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* with small 10-node cluster, QDR IB
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Max BW:
5000 MB/s

* with small 10-node cluster, QDR IB
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AGGREGATION OVERLAP

CACHE HELPS WITH BOTH!



Library of Congress

BACKGROUND:
MEMORY MODEL ALLOWS 
PREFETCH AND WRITE-BEHIND
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Memory model for 
C11, C++11, Chapel:

data race free programs are
sequentially consistent

See Adve, S. V., Boehm, H.-J. 2010. Memory models: a case for rethinking parallel languages and 
hardware. Communications of the ACM 53(8): 90–101. http://cacm.acm.org/magazines/
2010/8/96610-memory-models-a-case-for-rethinking-parallel-languages-and-hardware/fulltext

http://cacm.acm.org/magazines/2010/8/96610-memory-models-a-case-for-rethinking-parallel-languages-and-hardware/fulltext
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A RACY PROGRAM
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Thread 2 

while 0 == notify { /* wait */ } 

compute_with(x);

Thread 1 

x = 42; 

notify = 1;
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A RACY PROGRAM
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Thread 1 

r1 = 42; 

notify = 1; x = r1;

Thread 2 

r2 = notify; while 0 == r2 { /* wait */ } 

compute_with(x);

compiler or processor

Thread 1 

x = 42; 

notify = 1;

Thread 2 

while 0 == notify { /* wait */ } 

compute_with(x);
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load x

prefetch

Compiler and processor would like to start loads earlier in order 
to hide memory latency.  We’ll call that prefetch.

… = A[i]
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store y

write behind

Compiler and processor would like to complete stores later in order 
to hide memory latency.  We’ll call that write behind.

B[i] = …
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load x

store y

prefetch

write behind

• Overlap loads (start early)
• Reuse values from earlier load
• Aggregate loads (cache lines)

• Overlap stores (finish later)
• Aggregate many stores into 

a single store
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REMEMBER THE RACY 
PROGRAM?
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Thread 1 

r1 = 42; 

notify = 1; x = r1;

Thread 2 

r2 = notify; while 0 == r2 { /* wait */ } 

compute_with(x);

compiler or processor

Thread 1 

x = 42; 

notify = true;

Thread 2 

while 0 == notify { /* wait */ } 

compute_with(x);
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load x

store y

prefetch

write behind

acquire

release
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load x

store y

prefetch

write behind

acquire

release

atomic, sync 
provide both 

acquire, release



COMMUNICATION OPTIMIZATION

Library of Congress
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load x
GET x

store y
PUT y

prefetch

write behind• Overlap PUTs (finish later)
• Aggregate many PUTs into 

a single PUT

• Overlap GETs (start early)
• Reuse values from earlier GET
• Aggregate GETs (cache lines)



FIXING IT 
WITH A 
CACHE

Library of Congress
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CACHE FOR REMOTE DATA
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• Goal: communication aggregation and overlap 

• Bonus points: avoiding repeated communication 

• Software cache in Chapel's runtime 

• One cache per pthread 

• Write-back cache with dirty bits
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CACHE COHERENCY
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• Simple, local coherency 

• Discard all cached data on acquire 

• Wait for pending operations on a release 

• Strategy used in related work with UPC
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CACHE FEATURES
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Overlap Aggregation
GET PUT GET PUT

Do PUTs in background X

Start one PUT per 
contiguous written region

X

Round GETs up to 64-byte 
cache lines   X
 

X

Sequential read-ahead X X

Programmer-provided 
prefetch hints*

X



OTHER APPROACHES

Library of Congress
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WEAK MEMORY 
CONSISTENCY?
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1 x starts at 0; 
  ... 
  if someOption then 
2   x = 2; 
  if someOtherOption then 
3   x = 3; 
4 return x;
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OpenSHMEM

1 x starts at 0; 
  ... 
  ... 
2   PUT 2 into x; 
  ... 
3   PUT 3 into x; 
4 GET x;

Chapel

result must be 3 result could be 0, 2, or 3

WEAK MEMORY 
CONSISTENCY?



COMPILER OPTIMIZATION?
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PUT 1 into B[f(1)]

PUT 2 into B[f(2)]

PUT 3 into B[f(3)]

for i in 1..100 
{ 
  // PUT into B 
  B[f(i)] = i; 
}

Can the compiler 
prove these PUTs 
do not overlap?



COMPILER OPTIMIZATION?
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for i in 1..100 
{ 
  // PUT into B 
  B[f(i)] = i; 
}

PUT 1 into B[f(1)]
PUT 2 into B[f(2)]

PUT 2 into B[f(2)]

With a cache, 
conflicting access is 
handled at runtime.
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var A:[1..n] int;  
on Locales[1] { 
  var sum:int; 
  for i in 1..n do  
    sum += A[f(i)] 
}

We would like to overlap the 
GETs for A[f(i)] with each 
other

OVERLAPPING GETS
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var A:[1..n] int; 
on Locales[1] { 
  var sum:int; 
  var h: [0..k] handles; 
  var bufs: [0..k] int; 
  // Warm up loop 
  for i in 1..k { 
    // nonblocking GET A[f(i) into bufs[i%k] 
    h[i%k] = get_nb(bufs[i%k], A[f(i)]) 
  } 
  for i in 1..n { 
    wait (h[i%k]); 
    sum += bufs[i%k]; 
    if i+k<=n { 
      // nonblocking GET A[f(i+k)] into bufs[(i+k)%k] 
      h[(i+k)%k] = get_nb(bufs[(i+k)%k],A[f(i+k)]) 
    } 
  } 
} Explicit overlap is messy!
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var A:[1..n] int; 
on Locales[1] { 
  var sum:int; 
  // Optional warm up 
  for i in 1..k do prefetch(A[f(i)]); 
  for i in 1..n { 
    if i+k <= n then prefetch(A[f(i+k)]); 
    sum += A[f(i)] 
  } 
}

Much better!



COMMUNICATION 
AGGREGATION
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for i in 1..n do  
  B[i] = compute(i);

var localB:[1..n] int; 
for i in 1..n do  
  localB[i] = compute(i);  
B = localB;

for i in 1..n do  
  consume(A[i]);

var localA:[1..n] int = A; 
for i in 1..n do 
  consume(localA[i]);

Simple, cache 
aggregates

Manual optimization 
reduces portability
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PERFORMANCE
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TEST CONFIGURATIONS
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● Cray XC30TM system with 50 nodes, Aries network 
● GASNet Aries: GASNet with the aries conduit 
● Cray uGNI: native uGNI support for Chapel 

● Cray CS400TM system with 200 nodes, FDR InfiniBand 
● GASNet ibv: GASNet with the InfinBand Verbs conduit 

● v1.9+ is revision 5ba6639 
● v1.11+ is revision 6c635a1
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PREFETCH EXAMPLE
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var A:[1..n] int; 
on Locales[1] { 
  var sum:int; 
  // Optional warm up 
  for i in 1..k do prefetch(A[f(i)]); 
  for i in 1..n { 
  if i+k <= n then prefetch(A[f(i+k)]); 
      sum += A[f(i)] 
  } 
}



PREFETCH EXAMPLE
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VS OPTIMIZATION
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VS OPTIMIZATION
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Cache for Remote Data: 
providing communication 
overlap and aggregation 
since Chapel v 1.10!
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Backup Slides
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• acquire and release 
triggered by task or on 
statement spawn, join, 
start, and finish

sync {
  release

  begin {
    acquire

    ….
    release

  }
} acquire

release
on {
  acquire

  …
  release

}
acquire
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LOOKING INSIDE
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64 byte cache lines

1024 byte cache page

Optional Dirty BitsValid Line Bits

CACHE ENTRY

● node
● address
● readahead trigger
● min sequence number
● max put sequence 

number
● max prefetch sequence 

number
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17 bits

Inspired by “Two Level Tree Structure for Fast Pointer Lookup” by Hans J Boehm

10 bits 17 bits 10 bits 10 bits

top half bottom half page 
offset

top bits
bottom 
bits

...top[top bits]

bottom[bottom bits]

page entries

... ...

...

Pointer Tree
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per task:
 last acquire sequence number

Am LRU

Dirty LRU

Free Lists

Ain

Aout

New Pages
...

... ...
...

2Q Queues

Operations Queue

Pointer Tree

CACHE DATA STRUCTURES
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WRITE BEHIND

Write Recorded in Dirty Bits, Page added to Dirty Queue
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Flushed on release or
when there are too many dirty pages
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GET with 2 
earlier valid 
lines triggers 
synchronous 
readahead

ra skip,len = 0

ra skip=1 pg len = 1 pg

READAHEAD
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The next 
GET triggers 
asynchronous 
readahead

ra skip=1 pg len = 1 pg

ra skip,len=0 ra skip=1 pg len =2 pg
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ra skip,len=0 ra skip=1 pg len =2 pg

ra skip=2 pg len =4 pg

GET here triggers 
more readahead

ra skip,len=0
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* with small 10-node cluster, QDR IB
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Max BW:
5000 MB/s

* with small 10-node cluster, QDR IB
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