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A Call To Arms 
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Q: Why doesn’t HPC have languages as enjoyable and 

productive as Python / Java / Matlab /    (your favorite language here)   ? 

 

A: We believe it’s due not to any particular technical  

      challenge, but rather to a lack of sufficient… 

  …long-term efforts 

  …resources 

  …community will 

  …co-design between developers and users 

  …patience 
 

Let’s change this! 
 



What is Chapel? 
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● An emerging parallel programming language 

● Design and development led by Cray Inc. 

● in collaboration with academia, labs, industry 

● Initiated under the DARPA HPCS program 
 

● A work-in-progress 
 

● Chapel’s overall goal: Improve programmer productivity 

● Improve the programmability of parallel computers 

● Match or beat the performance of current programming models 

● Support better portability than current programming models 

● Improve the robustness of parallel codes 
 



Chapel's Implementation 
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● Being developed as open source at SourceForge 
 

● Licensed as BSD software 
 

● A Community Effort 

● version 1.8 saw 19 developers from 8 organizations and 5 countries 
 

● Target Architectures: 

● multicore desktops and laptops 

● commodity clusters and the cloud 

● HPC systems from Cray and other vendors 

● in-progress: CPU+accelerator hybrids, manycore, … 



Multiresolution Design 
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Multiresolution Design: Support multiple tiers of features 
● higher levels for programmability, productivity 

● lower levels for greater degrees of control 

 

 

 

 

 

 

 

 

 

● build the higher-level concepts in terms of the lower 

● permit the user to intermix layers arbitrarily 

Domain Maps 

Data Parallelism 

Task Parallelism 

Base Language 

Target Machine 

Locality Control 

Chapel language concepts 



Data Parallel Features 
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Domain Maps 

Data Parallelism 

Task Parallelism 

Base Language 

Target Machine 

Locality Control 



STREAM Triad in Chapel 
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const ProblemSpace = {1..m}; 

 

  

                   

 
var A, B, C: [ProblemSpace] real; 

 
 

 

 

A = B + alpha * C; 

= 

α· 
+ 

domains  

(first-class index sets) 

promoted scalar operators 

…and much more… 



Base Language Features 
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Domain Maps 

Data Parallelism 

Task Parallelism 

Base Language 

Target Machine 

Locality Control 



Tiled Row-Major Order Iterator 
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g 
 

     

    iter tiledRMO(D, tilesize) { 

      const tile = {0..#tilesize, 0..#tilesize}; 

 

      for base in D by tilesize do 

        for ij in D[tile + base] do 

          yield ij;                 

    } 

 

 

    for ij in tiledRMO({1..m, 1..n}, 2) do 

      write(ij); 

 Prints: 
(1,1)(1,2)(2,1)(2,2)(1,3)(1,4)(2,3)(2,4)…        

(3,1)(3,2)(4,1)(4,2)(3,3)(3,4)(4,3)(4,4)… 

inferred types 

algebra on domains 

(index sets) 

CLU-style iterators 



Task Parallel Features 
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Domain Maps 

Data Parallelism 

Task Parallelism 

Base Language 

Target Machine 

Locality Control 



Coforall Loops 
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Sample output: 

coforall t in 0..#numTasks {   

  writeln(“Hello from task ”, t, “ of ”, numTasks); 

} // implicit join of the numTasks tasks here 

 

writeln(“All tasks done”); 

Hello from task 2 of 4 

Hello from task 0 of 4 

Hello from task 3 of 4 

Hello from task 1 of 4 

All tasks done 



Locality Control Features 
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Domain Maps 

Data Parallelism 

Task Parallelism 

Base Language 

Target Machine 

Locality Control 



Chapel: Scoping and Locality 
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var i: int; 

i 



Chapel: Scoping and Locality 
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var i: int; 

on Locales[1] { 

   

i 



Chapel: Scoping and Locality 
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var i: int; 

on Locales[1] { 

  var j: int; 

   

i j 



Chapel: Scoping and Locality 
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var i: int; 

on Locales[1] { 

  var j: int; 

  coforall loc in Locales { 

    on loc { 

      

i j 



Chapel: Scoping and Locality 
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var i: int; 

on Locales[1] { 

  var j: int; 

  coforall loc in Locales { 

    on loc { 

      var k: int; 

 

      // within this scope, i,j,k can be referenced; 

      // the implementation manages the communication 

    } 

  } 

} 

i j k k k k k 



Domain Map Features 
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Domain Maps 

Data Parallelism 

Task Parallelism 

Base Language 

Target Machine 

Locality Control 



Domain Maps 
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Domain maps are “recipes” that instruct the compiler how to 
map the global view of a computation… 

= 

+ 

α • 

Locale 0 

= 

+ 

α • 

= 

+ 

α • 

= 

+ 

α • 

Locale 1 Locale 2 

 …to the target locales’ memory and processors: 

A = B + alpha * C; 



STREAM Triad: Chapel 
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const ProblemSpace = {1..m}; 

 

  

                   

 
var A, B, C: [ProblemSpace] real; 

 
 

 

 

A = B + alpha * C; 

= 

α· 
+ 



STREAM Triad: Chapel (multicore) 
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const ProblemSpace = {1..m}; 

  

                   

 
 

var A, B, C: [ProblemSpace] real; 

 
 

 

 

A = B + alpha * C; 

= 

α· 
+ 

No domain map specified => use default layout 
• current locale owns all indices and values 

• computation will execute using local processors only 



STREAM Triad: Chapel (multilocale, blocked) 
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const ProblemSpace = {1..m} 

                       dmapped Block(boundingBox={1..m}); 

                   

 
 

var A, B, C: [ProblemSpace] real; 

 
 

 

 

A = B + alpha * C; 

= 

α· 
+ 



STREAM Triad: Chapel (multilocale, cyclic) 
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const ProblemSpace = {1..m} 

                       dmapped Cyclic(startIdx=1); 

                  

 
 

var A, B, C: [ProblemSpace] real; 

 
 

 

 

A = B + alpha * C; 

= 

α· 
+ 



Chapel’s Domain Map Philosophy 
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1. Chapel provides a library of standard domain maps 
● to support common array implementations effortlessly 
 

2. Advanced users can write their own domain maps in 
Chapel 

● to cope with shortcomings in our standard library 

 
 

 

 

 

 

 

 

 

3. Chapel’s standard domain maps are written using the 
same end-user framework 

● to avoid a performance cliff between “built-in” and user-defined cases 
 

Domain Maps 

Data Parallelism 

Task Parallelism 

Base Language 

Locality Control 



Implementation Status -- Version 1.8.0 (Oct 2013) 
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Overall Status: 

● Most features work at a functional level 

● some features need to be improved or re-implemented (e.g., OOP) 

● Many performance optimizations remain 

● particularly for distributed memory (multi-locale) execution 

 

This is a good time to: 

● Try out the language and compiler 

● Use Chapel for non-performance-critical projects 

● Give us feedback to improve Chapel 

● Use Chapel for parallel programming education 



The Cray Chapel Team (Summer 2013) 

26 Chapel Seattle 

Chapel USA 



Chapel… 

…is a collaborative effort — join us! 



Chapel: the next five years 
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● Harden Prototype to Production-grade 
● Performance optimizations 

● Add/Improve features that are lacking 

 

● Target more complex/modern compute node types 
● e.g., CPU+GPU, Intel MIC, … 

 

● Continue to grow the user and developer communities 
● Including nontraditional circles: desktop parallelism, “big data” 

● Transition Chapel from Cray-controlled to community-governed 

 

● Grow the team at Cray 
● we’ve just hired four new developers 

● we’re currently hiring for a manager position 

 

 



Chapel at SC13 

● Emerging Technologies Booth (tomorrow) 

● Booth #3547: staffed by Chapel team members; poster and handouts 

● Poster (Tues @ 5:15): Towards Co-Evolution of Auto-Tuning and Parallel Languages 

● Posters Session: Ray Chen (University of Maryland) 

● Talk (Tues @ 3:20): Hierarchical Locales: Exposing the Node Architecture in Chapel 

● KISTI booth (#3713): Sung-Eun Choi (Cray Inc.) 

● Chapel Lightning Talks BoF (Wed @ 12:15) 

● 5-minute talks on education, MPI-3, Big Data, Autotuning, Futures, MiniMD 

 Talk (Wed @ 4:30): Chapel, an Emerging Parallel Language 

● HPC Impact Theatre (booth #3947): Brad Chamberlain (Cray Inc.) 

● Happy Hour (Wed @ 5pm): 4th annual Chapel Users Group (CHUG) Happy Hour 

● Pi Bar (just across the street at 1400 Welton St): open to public, dutch treat 

● HPC Education (Thus @ 1:30pm): High-Level Parallel Programming Using Chapel 

● David Bunde (Knox College) and Kyle Burke (Colby College) 



For More Information: Online Resources 
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Chapel project page: http://chapel.cray.com  

● overview, papers, presentations, language spec, … 

 

Chapel SourceForge page: https://sourceforge.net/projects/chapel/ 

● release downloads, public mailing lists, code repository, … 

 

Mailing Aliases: 

● chapel_info@cray.com: contact the team at Cray  

● chapel-announce@lists.sourceforge.net: announcement list 

● chapel-users@lists.sourceforge.net: user-oriented discussion list 

● chapel-developers@lists.sourceforge.net: developer discussion 

● chapel-education@lists.sourceforge.net: educator discussion 

● chapel-bugs@lists.sourceforge.net: public bug forum 

http://chapel.cray.com/
https://sourceforge.net/projects/chapel/
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