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A Big Picture

COMPILER INFRASTRUCTURE
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LLVM-based Chapel compiler

O Use of address space feature of LLVM offers more
opportunities for communication optimization
than C generation // Chapel

!x = possibly_remoteData;

// C-Code generation // LLWM IR Generation
chpl comm _get(&x, ..): %x = load 164 addrspace(100)* %xptr

LLVM Optimizations
(e.g. LICM, scalar replacement)

LY. RICE Pictures borrowed from 1) http://chapel.cray.com/logo.html
2) http://llvm.org/Logo.html

Backend Compiler’s Optimizations
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An optimization Example :
Communication Optimization with
the existing LLVM passes

(Pseudo-Code: Before LICM)
for 1 in 1..N {
// POSSIBLY REMOTE GET

%x = load 164 addrspace(100)* %xptr
ACL) = %x;
1 Remote data access per
LICM by each iteration
LLVM

(Pseudo-Code: After LICM)

// POSSIBLY REMOTE GET

%x = load 164 addrspace(100)* %xptr
for 1 in 1..N {

A(1) = %x; Hoisted out of the loop!

¥ RICE LICM = Loop Invariant Code Motion é"




An optimization Example :
Bulk Transformation (Coalescing)

(Pseudo-Code: Before Bulk Transformation)
for 1 in 1..N {

// P25$I?LY REMOTE GET | Remote array access per
/ y = ACL; each iteration
Bulk
Transformation

(Pseudo-Code: After LICM) Create Local
var localA: [1..N] int; Buffer &
localA = A; // Bulk Transfer Perform bulk transfer
for 1 in 1..N {
y = localA(1); Converted to Definitely-

Local Access!

YRICE )




An Optimization Example :
Locality Inference for avoiding
runtime affinity checking

oroc habanero(ref x, ref vy, ref z) {
var p: int = 0;
var A:[1..N] 1int; A is definitely-local

1f (x == 0) {
P =Y,
} else { p and z are
local { b = Z: }. definitely local
¥
z = A(@) + z;

Definitely-local access!

)
/ RICE (avoid runtime affinity checking) 65»




Results on Cray XC-30
(LLVM-unopt vs. LLVM-allopt)
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. 4.6x performance improvement on average
N RICE (6 applications, 1, 2, 4, 8, 16, 32, 64 locales)




Results on Westmere Cluster
(LLVM-unopt vs. LLVM-allopt)
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i 4.4x performance improvement on average
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Conclusions

OLLVM-based Communication
optimizations for Chapel

OPreliminary Evaluation with
6 applications
B Cray-XC30 Supercomputer

[04.6x average performance improvement

B Westmere Cluster
[04.4x average performance improvement

OFuture Work
B Extend for other languages
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LLVM IR Generation from Chapel

C/C++ C/C++, Fortran, Ada, Objective-C
UPC
Frontend Frontend .
Compiler
Clang dragonegg

LLVM Intermediate Representation (IR)

Analysis & Optimizations

36 C powerpC | [ ARM PTX |
backend backend X backend backend
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LLVM-based Communication

Optimizations for Chapel

O 1) Wide pointer optimization (--llvm-wide-opt)
B Utilize the existing optimization passes such as loop

invariant code motion for the purpose of communication
optimization (The Existing LLVM Passes)

B Combine sequences of loads/stores on adjacent memory
locations into a single memcpy (Aggregation Pass)
O 2) Bulk Transformation (Coalescing data accesses)

B Create locale-local buffer
B Insert bulktransfer and replace remote accesses with local
buffer access
O 3) Locality optimization (Locality-Inference)

B Transform possibly-remote access to definitely-local access
at compile-time to avoid runtime affinity checking

RICE These optimizations are built ﬁ
A \

on top of address space feature of LLVM




Performance Evaluations:

Platforms

O Cray-XC30 Supercomputer @ NERSC
B Per Node information

OIntel Intel Xeon E5-2695 @2.40GHz x 24 cores
064GB of RAM

B Interconnect
OCray Aries interconnect with Dragonfly topology

O Westmere Cluster @ Rice

B Per Node information
OIntel Xeon CPU X5660@2.80GHz x 12 cores
048GB of RAM

B Interconnect
OQuad-data rated Infiniband
OMellanox FCA support




Performance Evaluations:
Details of Compiler & Runtime

O Compiler:
Chapel version 1.9.0.23154 (Apr. 2014)

mLLVM 3.3

ORuntime:

B GASNet-1.22.0
OCray-XC30 : aries
OWestmere Cluster : ibv-conduit

B gthreads-1.10
OCray-XC30 : 2 shepherds, 24 workers/shepherd
OWestmere Cluster : 2 shepherds, 6 workers/shepherd




VRIC

Benchmark Comm Kind Cray XC-30
LLVM-gopt | LLVM-allopt

Smith-Waterman LOCAL_GET 63.6% 75.5%
Note : obtained with | REMOTE_GET 36.4% 36.7%
18,560x19,200 input LOCAL_PUT 58.0% 58.0%
REMOTE_PUT 0.0% 0.0%
Cholesky LOCAL_GET 77.6% 87.9%
Note : obtained with | REMOTE_GET 84.7% 99.8%
2,000x2,000 input LOCAL_PUT 10.3% 10.8%
REMOTE_PUT 0.0% 0.0%
NPB EP LOCAL_GET 58.6% 58.6%
REMOTE_GET 39.7% 39.7%
LOCAL_PUT 29.5% 58.8%
REMOTE_PUT 0.0% 0.0%
Sobel LOCAL_GET 74.6% 95.2%
Note : obtained with | REMOTE_GET 0.0% 0.0%
CLASS=B LOCAL_PUT 35.8% 68.3%
REMOTE_PUT 0.0% 0.0%
SSCA2 LOCAL_GET 55.6% 56.2%
REMOTE_GET 60.9% 60.8%
LOCAL_PUT 5.6% 3.8%
REMOTE_PUT 0.0% 0.0%
Stream-EP LOCAL_GET 70.6% 70.6%
REMOTE_GET 35.7% 35.7%
LOCAL_PUT 17.3% 17.3%
REMOTE_PUT 0.0% 0.0%

Table 3. The amount of Chapel Comm APIs calls made by
LLVM-gopt and LLVM-allopt relative to LLVM-unopt (Cray-
- XC30, 16 locales)
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Future Work: A compiler that can

uniformly optimize PGAS Programs

O Extend LLVM IR to support parallel programs
with PGAS and explicit task parallelism

B Two parallel intermediate representations(PIR) as
extensions to LLVM IR
(Runtime-Independent, Runtime-Specific)

»1 Binary

Parallel
Programs 1.RI-PIR Gen 1.RS-PIR Gen
(Chapel, X10, »‘ 2.Analysis »‘ 2.Analysis
CAF, HC, ...) 3.Transformation 3.Transformation
4 LLVM LLVM

Runtime-Independent

Optimizations

Runtime-Specific
Optimizations

A RICEeg Task Parallel Construct e.g. GASNet API
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