CoMD in Chapel: The Good, the Bad, and the Ugly

Chapel Lightning Talks: Birds-of-a-Feather
November 18, 2014

David Richards, Luc Jaulmes
Dramatis Personae

2014 LLNL Co-Design Summer School

CoMD Proxy App for Molecular Dynamics
The Good:

- The code works!
- Luc enjoyed programing in Chapel
- Very expressive language
- Dense, elegant code
 - Thanks to built-in domain maps and iterators
 - e.g., \(\text{KineticEnergy} = + \text{reduce } m \times \text{norm2} (v) \)
- Rich language constructs encourage algorithmic exploration
 - e.g., sparse subdomains
The Bad: Reach Exceeds Grasp

The code Luc wanted to write:

```plaintext
forall(i, j) in N {
    var (f_ij, pe_ij) = force( x(i), x(j) );
    f(i) += f_ij;
    f(j) -= f_ij;
    pe(i) += pe_ij / 2;
    pe(j) += pe_ij / 2;
}
```

Actual code turned out to be about 70 lines including mutex constructs to manage race conditions.

Parallel iterators might help, but we were unable to implement an example.
The Ugly: Domain Decomposition

Problem:
Static Domain Maps produce poor data locality

Solution:
Sort atoms by position along a space filling curve to obtain locality

Good:
Sort implementation is 200 lines

Bad:
No data on performance or scalability

Ugly:
Dynamic Domain Maps not yet available
The Sequel: Koradi Test Problem

Koradi load balance algorithm:

- Moveable domain centers
- Atoms assigned by Voronoi diagram
- Distance calculated with biased metric
- Distance is larger for overloaded tasks
Students and Models

- Sam Reeve (Purdue) LAMMPS, CoMD, leanMD
- Riyaz Haque (UCLA), CNC (Habenero-C)
- Luc Jualmes (Barcelona) OmpSs, Chapel
- Sameer Abu Asal (LSU) C++11 futures, HPX
- Aaron Landmehr (Delaware) OCR
- Sanian Gaffer (NM-State) UPC++
- Gheorghe-Teodor Bercea (Imperial) PyOP2
- Zach Rubinstein (Chicago), Troels Henriksen (Copenhagen) Embedded DSL