-

Hewlett Packard
Enterprise

Productive, Vendor-Neutral GPU Programming
Using Chapel

Engin Kayraklioglu
engin@hpe.com
linkedin.com/in/engink

WACCPD @SC24
November 18, 2024

mailto:engin@hpe.com
http://www.linkedin.com/in/engink

What is Chapel?

Chapel: A modern parallel programming language ~\
» portable & scalable
e open-source & collaborative —y,
Goals:

chapel-lang.org

e Support general parallel programming
o Make parallel programming at scale far more productive

http://chapel-lang.org/

Programming GPUs with Chapel

CPU Core GPU Core

. Memory

Locale 0 Locale 1

o

var A: [1..10] int; Local, non-distributed array allocation

GPUO GPUO for elem in A do Sequential iteration over the array

GPU 1 GPU 1

—

elem += 1;

Programming GPUs with Chapel

o

o

GPUO

GPU 1

CPU Core GPU Core
- Memory
Locale 0 Locale 1

GPU O

GPU 1

—

var A: [1..10] int;

forall elem in A do
elem += 1;

EIENE iteration over the array

Programming GPUs with Chapel

GPUO

GPU 1

CPU Core GPU Core
. Memory
Locale O Locale 1
o o
o o

GPU O

GPU 1

—

use BlockDist;

Block-distributedEIFENA: el o]y

var Arr = blockDist.createArray(1l..10, int);

forall elem in Arr do
elem += 1;

B iglel0i(=el, parallel iteration over

the array

Programming GPUs with Chapel

GPUO

GPU 1

CPU Core GPU Core
- Memory
Locale 0 Locale 1

GPU O

GPU 1

—

var A: [1..10] int;

forall elem in A do
elem += 1;

Programming GPUs with Chapel

CPU Core GPU Core

. Memory

Locale 0 Locale 1

o
O

The 'on' statement [=ERia=R=Cebki(e])

on lLocales[1l] {

) to a remote locale
var A: [1..10] int;

GPUO GPUO forall elem in A do

GPU 1 GPU 1

—

elem += 1;

Programming GPUs with Chapel

CPU Core GPU Core

. Memory

Locale 0 Locale 1

on Locales[1].gpus[0] {
var A: [1..10] int; Each locale object has a

that store GPU sublocales

GPUO

GPU 1

—

forall elem in A do
elem += 1;

Programming GPUs with Chapel

CPU Core GPU Core

- Memory
is a built-in representing
the current execution locale
Locale O Locale 1

on here.gpus[0] {
var A: [1..10] int;

GPUO forall elem in A do

GPU 1

elem += 1;

Frequently Asked Questions

e Using distributed arrays to distribute data on multiple GPUs is an active work area

e GPUs are supported only with the LLVM backend, which is the default

e Chapel can also use C backend

» NVIDIA and AMD GPUs are supported with no special code needed from the user

e We are on holding pattern to add Intel support

» How does the performance compare?

» TL;DR Comparable to other technologies, with some exceptions, which we are aware

Milthorpe et al. IPDPSW 2024

Carneiro et al. Euro-Par 2024

Heterogeneous Architectures

Josh Milthorpe Xianghao Wang Ahmad Azizi
Oak Ridge National Laboratory Australian National University Australian National University
Oak Ridge, Tennessee, USA Canberra, Australia Canberra, Australia
Australian National University
Canberra, Australia
ORCID: 0000-0002-3588-9896

Performance Portability of the Chapel Language on

Investigating Portability in Chapel for Tree-based

Optimization on GPU-powered Clusters

1[{0000—0002—6145—8352] 2[0000—0002—4966—3812]

Tiago Carneiro , Engin Kayraklioglu
Guillaume Helbecque?»410000-0002=-8697-3721] "31q Nouredine Melab*

)

Using single GPU, compares against
CUDA, HIP, OpenMP, Kokkos

—

Using Frontier and Perlmutter, compares against
CUDA, HIP

10

Learn More

Read blog articles N\
Meet us at the e
HPE Booth (2219 Gl

() "

Waitch a chapeI—Ianq.org/bloq/series/gDu—.loroqramming—in—chaoel/ chapel-lang.org
Chapel+GPU tutorial
_ Watch a hands-on demo Watch a talk+demo
voutube.com/warchzv=1gMF1JN-4_E youtube.com/watch?v=50qjQhfGKes vou’rube.com/v;a’rch?\./=ni—thGEv24

: | 11

https://www.youtube.com/watch?v=1gMFtJN-4_E
https://chapel-lang.org/blog/series/gpu-programming-in-chapel/
http://chapel-lang.org/
https://www.youtube.com/watch?v=5OqjQhfGKes
https://www.youtube.com/watch?v=nj-WqhGEy24

-

Hewlett Packard
Enterprise

Thank you!

engin@hpe.com
November 18, 2024

