP
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Learn More

Read blog articles N\
Meet us at the e
HPE Booth (2219 Gl

( ) "

Waitch a chapeI—Ianq.org/bloq/series/gDu—.loroqramming—in—chaoel/ chapel-lang.org
Chapel+GPU tutorial
_ Watch a hands-on demo Watch a talk+demo
voutube.com/warchzv=1gMF1JN-4_E youtube.com/watch?v=50qjQhfGKes vou’rube.com/v;a’rch?\./=ni—thGEv24
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https://www.youtube.com/watch?v=1gMFtJN-4_E
https://chapel-lang.org/blog/series/gpu-programming-in-chapel/
http://chapel-lang.org/
https://www.youtube.com/watch?v=5OqjQhfGKes
https://www.youtube.com/watch?v=nj-WqhGEy24
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