Teaching with Chapel

Kyle Burke
Wittenberg University

Supercomputing 2011
Teaching with Chapel

Two Classes

Programming Languages

Spring 2010, 2011
Teaching with Chapel

Two Classes

Programming Languages

Spring 2010, 2011

Analysis of Algorithms

Fall 2010, 2011
Programming Languages

• For students with data-structures class
Programming Languages

• For students with data-structures class

• Paradigms:
 – Functional: Scheme
 – Logical: Prolog
 – Event-Driven: Java
 – Object-Oriented: Java
Programming Languages

- For students with data-structures class
- Paradigms:
 - Functional: Scheme
 - Logical: Prolog
 - Event-Driven: Java
 - Object-Oriented: Java
 - High-Performance: Chapel
Programming Languages

- Chapel Topics:
 - task generation (begin, cobegin)
Programming Languages

- Chapel Topics:
 - task generation (begin, cobegin)
 - parallel iteration (forall, coforall)
Programming Languages

• Chapel Topics:
 – task generation (begin, cobegin)
 – parallel iteration (forall, coforall)
 – race conditions (sync)
Programming Languages

• Chapel Topics:
 – task generation (begin, cobegin)
 – parallel iteration (forall, coforall)
 – race conditions (sync)
 – language additions (reduce)
Programming Languages

• Chapel Topics:
 – task generation (begin, cobegin)
 – parallel iteration (forall, coforall)
 – race conditions (sync)
 – language additions (reduce)

• Cover lots of HPC material
Programming Languages

• Projects:
 – binary xor
 – matrix multiplication
 – collatz conjecture testing
Programming Languages

- Projects:
 - binary xor
 - matrix multiplication
 - collatz conjecture testing
Programming Languages

Matrix Multiplication

Serial Time: $\Theta(n^3)$
Programming Languages

Matrix Multiplication

Serial Time: $\Theta(n^3)$

Parallel Time: $\Theta(n^2)$ (n processors)
Programming Languages

Conclusions

• Lots of material
• Usually favorite language in class
Analysis of Algorithms

- For students with data-structures and discrete math
Analysis of Algorithms

- For students with data-structures and discrete math
- Already Sequential and Parallel
Analysis of Algorithms

- For students with data-structures and discrete math
- Already Sequential and Parallel
- Replaced C with Chapel
 - only teach cobegin and forall
 - ~ 1 day of class time (use tutorial)
Analysis of Algorithms

• Projects
 – set partition
 – sorting (mergeSort, bubbleSort)
 – nearest neighbors
Analysis of Algorithms

• Projects
 – set partition
 – sorting (mergeSort, bubbleSort)
 – nearest neighbors
Project: Nearest Neighbors
Project: Nearest Neighbors
Project: Nearest Neighbors

• Two Algorithms:
 – Divide-and-Conquer:
 \[\Theta(n \log(n)) \rightarrow \Theta(n) \]
Project: Nearest Neighbors

- Two Algorithms:
 - Divide-and-Conquer:
 \[\Theta(n \log(n)) \rightarrow \Theta(n) \]
 - Brute-Force:
 \[\Theta(n^2) \rightarrow \Theta(n) \]
Project: Nearest Neighbors

- Two Algorithms:
 - Divide-and-Conquer:
 \[\Theta(n \log(n)) \rightarrow \Theta(n) \]
 - Brute-Force:
 \[\Theta(n^2) \rightarrow \Theta(n) \]

Divide-and-Conquer is more difficult to program...
Algorithms

Conclusion

Little Class Time to Teach,
Students learn Parallel Theory
Conclusions

- Chapel has easy-to-learn parallel constructs
- Less time lecturing, more time using
- Useful in different contexts
Conclusions

- Wittenberg: modest linux cluster
 - speedup noticeable
 - bigger cluster would be better
 - biggest problem: cluster issues!
Conclusions

• More info:
 – me: kburke@wittenberg.edu
 – Chapel Education: http://chapel.cray.com/education.html
 – Chapel Education sourceforge mailing list
Conclusions

- More info:
 - me: kburke@wittenberg.edu
 - Chapel Education: http://chapel.cray.com/education.html
 - Chapel Education sourceforge mailing list

Thank You!
Extra Thanks: Ernie Heyder