

Chapel:
Productive Parallel Programming
Parallel computing has resulted in numerous significant advances in science and
technology over the past several decades. However, in spite of these successes, the fact
remains that only a small fraction of the world’s programmers are capable of effectively
using the parallel programming models employed within HPC and mainstream
computing. Chapel is an emerging parallel language being developed at Cray Inc. with
the goal of addressing this issue and making large-scale parallel programming far more
productive and generally accessible.

Chapel originated from the DARPA High Productivity Computing Systems (HPCS)
program, which challenged vendors like Cray to improve the productivity of high-end
computing systems. Engineers at Cray noted that the HPC community was hungry for
alternative parallel programming languages and developed Chapel as part of our
response. The reaction from HPC users so far has been very encouraging—most would be
excited to have the opportunity to use Chapel once it becomes production-grade.

Chapel Overview

Though it would be impossible to give a thorough introduction to Chapel in the space of
this article, the following characterizations of the language should serve to give an idea of
what we are pursuing:

General Parallelism: Chapel has the goal of supporting any parallel algorithm you can
conceive of on any parallel hardware you want to target. In particular, you should never
hit a point where you think “Well, that was fun while it lasted, but now that I want to do x,
I’d better go back to MPI.”

Separation of Parallelism and Locality: Chapel supports distinct concepts for describing
parallelism (“These things should run concurrently”) versus locality (“This should be placed
here; that should be placed over there”). This is in sharp contrast to conventional
approaches that either conflate the two concepts or ignore locality altogether.

Multiresolution Design: Chapel is designed to support programming at higher or lower
levels, as required by the programmer. Moreover, higher-level features—like data
distributions or parallel loop schedules—may be specified by advanced programmers
within the language.

Productivity Features: In addition to all of its features designed for supercomputers, Chapel
also includes a number of sequential language features designed for productive
programming. Examples include type inference, iterator functions, object-oriented
programming, and a rich set of array types. The result combines productivity features as in
Python™, Matlab®, or Java™ with optimization opportunities as in Fortran or C.

Chapel’s implementation is also worth characterizing:

Open Source: Since its outset, Chapel has been developed in an open-source manner,
with collaboration from academics, computing labs, and industry. Chapel is released
under a BSD license in order to minimize barriers to its use.

Portable: While Cray machines are an obvious target for Chapel, the language was
designed to be very portable. Today, Chapel runs on virtually any architecture supporting
a C compiler, UNIX-like environment, POSIX threads, and MPI or UDP.

Optimized for Crays: Though designed for portability, the Chapel implementation has also
been optimized to take advantage of Cray-specific features.

Chapel: Today and Tomorrow

While the HPCS project that spawned Chapel concluded successfully at the end of 2012,
the Chapel project remains active, growing, and ongoing. The Chapel prototype and
demonstrations developed under HPCS were considered compelling enough to users that
Cray plans to continue the project over the next several years. Current priorities include:

Performance Optimizations: Under HPCS, the implementation effort focused primarily on
correctness over performance. Improving performance is typically considered the number
one priority for growing the Chapel community.

Support for Accelerators: Modern compute nodes are increasingly likely to contain
accelerators like GPUs or Intel® MIC chips. We are currently working on extending our
locality abstractions to better handle such architectures.

Interoperability: Beefing up Chapel’s current interoperability features is a priority, to permit
users to reuse existing libraries or gradually transition applications to Chapel.

Feature Improvements: Having completed HPCS, we now have the opportunity to go
back and refine features that have not received sufficient attention to date. In many cases,
these improvements have been motivated by feedback from early users.

Outreach and Evangelism: While improving Chapel, we are seeking ways to grow
Chapel’s user base, particularly outside of the traditional HPC sphere.

Research Efforts: In addition to hardening the implementation, a number of interesting
research directions remain for Chapel. These include resilience mechanisms, applicability
to “big data” computations, energy-aware computing, and support for domain-specific
languages.

For More Information

For more information about Chapel, the best introduction is A Brief Overview of Chapel,
which provides a concise summary of Chapel’s history, motivating themes, and
features. This paper, along with other tutorials, presentations, and papers, can be found
on the project website at http://chapel.cray.com. To download Chapel or join various
mailing lists, visit our SourceForge page at http://sourceforge.net/projects/chapel.

Chapel: Productive Parallel Programming was written by Brad Chamberlain, Principal
Engineer at Cray. It was originally published on the Cray blog at http://blog.cray.com.

© 2013 Cray Inc. Cray is a registered trademark, and the Cray logo and Chapel are trademarks of Cray Inc.
Other product and service names mentioned herein are the trademarks of their respective owners.

