
Productive, Vendor-Neutral GPU Programming
Using Chapel

WACCPD @SC24
November 18, 2024

Engin Kayraklioglu
engin@hpe.com
linkedin.com/in/engink

mailto:engin@hpe.com
http://www.linkedin.com/in/engink

Chapel: A modern parallel programming language
• portable & scalable
• open-source & collaborative

Goals:
• Support general parallel programming
• Make parallel programming at scale far more productive

What is Chapel?

2

chapel-lang.org

http://chapel-lang.org/

3

Programming GPUs with Chapel

Locale 0

GPU 0

A:

GPU 1

Locale 1

GPU 0

GPU 1

 var A: [1..10] int;

 for elem in A do
 elem += 1;

GPU Core

Memory

CPU Core

Local, non-distributed array allocation

Sequential iteration over the array

4

Programming GPUs with Chapel
GPU Core

Memory

CPU Core

 var A: [1..10] int;

 forall elem in A do
 elem += 1;

Locale 0

GPU 0

A:

GPU 1

Locale 1

GPU 0

GPU 1

Parallel iteration over the array

5

Programming GPUs with Chapel
GPU Core

Memory

CPU Core

use BlockDist;
 var Arr = blockDist.createArray(1..10, int);

 forall elem in Arr do
 elem += 1;

Locale 0

GPU 0

A:

GPU 1

Locale 1

GPU 0

GPU 1

A:

Block-distributed array allocation

Distributed, parallel iteration over
the array

6

Programming GPUs with Chapel
GPU Core

Memory

CPU Core

 var A: [1..10] int;

 forall elem in A do
 elem += 1;

Locale 0

GPU 0

A:

GPU 1

Locale 1

GPU 0

GPU 1

7

Programming GPUs with Chapel
GPU Core

Memory

CPU Core

Locale 0

GPU 0

GPU 1

Locale 1

GPU 0

GPU 1

on Locales[1] {
 var A: [1..10] int;

 forall elem in A do
 elem += 1;
}

A:
The 'on' statement moves the execution

to a remote locale

8

Programming GPUs with Chapel
GPU Core

Memory

CPU Core

on Locales[1].gpus[0] {
 var A: [1..10] int;

 forall elem in A do
 elem += 1;
}

Locale 0

GPU 0

A:

GPU 1

Locale 1

GPU 0

GPU 1

Each locale object has a
'gpus' array that store GPU sublocales

9

Programming GPUs with Chapel
GPU Core

Memory

CPU Core

on here.gpus[0] {
 var A: [1..10] int;

 forall elem in A do
 elem += 1;
}

Locale 0

GPU 0

A:

GPU 1

Locale 1

GPU 0

GPU 1

'here' is a built-in representing
the current execution locale

• Using distributed arrays to distribute data on multiple GPUs is an active work area

• GPUs are supported only with the LLVM backend, which is the default
• Chapel can also use C backend

• NVIDIA and AMD GPUs are supported with no special code needed from the user
• We are on holding pattern to add Intel support

• How does the performance compare?
• TL;DR Comparable to other technologies, with some exceptions, which we are aware

10

Frequently Asked Questions

Using single GPU, compares against
CUDA, HIP, OpenMP, Kokkos

Milthorpe et al. IPDPSW 2024

Using Frontier and Perlmutter, compares against
CUDA, HIP

Carneiro et al. Euro-Par 2024

11

Learn More

Meet us at the
HPE Booth (2219)

Watch a hands-on demo

Watch a
Chapel+GPU tutorial

Read blog articles

youtube.com/watch?v=1gMFtJN-4_E

chapel-lang.org/blog/series/gpu-programming-in-chapel/

Watch a talk+demo

chapel-lang.org

youtube.com/watch?v=5OqjQhfGKes youtube.com/watch?v=nj-WqhGEy24

https://www.youtube.com/watch?v=1gMFtJN-4_E
https://chapel-lang.org/blog/series/gpu-programming-in-chapel/
http://chapel-lang.org/
https://www.youtube.com/watch?v=5OqjQhfGKes
https://www.youtube.com/watch?v=nj-WqhGEy24

November 18, 2024
engin@hpe.com

Thank you!

