
C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Chapel Overview

Greg Titus, Chapel Team, Cray Inc.

Chapel Lightning Talks

November 18th, 2014

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

This presentation may contain forward-looking statements that are
based on our current expectations. Forward looking statements
may include statements about our financial guidance and expected
operating results, our opportunities and future potential, our product
development and new product introduction plans, our ability to
expand and penetrate our addressable markets and other
statements that are not historical facts. These statements are only
predictions and actual results may materially vary from those
projected. Please refer to Cray's documents filed with the SEC from
time to time concerning factors that could affect the Company and
these forward-looking statements.

 Safe Harbor Statement

Copyright 2014 Cray Inc.
2

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

What is Chapel?

3

● An emerging parallel programming language
●  Design and development led by Cray Inc.

●  with contributions from academics, labs, industry
●  Initiated under the DARPA HPCS program

● Overall goal: Improve programmer productivity

● A work-in-progress

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Chapel's Implementation

4

● Being developed as open source at GitHub

●  Licensed as Apache software

●  Target Architectures:
●  Cray architectures
●  multicore desktops and laptops
●  commodity clusters
●  systems from other vendors
●  (in-progress: CPU+accelerator hybrids, manycore, …)

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Multiresolution Design: a Fundamental Concept

Copyright 2014 Cray Inc.
5

Multiresolution Design: Support multiple tiers of features
●  higher levels for programmability, productivity
●  lower levels for greater degrees of control

●  build the higher-level concepts in terms of the lower
●  permit the user to intermix layers arbitrarily

Domain Maps
Data Parallelism
Task Parallelism
Base Language

Target Machine

Locality Control

Chapel language concepts

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Chapel in a Nutshell: Task Parallelism, etc.

Copyright 2014 Cray Inc.
6

taskParallel.chpl	

coforall loc in Locales do
 on loc {
 const numTasks = here.maxTaskPar;
 coforall tid in 1..numTasks do

 writef("Hello from task %n of %n running on %s\n",
 tid, numTasks, here.name);
 }

Syntac'c	 constructs	 for	 crea'ng	 task	
parallelism:	
coforall	 (concurrent	 forall):	 creates	 a	
task	 per	 itera7on	

Control	 over	 locality/affinity:	
on-‐clauses:	 task	 migra7on	

Sta'c	 type	 inference	 (op'onally):	
Supports	 programmability	 with	
performance	

Variables	 and	 types	 for	 reasoning	 about	 system	 resources:	
Locales:	 the	 collec7on	 of	 compute	 nodes	 on	 which	 the	 program	 is	 running	
here:	 the	 node	 on	 which	 the	 current	 task	 is	 running	

prompt> chpl taskParallel.chpl –o taskParallel
prompt> ./taskParallel –-numLocales=2
Hello from task 1 of 4 running on n1032
Hello from task 4 of 4 running on n1032

Hello from task 2 of 4 running on n1033
Hello from task 1 of 4 running on n1033
Hello from task 3 of 4 running on n1032

Hello from task 3 of 4 running on n1033
Hello from task 2 of 4 running on n1032
Hello from task 4 of 4 running on n1033

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Chapel in a Nutshell: Data Parallelism, etc.

Copyright 2014 Cray Inc.
7

prompt> chpl dataParallel.chpl –o dataParallel
prompt> ./dataParallel --numLocales=4 –-n=5
1.1 1.3 1.5 1.7 1.9
2.1 2.3 2.5 2.7 2.9

3.1 3.3 3.5 3.7 3.9
4.1 4.3 4.5 4.7 4.9
5.1 5.3 5.5 5.7 5.9

use CyclicDist;
config const n = 1000;
var D = {1..n, 1..n}
 dmapped Cyclic(startIdx = (1,1));

var A: [D] real;
forall (i,j) in D do
 A[i,j] = i + (j - 0.5)/n;

writeln(A);

dataParallel.chpl	

Modules	 for	 namespace	 management:	
CyclicDist:	 standard	 module	 providing	 cyclic	 distribu7ons	

Domains	 and	 Arrays:	
Index	 sets	 and	 arrays	 	 that	 can	 op7onally	 be	 distributed	

Configura'on	 variables	 and	 constants:	
Never	 write	 an	 argument	 parser	 again	 (unless	 you	 want	 to)	

Data	 parallel	 forall	 loops	 and	 opera'ons:	
Use	 available	 parallelism	 for	 data-‐driven	
computa7ons	

Domain	 maps	
Describe	 how	 itera7ons	 over	 domains/arrays	
are	 mapped	 to	 locales	

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Interoperability, multi-lingual
programming, adoption

Where Will Today’s Talks Take Us?

Copyright 2014 Cray Inc.
8

use CyclicDist;
config const n = 1000;
var D = {1..n, 1..n}
 dmapped Cyclic(startIdx = (1,1));

var A: [D] real;
forall (i,j) in D do
 A[i,j] = i + (j - 0.5)/n;

writeln(A);

dataParallel.chpl	

taskParallel.chpl	

coforall loc in Locales do
 on loc {
 const numTasks = here.maxTaskPar;
 coforall tid in 1..numTasks do

 writef("Hello from task %n of %n running on %s\n",
 tid, numTasks, here.name);
 }

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Legal Disclaimer

Copyright 2014 Cray Inc.

Information in this document is provided in connection with Cray Inc. products. No license, express or
implied, to any intellectual property rights is granted by this document.

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to
change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may
cause the product to deviate from published specifications. Current characterized errata are available on
request.

Cray uses codenames internally to identify products that are in development and not yet publically
announced for release. Customers and other third parties are not authorized by Cray Inc. to use
codenames in advertising, promotion or marketing and any use of Cray Inc. internal codenames is at the
sole risk of the user.

Performance tests and ratings are measured using specific systems and/or components and reflect the
approximate performance of Cray Inc. products as measured by those tests. Any difference in system
hardware or software design or configuration may affect actual performance.

The following are trademarks of Cray Inc. and are registered in the United States and other
countries: CRAY and design, SONEXION, URIKA, and YARCDATA. The following are trademarks of Cray
Inc.: ACE, APPRENTICE2, CHAPEL, CLUSTER CONNECT, CRAYPAT, CRAYPORT, ECOPHLEX,
LIBSCI, NODEKARE, THREADSTORM. The following system family marks, and associated model
number marks, are trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT, and XT. The registered trademark
LINUX is used pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the
mark on a worldwide basis. Other trademarks used in this document are the property of their respective
owners.

Copyright 2014 Cray Inc.

9

