
Cosmological Particle Mesh Simulations in Chapel
Nikhil Padmanabhan & Ben Albrecht

Yale University

Cray Inc

PAW 2017

My perspective

Astrophysicist who occassionally writes code.

Need to be able to easily prototype algorithms.

Limited by time to think

• Days

• Final runs on large number of data sets for final results.

Want to be able scale out relatively easily.

Yes, I like free lunches!

Goals of this Work

Scientific

• Exploring Chapel in a research environment

• Common motifs in a PM code and other data analysis codes

Usability of Chapel

• Ease of parallel programming

• Interoperability with MPI

• Interoperability with existing codes

Performance of Chapel

• Balance "performance" with "productivity"

Where I'd like to end up

Chapel is a usable, productive language today.

• Ease of hybrid parallel/distributed programming

◦ Assuming key abstractions are in place.

◦ Not hard to write : the PM code uses FFTW-compatible grids and skyline

arrays.

• Performance within 2x of C+MPI for this application.

• Strong interop story with C

• Functional interop story with MPI

Challenges

• Tooling remains a challenge

The Role of Cosmological Simulations in Cosmology

SDSS Collaboration

The Role of Cosmological Simulations in Cosmology

Figure courtesy MPA

An Overview of Chapel

A next-generation, high-productivity PGAS language.

• Developed as an open-source project at Cray Inc.

• Runs on laptops to Crays

Key features

• Native data and task parallelism

• Multiresolution design

◦ High-level abstractions

◦ Low-level communication/computation when necessary

• Data abstractions are in Chapel

◦ Allow users to extend these

• Interoperability with C and MPI

Status

• Chapel is under active development

• The current implementation is advanced enough to be usable.

Evolving Gravity in an Expanding Universe

Update particle positions and velocities

Compute the gravitational potential

Solve this with Fourier transforms

= −
da

dp
ȧ

∇ϕ

=
da

dx
aȧ 2

p

∇ ϕ = 4πGρ2
0
a

δ

The Anatomy of a Particle-Mesh Simulation
Gravitation PM codes have two principal phases.

Forces

• Forces are computed on a grid

• Deposit paricles onto grid to define density field.

• Use FFTs to solve the Poisson equation for the gravitational potential

• Finite difference to compute forces (gradients of potential)

Update particle positions and velocities

• Simple S(tream)-K(ick)-S(tream) integrator

The Code
An abbreviated top-level view of the code.

Module imports

• Include MPI and FFTW support

/* This is the main driver program. */

use MPI;
use FFTWDist;

Global view of storage

• Provide a global view of the grid and particles

• Chapel introduces the concept of a domain on an array

◦ Abstract data distribution/data parallel operations.

◦ Chapel domains are written in Chapel.

◦ We extend the Block domain to be compatible with FFTW.

var AA,BB: [FFTW_Domain_Ghosted]real;
var PP = initializeParticlesOnGrid(Nc);

10 / 22

A Deep Dive into Domains
• Chapel's domain arithmetic allows for specifying the problem space in an intuitive

way.

• D is automatically distributed across all nodes, as expected by FFTW, and

accounting for ghost cells.

const DSpace = {0.. #Ng, 0.. #Ng, 0.. #(Ng+2)};
const D : domain(3) dmapped FFTW3D(Ng, nghosts=nghosts) = DSpace;

• Use domain slicing to access subdomains

◦ Access the real and imaginary parts of the FFT.

const Dreal = D[..,..,0.. #Ng]; // In real space
const Dre = D[..,..,0.. #(Ng+2) by 2 align 0]; // Real part
const Dim = D[..,..,0.. #(Ng+2) by 2 align 1]; // Imaginary part
const Dk = D[..,..,0.. #(Ng/2+1)]; // Frequency

The Main Loop
proc main() {
// Initial conditions
makeZeldovichInitialConditions();

 slabDecompose(PP);

do {
// Stream particles

 streamParticles(log(aa), log(ahalf));

// Reshuffle particles across domains
 slabDecompose(PP);

// Compute forces
 pmforce(aa);

// Kick particles
 kickParticles(log(aa), log(aa)+dloga);

// Stream particles
 streamParticles(log(ahalf), log(aa)+dloga);
 } while (aa <= afinal);
}

12 / 22

Kicking/Streaming Particles
• Particle data PP stored in SOA manner

• Coordinates, momenta etc are stored in skyline arrays

◦ Implemented in user code in Chapel

◦ Transparent

• Reshuffling particles benefits from PGAS

proc streamParticles(logai: real, logaf: real) {
 const tfac = (symx(logaf) - symx(logai)):real(32);
for param idim in 1..Ndim {

 [(x1, p1) in zip(PP.r(idim), PP.p(idim))] x1 = periodic(x1+p1*tfac);
 }
}

• Param loops are unrolled by the compiler

• Chapel automatically parallelizes across cores/nodes

• Code is the same as a serial code

13 / 22

The Potential Calculation
// Put the particles onto the grid

 CIC(PP, AA);

// Work out the potential
 AA.fftForward(transposeOpt=true);
 forall (ik, ire, iim) in zip(Dk, Dre, Dim){

local { // For safety
const ikt = (ik(2), ik(1), ik(3)); // Transpose
const kk = kFreq(ikt, Ng);
var k2 = 0.0;
for param idim in 1..Ndim do k2 += kk[idim]**2;

 k2 *= twopi2;
const fac = -(1.0/k2)*1.5*om*scale;

 BB.localAccess[ire] = fac*AA.localAccess[ire];
 BB.localAccess[iim] = fac*AA.localAccess[iim];
 } // End of local
 }
 BB.fftReverse(transposeOpt=true);
 BB.updateGhosts();

• Notice the global view on to the grid.

• localAccess is an current required manual optimization.

• Moving to a more data-centric implementation.

14 / 22

The Force Calculation
// Now finite difference in each direction
for idim in 1..Ndim {

var tmp = (0,0,0);
 tmp(idim) = 1;

const dir = tmp;
 forall idx in Dreal {

local {
// 4-pt difference scheme, do this by hand
var plus1 = idx + dir;
var plus2 = plus1 + dir;
var minus1 = idx - dir;
var minus2 = minus1 - dir;

var p1 = BB.localAccess[plus1],
 p2 = BB.localAccess[plus2],
 m1 = BB.localAccess[minus1],
 m2 = BB.localAccess[minus2];

 AA.localAccess[idx] = (-2.0/3.0)*(p1-m1)+(1.0/12.0)*(p2-m2);
 AA.localAccess[idx] *= Ng;
 }
 }
 AA.updateGhosts();

• Note the automatic parallelization.

• The iteration over Dreal is a 3D iteration.

15 / 22

Interoperability

Declaring external C functions (including MPI ones)

extern proc fftw_mpi_plan_dft_r2c_3d(n0 : c_ptrdiff,
 n1 : c_ptrdiff, n2 : c_ptrdiff,ref inarr , ref outarr,
 comm : MPI_Comm, flags : c_uint) : fftw_plan;

Calling

Barrier(CHPL_COMM_WORLD);
fwd = fftw_mpi_plan_dft_r2c_3d(Ng, Ng, Ng,
 myElems[idx], myElems[idx], CHPL_COMM_WORLD, fftwPlanner);

MPI Subtleties

• Impedance mismatches between the Chapel tasking layer and MPI

• Prefer non-blocking calls or protect with barriers.

• The Chapel MPI module provides non-blocking alternatives.

• The Chapel MPI module wraps MPI 1.1.

16 / 22

Specifications

Hardware

• Broadwell Intel Xeon 2.2 GHz

• 44 cores (dual socket) per node

• 128 GB memory

• Aries network

Software

• Chapel 1.16 pre-release (3274f16b43)

• compiled with intel-17.0.4

• ugni communication layer

• Qthreads tasking layer

• Compiled with: --fast

17 / 22

Scaling with Problem Size
• Time dominated by FFT

• Expected scaling O[N log(N)]g
3

g
3

18 / 22

Strong Scaling
• Grid size= , # particles=10243 10243

19 / 22

Chapel vs MPI
• C code requires number of ranks to divide grid size.

◦ 88 core version assumes perfect scaling from 64 cores.

20 / 22

Performance Caveats
• C code is pure MPI

◦ Contention when accumulating onto grid in Chapel

◦ Chapel code uses atomics for convenience

• FFTW transposes are single-threaded

21 / 22

Conclusions

Chapel is a usable, productive language today.

• Ease of hybrid parallel/distributed programming

◦ Assuming key abstractions are in place.

◦ Not hard to write : the PM code uses FFTW-compatible grids and skyline

arrays.

• Performance within 2x of C+MPI for this application.

• Strong interop story with C

• Functional interop story with MPI

Challenges

• Tooling remains a challenge

Programming in Chapel is fun!

22 / 22

