Chapel:

An Emerging Parallel Programming Language

Brad Chamberlain, Chapel Team, Cray Inc.
Emerging Technologies, SC13
November 20", 2013

A Call To Arms \

Q: Why doesn’t HPC have languages as enjoyable and
prOdUCtive as Python [Java [Matlab / _our favorite lanquage here) ?

A: We believe it’s due not to any particular technical
challenge, but rather to a lack of sufficient...

...long-term efforts

...resources
...community will
...co-design between developers and users

...patience

Let’'s change this!

a__
C= ®

=

What is Chapel?

e An emerging parallel programming language

e Design and development led by Cray Inc.
e in collaboration with academia, labs, industry
e Initiated under the DARPA HPCS program

e A work-in-progress

e Chapel’s overall goal: Improve programmer productivity
e Improve the programmability of parallel computers
e Match or beat the performance of current programming models
e Support better portability than current programming models
e Improve the robustness of parallel codes

>
=

Chapel's Implementation S

e Being developed as open source at SourceForge \

e Licensed as BSD software

e A Community Effort
e version 1.8 saw 19 developers from 8 organizations and 5 countries

e Target Architectures:
e multicore desktops and laptops
e commodity clusters and the cloud
e HPC systems from Cray and other vendors
e in-progress:. CPU+accelerator hybrids, manycore, ...

&= ®

Multiresolution Design cRAaY

° \
\

Multiresolution Design: Support multiple tiers of features
e higher levels for programmability, productivity
e lower levels for greater degrees of control

Chapel language concepts

Domain Maps

Task Parallelism
Base Language
Locality Control

Target Machine

e Dbuild the higher-level concepts in terms of the lower
e permit the user to intermix layers arbitrarily

Data Parallel Features

L

o PEL

Domain Maps

Task Parallelism
Base Language
Locality Control

Target Machine

STREAM Triad in Chapel \

domains
(first-class index sets)

const ProblemSpace = {1..m};

var A, B, C: [ProblemSpace] real;

+ |l

CILTTTTTTTTITTTITTITITTTTITT]
CILTTTITTTTTITTTITTITTITTTIT]
o LITTTTTTTTTTTTTTITTTTITTIT

A =B + alpha z_C;

promoted scalar operators
= ...and much more...
@::;: @

Base Language Features

Domain Maps

Task Parallelism

) 1 Base Language
Locality Control

Target Machine

o PEL

Tiled Row-Major Order lterator S SO

® \
\

CLU-style iterators inferred types \

iter tiledRMO (D, tilesize) {

const tile = {0..#tilesize, O..#tilesize};
for base 1n D by tilesize do Y I O LI
ST ; (index sets)
for 17 in D[tile + base] do
yield ij;

for 1j in ti1ledRMO({1l..m, 1..n}, 2) do
write (173);

Prints:
(1,1)(1,2) (2,

(3,1) (3,2) (4,1

Task Parallel Features

Domain Maps

 ammd Task Parallelism
Base Language
Locality Control

Target Machine

o PEL

Coforall Loops

coforall t in 0. .#numTasks {)
writeln (“Hello from task ”, t, Y of ”, numTasks);
Y // implicit join of the numTasks tasks here

writeln (Y"All tasks done”);

Sample output:

Hello from task 2
Hello from task O
Hello from task 3

Hello from task 1
All tasks done

Locality Control Features

Domain Maps

Task Parallelism
Base Language

Locality Control

Target Machine

o PEL

Chapel: Scoping and Locality

var i: int;

=
&

Chapel: Scoping and Locality

var i: int;
on Locales[1] {

=
C=

=

Chapel: Scoping and Locality

var i: int;
on Locales[1] {
var J: int;

=
C=

=

Chapel: Scoping and Locality

var 1: int;
on Locales[1] {
var J: int;
coforall loc in Locales {
on loc {

=
C=

=

Chapel: Scoping and Locality \

var 1: int;
on Locales[1] {
var J: int;
coforall loc in Locales {
on loc {
var k: int;

// within this scope, 1,7,k can be referenced;
// the implementation manages the communication

Domain Map Features

o PEL

Domain Maps

Task Parallelism
Base Language
Locality Control

Target Machine

Domain Maps ,

Domain maps are “recipes” that instruct the compiler how to |
map the global view of a computation...

...to the target locales” memory and processors:

! !
! !
! !
! !
+ 1 + 1
! !
! !
! !
! !

Locale 1

STREAM Triad: Chapel

const ProblemSpace = {1..m};

var A, B, C: [ProblemSpace] real;

a .

A =B + alpha * C;

+ |l

STREAM Triad: Chapel (multicore) \

const ProblemSpace = {1..m};

var A, B, C: [PyoblemSpace] real;

No domain map specified => use default layout
« current locale owns all indices and values
» computation will execute using local processors only

STREAM Triad: Chapel (multilocale, blocked) RSS!

° \
\

const ProblemSpace = {1..m}
dmapped Block (boundingBox={1..m})

var A, B, C: [ProblemSpace] real;

Q
+ |l

A =B + alpha * C;

C= ®

STREAM Triad: Chapel (multilocale, cyclic)

const ProblemSpace = {1..m}
dmapped Cyclic(startIdx=1);
frifTiririrrrrrrrirrrrrrroornrunl
fTi1rirrrrrrrrirrrrrrnrrirnooni

SSSEEEESENENEEEEREREEEEN

var A, B, C: [ProblemSpace] real;

+
o

A =B + alpha * C;

N
&

Chapel’s Domain Map Philosophy

1. Chapel provides alibrary of standard domain maps
e to support common array implementations effortlessly

2. Advanced users can write their own domain maps in
Chapel

e to cope with shortcomings in our standard library

Domain Maps

Task Parallelism

Base Language
Locality Control

3. Chapel’s standard domain maps are written using the
same end-user framework
e to avoid a performance cliff between “built-in” and user-defined cases

=
&

Implementation Status -- Version 1.8.0 (oct 2013) S

° \
\

Overall Status: \

e Most features work at a functional level
e some features need to be improved or re-implemented (e.g., OOP)

e Many performance optimizations remain
e particularly for distributed memory (multi-locale) execution

This is a good time to:
e Try out the language and compiler
e Use Chapel for non-performance-critical projects
e Give us feedback to improve Chapel
e Use Chapel for parallel programming education

\

! If
\ | ,)-
\ @ ‘ :
Chapel Seattle jiig 2

Chapel...

...Is a collaborative effort — join us!

g / LABORATORY FOR
= = ﬁ Y e TELECOMMUNICATIONS
SCIENCES

A : B Lawrence Livermore
Sandia National Laboratories National Laboratory

~
freeeer '/ﬁ fw’ OAK %
v RIDGE Pecific Northwest
A rgo n n e NATIONAL LABORATORY
BERKELEY LAB NATIONAL LABORATORY National Laboratory Proudly Operated by Baftelle Since 1965

Lawrence Berkeley
National Laboratory

Y yma =
% E"\ j: ;—_I UNIVERSIDAD UNIVERSITY OF

C_ , THE UNIVERSITY OF TOKYO PE MALAGA MARYLAND

o PEL

Chapel: the next five years

e Harden Prototype to Production-grade
e Performance optimizations
e Add/Improve features that are lacking

e Target more complex/modern compute node types
e e.g., CPU+GPU, Intel MIC, ...

e Continue to grow the user and developer communities
e Including nontraditional circles: desktop parallelism, “big data”
e Transition Chapel from Cray-controlled to community-governed

e Grow the team at Cray

e we've just hired four new developers
e we’re currently hiring for a manager position

=
=

Chapel at SC13 \

e Emerging Technologies Booth (tomorrow)
e Booth #3547: staffed by Chapel team members; poster and handouts

» Talk (Wed @ 4:30): Chapel, an Emerging Parallel Language
e HPC Impact Theatre (booth #3947). Brad Chamberlain (Cray Inc.)

e Happy Hour (Wed @ 5pm): 4t annual Chapel Users Group (CHUG) Happy Hour
e Pi Bar (just across the street at 1400 Welton St): open to public, dutch treat

e HPC Education (Thus @ 1:30pm): High-Level Parallel Programming Using Chapel
e David Bunde (Knox College) and Kyle Burke (Colby College)

®e
CRANY |
o

° \
\

For More Information: Online Resources

Chapel project page: http://chapel.cray.com \
e overview, papers, presentations, language spec, ...

Chapel SourceForge page: https://sourceforge.net/projects/chapel/
e release downloads, public mailing lists, code repository, ...

Mailing Aliases:
 chapel_info@cray.com: contact the team at Cray
o chapel-announce@lists.sourceforge.net: announcement list
o chapel-users@lists.sourceforge.net: user-oriented discussion list
» chapel-developers@lists.sourceforge.net: developer discussion
o chapel-education@lists.sourceforge.net: educator discussion
 chapel-bugs@lists.sourceforge.net: public bug forum

=

http://chapel.cray.com/
https://sourceforge.net/projects/chapel/

Chapel at SC13 \

e Emerging Technologies Booth (tomorrow)
e Booth #3547: staffed by Chapel team members; poster and handouts

v Talk (Wed @ 4:30): Chapel, an Emerging Parallel Language
e HPC Impact Theatre (booth #3947): Brad Chamberlain (Cray Inc.)

e Happy Hour (Wed @ 5pm): 4t annual Chapel Users Group (CHUG) Happy Hour
e Pi Bar (just across the street at 1400 Welton St): open to public, dutch treat

e HPC Education (Thus @ 1:30pm): High-Level Parallel Programming Using Chapel
e David Bunde (Knox College) and Kyle Burke (Colby College)

=

ey
CcCHAaPRPEL
—

=/

CRANY

THE SUPERCOMPUTER COMPANY

http://sourceforge.net/projects/chapel/
http://chapel.cray.com/
mailto:chapel-info@cray.com

