LLVM-based Communication
Optimizations for Chapel

Chapel Lightning Talks BoF session at SC '14,
New Orleans, LA

Michael Ferguson (Laboratory for Telecommunication Sciences

Akihiro Hayashi, Jisheng Zhao (Rice University§
Vivek Sarkar(Rice University

1 “
™

A Big Picture

COMPILER INFRASTRUCTURE

abanero-C, ...

P : - © RIKEN AICS
PAR R‘[{ E Pictures borrowed from http://chapel.cray.com/logo.html, http://llvm.org/Logo.html,
k) http://upc.lbl.gov/, http://commons.wikimedia.org/, https://www.olcf.ornl.gov/titan/

LLVM-based Chapel compiler

O Use of address space feature of LLVM offers more
opportunities for communication optimization
than C generation // Chapel

!x = possibly_remoteData;

// C-Code generation // LLWM IR Generation
chpl comm _get(&x, ..): %x = load 164 addrspace(100)* %xptr

LLVM Optimizations
(e.g. LICM, scalar replacement)

LY. RICE Pictures borrowed from 1) http://chapel.cray.com/logo.html
2) http://llvm.org/Logo.html

Backend Compiler’s Optimizations

6

An optimization Example :
Communication Optimization with
the existing LLVM passes

(Pseudo-Code: Before LICM)
for 1 in 1..N {
// POSSIBLY REMOTE GET

%x = load 164 addrspace(100)* %xptr
ACL) = %x;
1 Remote data access per
LICM by each iteration
LLVM

(Pseudo-Code: After LICM)

// POSSIBLY REMOTE GET

%x = load 164 addrspace(100)* %xptr
for 1 in 1..N {

A(1) = %x; Hoisted out of the loop!

¥ RICE LICM = Loop Invariant Code Motion é"

An optimization Example :
Bulk Transformation (Coalescing)

(Pseudo-Code: Before Bulk Transformation)
for 1 in 1..N {

// P25$I?LY REMOTE GET | Remote array access per
/ y = ACL; each iteration
Bulk
Transformation

(Pseudo-Code: After LICM) Create Local
var localA: [1..N] int; Buffer &
localA = A; // Bulk Transfer Perform bulk transfer
for 1 in 1..N {
y = localA(1); Converted to Definitely-

Local Access!

YRICE)

An Optimization Example :
Locality Inference for avoiding
runtime affinity checking

oroc habanero(ref x, ref vy, ref z) {
var p: int = 0;
var A:[1..N] 1int; A is definitely-local

1f (x == 0) {
P =Y,
} else { p and z are
local { b = Z: }. definitely local
¥
z = A(@) + z;

Definitely-local access!

)
/ RICE (avoid runtime affinity checking) 65»

Results on Cray XC-30
(LLVM-unopt vs. LLVM-allopt)

20.00 19.5x

Bulk Transformation
18.00

16.00

& oo Locality Optimization
12.00 Pass :
10,00 Aggregation

c
3
=
>
-
-
S
]
>
o
o
S
=]
@
V
o
7

oo
o
S

Existing LLVM Passes

s o
o o
S O

2.1x 4 1x 2.4X 1 4x 1.3x

)
o
S

0.00
SmithWaterman Cholesky Sobel Stream-EP NPB-EP SSCA2 Kernel4

. 4.6x performance improvement on average
N RICE (6 applications, 1, 2, 4, 8, 16, 32, 64 locales)

Results on Westmere Cluster
(LLVM-unopt vs. LLVM-allopt)

18.00 16.9x

16.00 Bulk Transformation
'é_ 14.00] o]
C. Locality Optimization
= Pass
= 10.00 .

5 “ Aggregation
3 8.00
S
g oY Existing LLVM Passes
& 4.00
2.3X 2.5x 2.3X
2.00 1.1x 1.3x
0.00
SmithWaterman Cholesky Sobel Stream-EP NPB-EP SSCA2 Kernel4

i 4.4x performance improvement on average
D RICE (6 applications, 1, 2, 4, 8, 16, 32 locales)

Conclusions

OLLVM-based Communication
optimizations for Chapel

OPreliminary Evaluation with
6 applications
B Cray-XC30 Supercomputer

[04.6x average performance improvement

B Westmere Cluster
[04.4x average performance improvement

OFuture Work
B Extend for other languages

Backup slides

LLVM IR Generation from Chapel

C/C++ C/C++, Fortran, Ada, Objective-C
UPC
Frontend Frontend .
Compiler
Clang dragonegg

LLVM Intermediate Representation (IR)

Analysis & Optimizations

36 C powerpC | [ARM PTX |
backend backend X backend backend

Vv v v A 4

x86 Binary PPC Binary ARM Binary GPU Binary

%' RICE
L)

LLVM-based Communication

Optimizations for Chapel

O 1) Wide pointer optimization (--llvm-wide-opt)
B Utilize the existing optimization passes such as loop

invariant code motion for the purpose of communication
optimization (The Existing LLVM Passes)

B Combine sequences of loads/stores on adjacent memory
locations into a single memcpy (Aggregation Pass)
O 2) Bulk Transformation (Coalescing data accesses)

B Create locale-local buffer
B Insert bulktransfer and replace remote accesses with local
buffer access
O 3) Locality optimization (Locality-Inference)

B Transform possibly-remote access to definitely-local access
at compile-time to avoid runtime affinity checking

RICE These optimizations are built ﬁ
A \

on top of address space feature of LLVM

Performance Evaluations:

Platforms

O Cray-XC30 Supercomputer @ NERSC
B Per Node information

OIntel Intel Xeon E5-2695 @2.40GHz x 24 cores
064GB of RAM

B Interconnect
OCray Aries interconnect with Dragonfly topology

O Westmere Cluster @ Rice

B Per Node information
OIntel Xeon CPU X5660@2.80GHz x 12 cores
048GB of RAM

B Interconnect
OQuad-data rated Infiniband
OMellanox FCA support

Performance Evaluations:
Details of Compiler & Runtime

O Compiler:
Chapel version 1.9.0.23154 (Apr. 2014)

mLLVM 3.3

ORuntime:

B GASNet-1.22.0
OCray-XC30 : aries
OWestmere Cluster : ibv-conduit

B gthreads-1.10
OCray-XC30 : 2 shepherds, 24 workers/shepherd
OWestmere Cluster : 2 shepherds, 6 workers/shepherd

VRIC

Benchmark Comm Kind Cray XC-30
LLVM-gopt | LLVM-allopt

Smith-Waterman LOCAL_GET 63.6% 75.5%
Note : obtained with | REMOTE_GET 36.4% 36.7%
18,560x19,200 input LOCAL_PUT 58.0% 58.0%
REMOTE_PUT 0.0% 0.0%
Cholesky LOCAL_GET 77.6% 87.9%
Note : obtained with | REMOTE_GET 84.7% 99.8%
2,000x2,000 input LOCAL_PUT 10.3% 10.8%
REMOTE_PUT 0.0% 0.0%
NPB EP LOCAL_GET 58.6% 58.6%
REMOTE_GET 39.7% 39.7%
LOCAL_PUT 29.5% 58.8%
REMOTE_PUT 0.0% 0.0%
Sobel LOCAL_GET 74.6% 95.2%
Note : obtained with | REMOTE_GET 0.0% 0.0%
CLASS=B LOCAL_PUT 35.8% 68.3%
REMOTE_PUT 0.0% 0.0%
SSCA2 LOCAL_GET 55.6% 56.2%
REMOTE_GET 60.9% 60.8%
LOCAL_PUT 5.6% 3.8%
REMOTE_PUT 0.0% 0.0%
Stream-EP LOCAL_GET 70.6% 70.6%
REMOTE_GET 35.7% 35.7%
LOCAL_PUT 17.3% 17.3%
REMOTE_PUT 0.0% 0.0%

Table 3. The amount of Chapel Comm APIs calls made by
LLVM-gopt and LLVM-allopt relative to LLVM-unopt (Cray-
- XC30, 16 locales)

L

"

Future Work: A compiler that can

uniformly optimize PGAS Programs

O Extend LLVM IR to support parallel programs
with PGAS and explicit task parallelism

B Two parallel intermediate representations(PIR) as
extensions to LLVM IR
(Runtime-Independent, Runtime-Specific)

»1 Binary

Parallel
Programs 1.RI-PIR Gen 1.RS-PIR Gen
(Chapel, X10, »‘ 2.Analysis »‘ 2.Analysis
CAF, HC, ...) 3.Transformation 3.Transformation
4 LLVM LLVM

Runtime-Independent

Optimizations

Runtime-Specific
Optimizations

A RICEeg Task Parallel Construct e.g. GASNet API

4

