Chapel Hierarchical Locales

Greg Titus, Chapel Team, Cray Inc.
SC14 Emerging Technologies

November 18th, 2014

L1454

New Orleans, |hpc
LA | matters.

COMPUTE | STORE | ANALYZE

Safe Harbor Statement .

(?\.
(
\

~

Kl'his presentation may contain forward-looking statements that are
based on our current expectations. Forward looking statements
may include statements about our financial guidance and expected
operating results, our opportunities and future potential, our product
development and new product introduction plans, our ability to
expand and penetrate our addressable markets and other
statements that are not historical facts. These statements are only
predictions and actual results may materially vary from those
projected. Please refer to Cray's documents filed with the SEC from
time to time concerning factors that could affect the Company and

these forward-looking statements.
. . Y,

Copyright 2014 Cray Inc.

Outline

» Chapel introduction

e The problem: architecture and how to express it
e The solution: hierarchical locales

e Locality during compilation

e Status and plans

What is Chapel?

e An emerging parallel programming language

e Design and development led by Cray Inc.
e with contributions from academics, labs, industry

e Initiated under the DARPA HPCS program
e A work-in-progress

e Overall goal: Improve programmer productivity
e Open source (at GitHub), licensed as Apache software

e Target architectures:
e Cray architectures
multicore desktops and laptops
commodity clusters
systems from other vendors
working on: CPU+accelerator hybrids, manycore, ...

72 COMPUTE | STORE | ANALYZE

Multiresolution Design: a Root Concept in Chape s

S \
\
Multiresolution Design: Support multiple tiers of features ,
e higher levels for programmability, productivity
e |ower levels for greater degrees of control
Chapel language concepts

(Domain Maps)
Data Parallelism

Task Parallelism
Base Language

Locality Control

Target Machine

e build the higher-level concepts in terms of the lower
e permit the user to intermix layers arbitrarily

Multiresolution Design: a Root Concept in Chape s

S \
\

Multiresolution Design: Support multiple tiers of features ,
e higher levels for programmability, productivity
e |ower levels for greater degrees of control
Chapel language concepts

(Domain Maps)

Data Parallelism
Task Parallelism
Base Language

—) Locality Control

Target Machine

e build the higher-level concepts in terms of the lower
e permit the user to intermix layers arbitrarily

Multiresolution Design: a Root Concept in Chape s

S \
\

Multiresolution Design: Support multiple tiers of features ,
e higher levels for programmability, productivity
e |ower levels for greater degrees of control
Chapel language concepts

—) Domain Maps)

—) Data Parallelism
Task Parallelism
Base Language

—) Locality Control

Target Machine

e build the higher-level concepts in terms of the lower
e permit the user to intermix layers arbitrarily

Chapel in a Nutshell: Task Parallelism, etc. . o

Variables and types for reasoning about system resources:

Locales: the collection of compute nodes on which the program is running
here: the node on which the current task is running

taskParallel.chpl
Syntactic constructs for creating task
para"ensnn coforall loc in Locales do

coforall (concurrent forall): creates a on loc {
task per iteration const numTasks = here.maxTaskPar;

coforall tid in 1..numTasks do
writef ("Hello from task %n #f %n running on %s\n",

tid, numTasks, here.name) ;

Control over locality/affinity:

- - prompt> chpl taskParallel.chpl -o taskParallel
on-clauses: task migration

prompt> ./taskParallel —--numLocales=2
Hello from task 1 of
Hello from task of
Hello from task of

running on nl032
running on nl032

running on nl033

Hello from task of
Hello from task of
Hello from task of
Hello from task of

running on nl032

Static type inference (optionally):
Supports programmability with

performance

running on nl033

running on nl032

4
4
4
Hello from task of 4 running on nl033
4
4
4
4

running on nl033

@ ®

Chapel in a Nutshell: Data Parallelism, etc. . o

Domain maps

Describe how iterations over domains/arrays
are mapped to locales

Modules for namespace management:
CyclicDist: standard module providing cyclic distributions

dataParallel.chpl

Configuration variables and constants:

. . use CyclicDist;
Never write an argument parser again (unless you want to)

Mconfig const n = 1000
/var D= {1l..n, 1..n}
dmapped Cyclic(startIdx = (1,1));

i rvar A: [D] real;
Domains and Arrays: | forall (i,4) in D do

Index sets and arrays that can optionally be distributed Ali,5] = 1 + (3 - 0.5)/n;

writeln (2) ;

Data parallel forall loops and operations:
Use available parallelism for data-driven prompt> chpl dataParallel.chpl -o dataParallel

computations prompt> ./dataParallel --numLocales=4 --n=5
Domain map iterator controls domain 1.1 1.3 1.5 1.7 1.9
traversal, including parallelism and locality

2.1
3.1
4.1
5.1

2 2.7 2.9
3. 3.7 3.9
4 4.7 4.9
5 5.7 5.9

Outline

v Chapel introduction

» The problem: architecture and how to express it
e The solution: hierarchical locales

e Locality during compilation

e Status and plans

Architecture Used to Be So Simple . o

e Traditionally, Chapel supported only a 1D array of locales .
e Users could reshape/slice to suit their computation’s needs

cpu cpu cpu cpu

cpu cpu cpu cpu

cpu cpu cpu cpu

e Apart from queries, no further visibility into locales
e No mechanism to refer to NUMA domains, processors, memories, ...
e Assumption: compiler, runtime, OS, HW can handle intra-locale
concerns

e Supports horizontal (inter-node) locality well
e But not vertical (intra-node)

But the Old Model Was Really too Simple IS S

e \
\

e (HPC) architectures are varied and evolving rapidly \

e Intra-node architecture

has become important
e Hierarchical (example: NUMA)
e Heterogeneous (example: GPUs)

e Performance requires using
all architecture effectively

e How to deal with this?

locale

/é\ COMPUTE | STORE | ANALYZE
=/ Copyright 2014 Cray Inc. @

!
cRAY |

Summarizing the Requirements (and Desires) .

L)

e Really just 3 classes of ops have to do with architecture:
> Memory management (allocate, free, etc.)
> Task support (initiate, move, etc.)
» Communication

e Also helpful: we do not need very many operations from each class

e Solution must be adaptive/flexible

e Must not require Chapel core team involvement
e We are not architecture specialists
e Others must be able to describe new architectures for Chapel
e Knowing Chapel + architecture and being motivated should be enough

e Must support experimentation and prototyping

e Thus: fairly well constrained, not too-large problem

/C‘\ COMPUTE | STORE | ANALYZE
=

= Copyright 2014 Cray Inc.

\

\

\

\
\

Outline

v Chapel introduction

v The problem: architecture and how to express it
» The solution: hierarchical locales

e Locality during compilation

e Status and plans

Chapel Hierarchical Locales . o

e The key ideas: \
> Define standardized Chapel class to describe CPU+mem architecture
> Make it composable, to reflect hierarchy

class LocaleModel { .. }

e Has a required interface

e Functions for:
e Memory management, task support, and communication operations
e Parents and children

e Afew variables
e “Has children?”, e.g.

e Compiler-generated code calls this required interface

e May be implemented however you like
e Typically in terms of other LocaleModel instances or runtime calls

/é\ COMPUTE | STORE | ANALYZE
=/ Copyright 2014 Cray Inc. @

An Example: The numa Locale Model .

A:

quinyye, bdl-diyo-ga-uoax-|aul-ze | L £ €/sebewi/eipaw/woo Bewad: | mmm//:dny

conceptual

physical

NUMA domain

cpu|cpu

mem
cpu|cpu

cpu|cpu

mem
cpu|cpu

NUMA domain

NUMA compute node

$CHPL_HOME/modules/.../numa/LocaleModel.chpl

class NumaDomain : AbstractlLocaleModel ({
const sid: chpl sublocID t;
}

// The node model

class LocaleModel : AbstractLocaleModel ({
const numSublocales: int;
var childSpace: domain(1l) ;
var childLocales: [childSpace] NumaDomain;

}

// support for memory management
proc chpl here alloc(size:int, md:int(16)) { .. }

// support for "on" statements
proc chpl executeOn
(loc: chpl localelID t, // target locale

fn: int, // on-body func idx
args: c_void ptr, // func args
args size: int(32) // args size

) U=)

// support for tasking stmts:
proc chpl taskListAddCoStmt

begin, cobegin, coforall

(subloc_id: int, // target subloc
fn: int, // body func idx
args: c_void ptr, // func args

ref tlist: task list, // task list

tlist node id: int // task list owner

) U=)

Where Predefined Locale Models Live

Standard
C Compiler
& Linker

Chapel
Executable

— 1T

: | Runtime Support
: | Library (in C)

Chapel
Compiler
ggﬁfcﬂ ___, Chapel-to-C Generated
Compiler C Code
Code 1
. |
Internal Modules
Standard (in Chapel)
Modules
(in Chapel)

speaiy | /syse|

uonE2IUNWWO)D

Alowa|\

Where Predefined Locale Models Live KOO

Internal Modules
(in Chapel)

» Locale models provided by Chapel are
in internal modules

» User specifies locale model as part of
Chapel configuration when compiling
application (via environment variable)

Hierarchical Locales Create A New Chapel Role S

e \
\

e Application programmer: work on applications \
e EXxpress solutions in a natural way
e Use forall statements to expose data parallelism
e Use domain maps to inform Chapel about locality and affinity

/C‘\ COMPUTE | STORE | ANALYZE
=

= Copyright 2014 Cray Inc.

Hierarchical Locales Create A New Chapel Role S

e \
\

e Application programmer: work on applications \
e EXxpress solutions in a natural way
e Use forall statements to expose data parallelism
e Use domain maps to inform Chapel about locality and affinity

e Domain map specialist: work on locality
e In a general or conceptual way, not an architecture-specific one

/C‘\ COMPUTE | STORE | ANALYZE
=

= Copyright 2014 Cray Inc.

Hierarchical Locales Create A New Chapel Role S

e \
\

e Application programmer: work on applications \
e EXxpress solutions in a natural way
e Use forall statements to expose data parallelism
e Use domain maps to inform Chapel about locality and affinity

e Domain map specialist: work on locality
e In a general or conceptual way, not an architecture-specific one

* Architecture modeler: work on architectural mappings
e Describe architectural hierarchy
e Implement functional interfaces at various levels

/C‘\ COMPUTE | STORE | ANALYZE
=/ Copyright 2014 Cray Inc. @

Outline

v Chapel introduction

v The problem: architecture and how to express it
v The solution: hierarchical locales

» Locality during compilation

Status and plans

i
CRAaY |

Context: We’re Using the numa Locale Model .

A:

quinyye, bdl-diyo-ga-uoax-|aul-ze | L £ €/sebewi/eipaw/woo Bewad: | mmm//:dny

physical

conceptual
NUMA domain
cpu|cpu
mem
cpu|cpu
cpu|cpu
mem
cpu|cpu
NUMA domain

NUMA compute node

Q

$CHPL_HOME/modules/.../numa/LocaleModel.chpl

class NumaDomain : AbstractlLocaleModel ({
const sid: chpl sublocID t;
}

// The node model

class LocaleModel : AbstractLocaleModel ({
const numSublocales: int;
var childSpace: domain(1l) ;
var childLocales: [childSpace] NumaDomain;

}

// support for memory management
proc chpl here alloc(size:int, md:int(16)) { .. }

// support for "on" statements
proc chpl executeOn
(loc: chpl localelID t, // target locale

fn: int, // on-body func idx
args: c_void ptr, // func args
args size: int(32) // args size

) U=)

// support for tasking stmts: begin, cobegin, coforall
proc chpl taskListAddCoStmt

(subloc_id: int, // target subloc
fn: int, // body func idx
args: c_void ptr, // func args

ref tlist: task list, // task list

tlist node id: int // task list owner

) U=)

\

The Application, Unburdened by Architecture RS

// Stream Triad
config const m = 1000,
alpha = 3.0;
const ProblemSpace = {l1l..m} dmapped Block(..);
var A, B, C: [ProblemSpace] real;
B = 2.0;
CcC = 3.0,
A = B + alpha * C;

+ 1l

The Application, Unburdened by Architecture S

// Stream Triad

Express parallelism abstractly, config const m = 1000,
without referring to physical alpha = 3.0;
architecture const ProblemSpace = {1..m} dmapped Block(..);
var A, B, C: [ProblemSpace] real;
B = 2.0;
CcC = 3.0;
A = B + alpha * C;
CITTTTTTTITTTITITTITITTIITTITTTT]

HEEEEEEEEEEEEEEEEEEEEEEn I
oo LITTTTTTTITTTTTITITITTTITITT

© @

The Application, Unburdened by Architecture S

Specify domain map in \

application code

// Stream Triad
Express parallelism abstractly, config const m = 1000,
without reference to architecture alpha = 3.0;

const ProblemSpace = {l1l..m} dmapped Block(..);
var A, B, C: [ProblemSpace] real;

B =2.0;

C = 3.0;

A = B + alpha * C;
CLTTTTTTTTTTTTTITTITTITTITIT]

HEEEEEEEEEEEEEEEEEEEEEEn I
oo LITTTTTTTITTTTTITITITTTITITT

© @

Locality & Affinity in the Domain Map

// Block domain map
class Block: BaseDist {
var targetLocDom: domain (rank) ;
var targetlLocales: [targetLocDom] locale;
var dataParTasksPerLocale: int;
var dataParIgnoreRunningTasks: bool;
var dataParMinGranularity: int;

iter these (param tag: iterKind,

tasksPerlLocale = dataParTasksPerLocale,
ignoreRunning = dataParIgnoreRunningTasks,
minIndicesPerTask = dataParMinGranularity)

const numSublocs = here.getChildCount ()
if locModelHasSublocs && numSublocs !=
. _computeChunkStuff (min (numSublocs,
here.maxTaskPar),
ignoreRunning,
minIndicesPerTask,
ranges) ;

0 {

Domain map:

» Describes distribution of
indices (block, cyclic, etc.)

> Ties together locality, affinity,
parallelism via iterators for
forall-stmts

» Interrogates locale model to
learn about resources

» Has a standardized interface,
referenced by compiler-
generated code

» |s typically coded by a
specialist

\
. . . =AY
The Application, Translated by the Domain Map . o
e § \
const ProblemSpace = {1l..m} dmapped Block(..);
var A, B, C: [ProblemSpace] real; U
A =B + alpha * C;
domain CLTTTTTTTITTTITITTITITTITITITTIT] =
CLTTTTTTTTTTITTITTTITITTITITT]
map o - OO OO
iterator
coforall loc in targetLocales do on loc {)

coforall subloc in loc.getChildren() do on subloc {
coforall tid in here.numCores {
for (a,b,c) in zip(A,B,C) do a = b + alpha * c;

a [
?f\ COMPUTE | STORE | ANALYZE
= Copyright 2014 Cray Inc.

... and Translated Again, by the Compiler .

coforall loc in targetLocales do on loc { 4‘\
coforall subloc in loc.getChildren() do on subloc {
coforall tid in here.numCores {

for (a,b,c) in zip(A,B,C) do a = b + alpha * c;

}

J Chapel
compiler

Chapel code

C code

void main(..) {
chpl taskListAddCoStmt (fn for outer coforall stmt);
}
void fn for outer coforall stmt(..) {
chpl executeOn(loc, fn for on stmt);
}
void fn for on stmt(..) {
chpl taskListAddCoStmt (fn for middle coforall stmt);
}
void fn for middle coforall stmt(..) {
chpl taskListAddCoStmt (fn for inner coforall stmt);
}
void fn for inner coforall stmt(..) {
for (..) { a[i] = b[i] + alpha * c[i]; }
}

Outline

v Chapel introduction

v The problem: architecture and how to express it
v The solution: hierarchical locales

v" Locality during compilation

» Status and plans

Today’s Locale Models: flat

e Direct replacement for the old
compiler-implemented model

e Same performance as old
compiler-based architecture
support

e Default in all cases

cpu

cpu

cpu

Aowaw

flat

Today’s Locale Models: nhuma

e Fully functional

e Needs tuning
e Tasking affinity with memory locality

©)

works properly

e But memory locality itself needs work

numa

COMPUTE

STORE

Copyright 2014 Cray Inc.

ANALYZE

Tomorrow’s Locale Models: “real” knc

e Current Chapel Intel Xeon
Phi KNC support uses “flat”

e Duplicate and tune for KNC-
specific properties (breadth,
e.g.)

cpu

cpu

Aowaw

cpu

knc

Tomorrow’s Locale Models: knl

e Intel Xeon Phi KNL would

be an elaboration of numa
e Similar to flat 2 knc

knl

COMPUTE | STORE | ANALYZE

©)

Copyright 2014 Cray Inc.

Tomorrow’s Locale Models: accelerator

e Challenge: processor
heterogeneity

cpu

cpu

cpu

flat+accelerator

COMPUTE | STORE | ANALYZE

©)

Copyright 2014 Cray Inc.

\
C=RANY |
Tomorrow’s Locale Models: numa+accelerator QOO

e Challenge: hierarchy and
heterogeneity

e Great composability test

numa-+accelerator

COMPUTE | STORE | ANALYZE

Copyright 2014 Cray Inc.

©)

Improving the Implementation . o

e Today’s locale model implementations could be cleaner \
e Reflect some legacy of prototyping and experimentation

e Would like to improve things before adding more models
e Restructure to remove duplication
e Split into “building block” and “compute node” instances

/C‘\ COMPUTE | STORE | ANALYZE
=/ Copyright 2014 Cray Inc. @

Summary Q00

e Hierarchical Locales feature helps “future proof”’ Chapel \

e Enables separation of concerns
> Application programmers are freed from architecture concerns
> Domain map programmers are freed from architecture concerns
> Compiler is freed from architecture concerns
> Even the Chapel language is freed from architectural concerns

e Puts Chapel architectural policy in the hands of those
most qualified to deal with it: architecture experts

\
- . (el — PPN
Legal Disclaimer . o
Information in this document is provided in connection with Cray Inc. products. No license, express or “ \ \

implied, to any intellectual property rights is granted by this document.
Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to
change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may
cause the product to deviate from published specifications. Current characterized errata are available on
request.

Cray uses codenames internally to identify products that are in development and not yet publically
announced for release. Customers and other third parties are not authorized by Cray Inc. to use
codenames in advertising, promotion or marketing and any use of Cray Inc. internal codenames is at the
sole risk of the user.

Performance tests and ratings are measured using specific systems and/or components and reflect the
approximate performance of Cray Inc. products as measured by those tests. Any difference in system
hardware or software design or configuration may affect actual performance.

The following are trademarks of Cray Inc. and are registered in the United States and other

countries: CRAY and design, SONEXION, URIKA, and YARCDATA. The following are trademarks of Cray
Inc.: ACE, APPRENTICEZ2, CHAPEL, CLUSTER CONNECT, CRAYPAT, CRAYPORIT, ECOPHLEX,
LIBSCI, NODEKARE, THREADSTORM. The following system family marks, and associated model
number marks, are trademarks of Cray Inc.. CS, CX, XC, XE, XK, XMT, and XT. The registered trademark
LINUX is used pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the
mark on a worldwide basis. Other trademarks used in this document are the property of their respective
owners.

Copyright 2014 Cray Inc.

(@ ®

