
Chapel:
An Emerging Parallel Programming Language

Brad Chamberlain, Chapel Team, Cray Inc.

Emerging Technologies, SC13

November 20th, 2013

A Call To Arms

2

Q: Why doesn’t HPC have languages as enjoyable and

productive as Python / Java / Matlab / (your favorite language here) ?

A: We believe it’s due not to any particular technical

 challenge, but rather to a lack of sufficient…

 …long-term efforts

 …resources

 …community will

 …co-design between developers and users

 …patience

Let’s change this!

What is Chapel?

3

● An emerging parallel programming language

● Design and development led by Cray Inc.

● in collaboration with academia, labs, industry

● Initiated under the DARPA HPCS program

● A work-in-progress

● Chapel’s overall goal: Improve programmer productivity

● Improve the programmability of parallel computers

● Match or beat the performance of current programming models

● Support better portability than current programming models

● Improve the robustness of parallel codes

Chapel's Implementation

4

● Being developed as open source at SourceForge

● Licensed as BSD software

● A Community Effort

● version 1.8 saw 19 developers from 8 organizations and 5 countries

● Target Architectures:

● multicore desktops and laptops

● commodity clusters and the cloud

● HPC systems from Cray and other vendors

● in-progress: CPU+accelerator hybrids, manycore, …

Multiresolution Design

5

Multiresolution Design: Support multiple tiers of features
● higher levels for programmability, productivity

● lower levels for greater degrees of control

● build the higher-level concepts in terms of the lower

● permit the user to intermix layers arbitrarily

Domain Maps

Data Parallelism

Task Parallelism

Base Language

Target Machine

Locality Control

Chapel language concepts

Data Parallel Features

6

Domain Maps

Data Parallelism

Task Parallelism

Base Language

Target Machine

Locality Control

STREAM Triad in Chapel

7

const ProblemSpace = {1..m};

var A, B, C: [ProblemSpace] real;

A = B + alpha * C;

=

α·
+

domains

(first-class index sets)

promoted scalar operators

…and much more…

Base Language Features

8

Domain Maps

Data Parallelism

Task Parallelism

Base Language

Target Machine

Locality Control

Tiled Row-Major Order Iterator

9

g

 iter tiledRMO(D, tilesize) {

 const tile = {0..#tilesize, 0..#tilesize};

 for base in D by tilesize do

 for ij in D[tile + base] do

 yield ij;

 }

 for ij in tiledRMO({1..m, 1..n}, 2) do

 write(ij);

 Prints:
(1,1)(1,2)(2,1)(2,2)(1,3)(1,4)(2,3)(2,4)…

(3,1)(3,2)(4,1)(4,2)(3,3)(3,4)(4,3)(4,4)…

inferred types

algebra on domains

(index sets)

CLU-style iterators

Task Parallel Features

10

Domain Maps

Data Parallelism

Task Parallelism

Base Language

Target Machine

Locality Control

Coforall Loops

11

Sample output:

coforall t in 0..#numTasks {

 writeln(“Hello from task ”, t, “ of ”, numTasks);

} // implicit join of the numTasks tasks here

writeln(“All tasks done”);

Hello from task 2 of 4

Hello from task 0 of 4

Hello from task 3 of 4

Hello from task 1 of 4

All tasks done

Locality Control Features

12

Domain Maps

Data Parallelism

Task Parallelism

Base Language

Target Machine

Locality Control

Chapel: Scoping and Locality

13

var i: int;

i

Chapel: Scoping and Locality

14

var i: int;

on Locales[1] {

i

Chapel: Scoping and Locality

15

var i: int;

on Locales[1] {

 var j: int;

i j

Chapel: Scoping and Locality

16

var i: int;

on Locales[1] {

 var j: int;

 coforall loc in Locales {

 on loc {

i j

Chapel: Scoping and Locality

17

var i: int;

on Locales[1] {

 var j: int;

 coforall loc in Locales {

 on loc {

 var k: int;

 // within this scope, i,j,k can be referenced;

 // the implementation manages the communication

 }

 }

}

i j k k k k k

Domain Map Features

18

Domain Maps

Data Parallelism

Task Parallelism

Base Language

Target Machine

Locality Control

Domain Maps

19

Domain maps are “recipes” that instruct the compiler how to
map the global view of a computation…

=

+

α •

Locale 0

=

+

α •

=

+

α •

=

+

α •

Locale 1 Locale 2

 …to the target locales’ memory and processors:

A = B + alpha * C;

STREAM Triad: Chapel

20

const ProblemSpace = {1..m};

var A, B, C: [ProblemSpace] real;

A = B + alpha * C;

=

α·
+

STREAM Triad: Chapel (multicore)

21

const ProblemSpace = {1..m};

var A, B, C: [ProblemSpace] real;

A = B + alpha * C;

=

α·
+

No domain map specified => use default layout
• current locale owns all indices and values

• computation will execute using local processors only

STREAM Triad: Chapel (multilocale, blocked)

22

const ProblemSpace = {1..m}

 dmapped Block(boundingBox={1..m});

var A, B, C: [ProblemSpace] real;

A = B + alpha * C;

=

α·
+

STREAM Triad: Chapel (multilocale, cyclic)

23

const ProblemSpace = {1..m}

 dmapped Cyclic(startIdx=1);

var A, B, C: [ProblemSpace] real;

A = B + alpha * C;

=

α·
+

Chapel’s Domain Map Philosophy

24

1. Chapel provides a library of standard domain maps
● to support common array implementations effortlessly

2. Advanced users can write their own domain maps in
Chapel

● to cope with shortcomings in our standard library

3. Chapel’s standard domain maps are written using the
same end-user framework

● to avoid a performance cliff between “built-in” and user-defined cases

Domain Maps

Data Parallelism

Task Parallelism

Base Language

Locality Control

Implementation Status -- Version 1.8.0 (Oct 2013)

25

Overall Status:

● Most features work at a functional level

● some features need to be improved or re-implemented (e.g., OOP)

● Many performance optimizations remain

● particularly for distributed memory (multi-locale) execution

This is a good time to:

● Try out the language and compiler

● Use Chapel for non-performance-critical projects

● Give us feedback to improve Chapel

● Use Chapel for parallel programming education

The Cray Chapel Team (Summer 2013)

26 Chapel Seattle

Chapel USA

Chapel…

…is a collaborative effort — join us!

Chapel: the next five years

28

● Harden Prototype to Production-grade
● Performance optimizations

● Add/Improve features that are lacking

● Target more complex/modern compute node types
● e.g., CPU+GPU, Intel MIC, …

● Continue to grow the user and developer communities
● Including nontraditional circles: desktop parallelism, “big data”

● Transition Chapel from Cray-controlled to community-governed

● Grow the team at Cray
● we’ve just hired four new developers

● we’re currently hiring for a manager position

Chapel at SC13

● Emerging Technologies Booth (tomorrow)

● Booth #3547: staffed by Chapel team members; poster and handouts

● Poster (Tues @ 5:15): Towards Co-Evolution of Auto-Tuning and Parallel Languages

● Posters Session: Ray Chen (University of Maryland)

● Talk (Tues @ 3:20): Hierarchical Locales: Exposing the Node Architecture in Chapel

● KISTI booth (#3713): Sung-Eun Choi (Cray Inc.)

● Chapel Lightning Talks BoF (Wed @ 12:15)

● 5-minute talks on education, MPI-3, Big Data, Autotuning, Futures, MiniMD

 Talk (Wed @ 4:30): Chapel, an Emerging Parallel Language

● HPC Impact Theatre (booth #3947): Brad Chamberlain (Cray Inc.)

● Happy Hour (Wed @ 5pm): 4th annual Chapel Users Group (CHUG) Happy Hour

● Pi Bar (just across the street at 1400 Welton St): open to public, dutch treat

● HPC Education (Thus @ 1:30pm): High-Level Parallel Programming Using Chapel

● David Bunde (Knox College) and Kyle Burke (Colby College)

For More Information: Online Resources

30

Chapel project page: http://chapel.cray.com

● overview, papers, presentations, language spec, …

Chapel SourceForge page: https://sourceforge.net/projects/chapel/

● release downloads, public mailing lists, code repository, …

Mailing Aliases:

● chapel_info@cray.com: contact the team at Cray

● chapel-announce@lists.sourceforge.net: announcement list

● chapel-users@lists.sourceforge.net: user-oriented discussion list

● chapel-developers@lists.sourceforge.net: developer discussion

● chapel-education@lists.sourceforge.net: educator discussion

● chapel-bugs@lists.sourceforge.net: public bug forum

http://chapel.cray.com/
https://sourceforge.net/projects/chapel/

Chapel at SC13

● Emerging Technologies Booth (tomorrow)

● Booth #3547: staffed by Chapel team members; poster and handouts

● Poster (Tues @ 5:15): Towards Co-Evolution of Auto-Tuning and Parallel Languages

● Posters Session: Ray Chen (University of Maryland)

● Talk (Tues @ 3:20): Hierarchical Locales: Exposing the Node Architecture in Chapel

● KISTI booth (#3713): Sung-Eun Choi (Cray Inc.)

● Chapel Lightning Talks BoF (Wed @ 12:15)

● 5-minute talks on education, MPI-3, Big Data, Autotuning, Futures, MiniMD

 Talk (Wed @ 4:30): Chapel, an Emerging Parallel Language

● HPC Impact Theatre (booth #3947): Brad Chamberlain (Cray Inc.)

● Happy Hour (Wed @ 5pm): 4th annual Chapel Users Group (CHUG) Happy Hour

● Pi Bar (just across the street at 1400 Welton St): open to public, dutch treat

● HPC Education (Thus @ 1:30pm): High-Level Parallel Programming Using Chapel

● David Bunde (Knox College) and Kyle Burke (Colby College)

http://sourceforge.net/projects/chapel/ http://chapel.cray.com chapel_info@cray.com

http://sourceforge.net/projects/chapel/
http://chapel.cray.com/
mailto:chapel-info@cray.com

