
C O M P U T E | S T O R E | A N A L Y Z E

Caching Puts and Gets in a PGAS Language
Runtime

Michael Ferguson
Cray Inc.

Daniel Buettner
Laboratory for

Telecommunication Sciences

September 17, 2015

C O M P U T E | S T O R E | A N A L Y Z E
Copyright 2015 Cray Inc.

This presentation may contain forward-looking statements that are
based on our current expectations. Forward looking statements may
include statements about our financial guidance and expected
operating results, our opportunities and future potential, our product
development and new product introduction plans, our ability to
expand and penetrate our addressable markets and other
statements that are not historical facts. These statements are only
predictions and actual results may materially vary from those
projected. Please refer to Cray's documents filed with the SEC from
time to time concerning factors that could affect the Company and
these forward-looking statements.

 Safe Harbor Statement

 2

CC Flickr/Daniel Jolivet

CC Flickr/Ben Salter

CC Flickr/ajmexico

La
te

nc
y

(m
in)

0

200

400

600

800

Number of Cars
1 2 4 8 16 32 64 128

TRAIN LATENCY (8 HOUR TRIP, 60 TON CARS, 60 SEC/CAR)

 6

Ba
nd

w
id

th
 to

ns
/m

in

0

3

6

9

12

Number of Cars
1 2 4 8 16 32 64 128

TRAIN BANDWIDTH

 7

CC Flickr/ChrisDag

La
te

nc
y

(n
s)

0

1000

2000

3000

4000

Request Size (bytes)
8 16 32 64 128 256 512 1024

INFINIBAND (IB) LATENCY

 9

* with small 10-node cluster, QDR IB

Ba
nd

w
id

th
 M

B/
s

0

875

1750

2625

3500

Request Size (bytes)
8 16 32 64 128 256 512 1024

INFINIBAND (IB) BANDWIDTH

 10

Max BW:
5000 MB/s

* with small 10-node cluster, QDR IB

 11

CC Flickr/Barry LewisCC Flickr/ajmexico

AGGREGATION OVERLAP

CACHE HELPS WITH BOTH!

Library of Congress

BACKGROUND:
MEMORY MODEL ALLOWS
PREFETCH AND WRITE-BEHIND

C O M P U T E | S T O R E | A N A L Y Z E
 13

Memory model for
C11, C++11, Chapel:

data race free programs are
sequentially consistent

See Adve, S. V., Boehm, H.-J. 2010. Memory models: a case for rethinking parallel languages and
hardware. Communications of the ACM 53(8): 90–101. http://cacm.acm.org/magazines/
2010/8/96610-memory-models-a-case-for-rethinking-parallel-languages-and-hardware/fulltext

http://cacm.acm.org/magazines/2010/8/96610-memory-models-a-case-for-rethinking-parallel-languages-and-hardware/fulltext

C O M P U T E | S T O R E | A N A L Y Z E

A RACY PROGRAM

 14

Thread 2

while 0 == notify { /* wait */ }

compute_with(x);

Thread 1

x = 42;

notify = 1;

C O M P U T E | S T O R E | A N A L Y Z E

A RACY PROGRAM

 15

Thread 1

r1 = 42;

notify = 1; x = r1;

Thread 2

r2 = notify; while 0 == r2 { /* wait */ }

compute_with(x);

compiler or processor

Thread 1

x = 42;

notify = 1;

Thread 2

while 0 == notify { /* wait */ }

compute_with(x);

C O M P U T E | S T O R E | A N A L Y Z E
 16

load x

prefetch

Compiler and processor would like to start loads earlier in order
to hide memory latency. We’ll call that prefetch.

… = A[i]

C O M P U T E | S T O R E | A N A L Y Z E
 17

store y

write behind

Compiler and processor would like to complete stores later in order
to hide memory latency. We’ll call that write behind.

B[i] = …

C O M P U T E | S T O R E | A N A L Y Z E
 18

load x

store y

prefetch

write behind

• Overlap loads (start early)
• Reuse values from earlier load
• Aggregate loads (cache lines)

• Overlap stores (finish later)
• Aggregate many stores into

a single store

C O M P U T E | S T O R E | A N A L Y Z E

REMEMBER THE RACY
PROGRAM?

 19

Thread 1

r1 = 42;

notify = 1; x = r1;

Thread 2

r2 = notify; while 0 == r2 { /* wait */ }

compute_with(x);

compiler or processor

Thread 1

x = 42;

notify = true;

Thread 2

while 0 == notify { /* wait */ }

compute_with(x);

C O M P U T E | S T O R E | A N A L Y Z E
 20

load x

store y

prefetch

write behind

acquire

release

C O M P U T E | S T O R E | A N A L Y Z E
 21

load x

store y

prefetch

write behind

acquire

release

atomic, sync
provide both

acquire, release

COMMUNICATION OPTIMIZATION

Library of Congress

C O M P U T E | S T O R E | A N A L Y Z E
 23

load x
GET x

store y
PUT y

prefetch

write behind• Overlap PUTs (finish later)
• Aggregate many PUTs into

a single PUT

• Overlap GETs (start early)
• Reuse values from earlier GET
• Aggregate GETs (cache lines)

FIXING IT
WITH A
CACHE

Library of Congress

C O M P U T E | S T O R E | A N A L Y Z E

CACHE FOR REMOTE DATA

 25

• Goal: communication aggregation and overlap

• Bonus points: avoiding repeated communication

• Software cache in Chapel's runtime

• One cache per pthread

• Write-back cache with dirty bits

C O M P U T E | S T O R E | A N A L Y Z E

CACHE COHERENCY

 26

• Simple, local coherency

• Discard all cached data on acquire

• Wait for pending operations on a release

• Strategy used in related work with UPC

C O M P U T E | S T O R E | A N A L Y Z E

CACHE FEATURES

 27

Overlap Aggregation
GET PUT GET PUT

Do PUTs in background X

Start one PUT per
contiguous written region

X

Round GETs up to 64-byte
cache lines X

X

Sequential read-ahead X X

Programmer-provided
prefetch hints*

X

OTHER APPROACHES

Library of Congress

C O M P U T E | S T O R E | A N A L Y Z E

WEAK MEMORY
CONSISTENCY?

 29

1 x starts at 0;
 ...
 if someOption then
2 x = 2;
 if someOtherOption then
3 x = 3;
4 return x;

C O M P U T E | S T O R E | A N A L Y Z E
 30

OpenSHMEM

1 x starts at 0;
 ...
 ...
2 PUT 2 into x;
 ...
3 PUT 3 into x;
4 GET x;

Chapel

result must be 3 result could be 0, 2, or 3

WEAK MEMORY
CONSISTENCY?

COMPILER OPTIMIZATION?

 31

PUT 1 into B[f(1)]

PUT 2 into B[f(2)]

PUT 3 into B[f(3)]

for i in 1..100
{
 // PUT into B
 B[f(i)] = i;
}

Can the compiler
prove these PUTs
do not overlap?

COMPILER OPTIMIZATION?

 32

for i in 1..100
{
 // PUT into B
 B[f(i)] = i;
}

PUT 1 into B[f(1)]
PUT 2 into B[f(2)]

PUT 2 into B[f(2)]

With a cache,
conflicting access is
handled at runtime.

C O M P U T E | S T O R E | A N A L Y Z E
 33

var A:[1..n] int;
on Locales[1] {
 var sum:int;
 for i in 1..n do
 sum += A[f(i)]
}

We would like to overlap the
GETs for A[f(i)] with each
other

OVERLAPPING GETS

 34

var A:[1..n] int;
on Locales[1] {
 var sum:int;
 var h: [0..k] handles;
 var bufs: [0..k] int;
 // Warm up loop
 for i in 1..k {
 // nonblocking GET A[f(i) into bufs[i%k]
 h[i%k] = get_nb(bufs[i%k], A[f(i)])
 }
 for i in 1..n {
 wait (h[i%k]);
 sum += bufs[i%k];
 if i+k<=n {
 // nonblocking GET A[f(i+k)] into bufs[(i+k)%k]
 h[(i+k)%k] = get_nb(bufs[(i+k)%k],A[f(i+k)])
 }
 }
} Explicit overlap is messy!

 35

var A:[1..n] int;
on Locales[1] {
 var sum:int;
 // Optional warm up
 for i in 1..k do prefetch(A[f(i)]);
 for i in 1..n {
 if i+k <= n then prefetch(A[f(i+k)]);
 sum += A[f(i)]
 }
}

Much better!

COMMUNICATION
AGGREGATION

 36

for i in 1..n do
 B[i] = compute(i);

var localB:[1..n] int;
for i in 1..n do
 localB[i] = compute(i);
B = localB;

for i in 1..n do
 consume(A[i]);

var localA:[1..n] int = A;
for i in 1..n do
 consume(localA[i]);

Simple, cache
aggregates

Manual optimization
reduces portability

San Diego Air and Space Museum

PERFORMANCE

C O M P U T E | S T O R E | A N A L Y Z E

TEST CONFIGURATIONS

 38

● Cray XC30TM system with 50 nodes, Aries network
● GASNet Aries: GASNet with the aries conduit
● Cray uGNI: native uGNI support for Chapel

● Cray CS400TM system with 200 nodes, FDR InfiniBand
● GASNet ibv: GASNet with the InfinBand Verbs conduit

● v1.9+ is revision 5ba6639
● v1.11+ is revision 6c635a1

SYNTHETIC BENCHMARKS

 39

 0

 20

 40

 60

 80

 100

copy

S
p
e
e
d
u
p

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

rand-puts rand-gets

GASNet ibv v1.11+
GASNet Aries v1.11+

Cray uGNI v1.11+
1x

APPLICATION BENCHMARKS

 40

 0

 1

 2

 3

 4

 5

lulesh miniMD PTRANS SSCA2.4

S
p
e
e
d
u
p

GASNet ibv v1.11+
GASNet Aries v1.11+

Cray uGNI v1.11+
1x

C O M P U T E | S T O R E | A N A L Y Z E

PREFETCH EXAMPLE

 41

var A:[1..n] int;
on Locales[1] {
 var sum:int;
 // Optional warm up
 for i in 1..k do prefetch(A[f(i)]);
 for i in 1..n {
 if i+k <= n then prefetch(A[f(i+k)]);
 sum += A[f(i)]
 }
}

PREFETCH EXAMPLE

 42

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10 12 14 16

S
p
e
e

d
u

p

Prefetch Distance

GASNet ibv v1.11+
GASNet Aries v1.11+
Cray uGNI v1.11+
1x

VS OPTIMIZATION

 43

 0

 1

 2

 3

 4

 5

lulesh miniMD PTRANS SSCA2.4

S
p
e
e
d
u
p

GASNet ibv v1.9+
GASNet ibv v1.11+

GASNet Aries v1.9+
GASNet Aries v1.11+

1x

*for GASNet/Aries, lulesh improved 3.2x between v1.9+ and v1.11+

VS OPTIMIZATION

 44

 50

 100

 150

 200

 250

 300

 350

 400

lulesh miniMD PTRANS*10

T
im

e

C

C+cache

llvm

llvm+cache

* with GASNet Aries v1.11+ configuration

Library of Congress

Cache for Remote Data:
providing communication
overlap and aggregation
since Chapel v 1.10!

C O M P U T E | S T O R E | A N A L Y Z E
Copyright 2015 Cray Inc.

Legal Disclaimer
Information in this document is provided in connection with Cray Inc. products. No license, express or implied, to any
intellectual property rights is granted by this document.

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to change without
notice.

Cray hardware and software products may contain design defects or errors known as errata, which may cause the product
to deviate from published specifications. Current characterized errata are available on request.

Cray uses codenames internally to identify products that are in development and not yet publically announced for release.
Customers and other third parties are not authorized by Cray Inc. to use codenames in advertising, promotion or marketing
and any use of Cray Inc. internal codenames is at the sole risk of the user.

Performance tests and ratings are measured using specific systems and/or components and reflect the approximate
performance of Cray Inc. products as measured by those tests. Any difference in system hardware or software design or
configuration may affect actual performance.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY and design,
SONEXION, URIKA, and YARCDATA. The following are trademarks of Cray Inc.: ACE, APPRENTICE2, CHAPEL,
CLUSTER CONNECT, CRAYPAT, CRAYPORT, ECOPHLEX, LIBSCI, NODEKARE, THREADSTORM. The following
system family marks, and associated model number marks, are trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT, and
XT. The registered trademark LINUX is used pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds,
owner of the mark on a worldwide basis. Other trademarks used in this document are the property of their respective
owners.

Copyright 2014 Cray Inc.

 46

https://github.com/chapel-lang/chapel/http://chapel.cray.com chapel_info@cray.com

http://sourceforge.net/projects/chapel/
http://sourceforge.net/projects/chapel/
http://sourceforge.net/projects/chapel/
http://chapel.cray.com/
mailto:chapel-info@cray.com

C O M P U T E | S T O R E | A N A L Y Z E

Backup Slides

 48

APPLICATION BENCHMARKS

 49

 0

 1

 2

 3

 4

 5

lulesh miniMD PTRANS SSCA2.4

S
p
e
e
d
u
p

GASNet ibv v1.11+
GASNet Aries v1.11+

Cray uGNI v1.11+
32 loc GASNet Aries v1.11+

1x

C O M P U T E | S T O R E | A N A L Y Z E

ADDING IMPLIED FENCES

 50

• acquire and release
triggered by task or on
statement spawn, join,
start, and finish

sync {
 release

 begin {
 acquire

 ….
 release

 }
} acquire

release
on {
 acquire

 …
 release

}
acquire

Library of Congress

LOOKING INSIDE

C O M P U T E | S T O R E | A N A L Y Z E
 52

64 byte cache lines

1024 byte cache page

Optional Dirty BitsValid Line Bits

CACHE ENTRY

● node
● address
● readahead trigger
● min sequence number
● max put sequence

number
● max prefetch sequence

number

C O M P U T E | S T O R E | A N A L Y Z E
 53

17 bits

Inspired by “Two Level Tree Structure for Fast Pointer Lookup” by Hans J Boehm

10 bits 17 bits 10 bits 10 bits

top half bottom half page
offset

top bits
bottom
bits

...top[top bits]

bottom[bottom bits]

page entries

... ...

...

Pointer Tree

C O M P U T E | S T O R E | A N A L Y Z E
 54

per task:
 last acquire sequence number

Am LRU

Dirty LRU

Free Lists

Ain

Aout

New Pages
...

... ...
...

2Q Queues

Operations Queue

Pointer Tree

CACHE DATA STRUCTURES

 55

WRITE BEHIND

Write Recorded in Dirty Bits, Page added to Dirty Queue

 56

 57

Flushed on release or
when there are too many dirty pages

C O M P U T E | S T O R E | A N A L Y Z E
 58

GET with 2
earlier valid
lines triggers
synchronous
readahead

ra skip,len = 0

ra skip=1 pg len = 1 pg

READAHEAD

C O M P U T E | S T O R E | A N A L Y Z E
 59

The next
GET triggers
asynchronous
readahead

ra skip=1 pg len = 1 pg

ra skip,len=0 ra skip=1 pg len =2 pg

C O M P U T E | S T O R E | A N A L Y Z E
 60

ra skip,len=0 ra skip=1 pg len =2 pg

ra skip=2 pg len =4 pg

GET here triggers
more readahead

ra skip,len=0

La
te

nc
y

(n
s)

0

900

1800

2700

3600

Request Size (bytes)
8 16 32 64 128 256 512 1024

GASNET get
IB Benchmark
GASNET put

INFINIBAND (IB) LATENCY

 61

* with small 10-node cluster, QDR IB

Ba
nd

w
id

th
 M

B/
s

0

750

1500

2250

3000

Request Size (bytes)
8 16 32 64 128 256 512 1024

IB Benchmark
GASNET put
GASNET get

INFINIBAND (IB) BANDWIDTH

 62

Max BW:
5000 MB/s

* with small 10-node cluster, QDR IB

C O M P U T E | S T O R E | A N A L Y Z E
Copyright 2015 Cray Inc.

Legal Disclaimer
Information in this document is provided in connection with Cray Inc. products. No license, express or implied, to any
intellectual property rights is granted by this document.

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to change without
notice.

Cray hardware and software products may contain design defects or errors known as errata, which may cause the product
to deviate from published specifications. Current characterized errata are available on request.

Cray uses codenames internally to identify products that are in development and not yet publically announced for release.
Customers and other third parties are not authorized by Cray Inc. to use codenames in advertising, promotion or marketing
and any use of Cray Inc. internal codenames is at the sole risk of the user.

Performance tests and ratings are measured using specific systems and/or components and reflect the approximate
performance of Cray Inc. products as measured by those tests. Any difference in system hardware or software design or
configuration may affect actual performance.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY and design,
SONEXION, URIKA, and YARCDATA. The following are trademarks of Cray Inc.: ACE, APPRENTICE2, CHAPEL,
CLUSTER CONNECT, CRAYPAT, CRAYPORT, ECOPHLEX, LIBSCI, NODEKARE, THREADSTORM. The following
system family marks, and associated model number marks, are trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT, and
XT. The registered trademark LINUX is used pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds,
owner of the mark on a worldwide basis. Other trademarks used in this document are the property of their respective
owners.

Copyright 2014 Cray Inc.

 63

https://github.com/chapel-lang/chapel/http://chapel.cray.com chapel_info@cray.com

http://sourceforge.net/projects/chapel/
http://sourceforge.net/projects/chapel/
http://sourceforge.net/projects/chapel/
http://chapel.cray.com/
mailto:chapel-info@cray.com

