
LLNL-PRES-708978 
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory 
under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC 

Op#mizing	PGAS	overhead	in	a	mul#-locale	
Chapel	implementa#on	of	CoMD	

Riyaz Haque and David F. Richards 



LLNL-PRES-708978 

2	

Acknowledgements	

Our sincere thanks to  
 

Tom MacDonald 
Ben Albrecht 

Ben Harshbarger 
Brad Chamberlain  

 
for their invaluable advice and timely help in  
optimizing various aspects of CoMD-Chapel 

 



LLNL-PRES-708978 

3	

§  Domain	decomposi/on	
—  Spa/al	“linked-cell”	decomposi/on	

§  Force	calcula/on		
—  Iterate	atom	pairs	and	calculate	contribu/on	to	

energy	&	forces	
—  Lennard-Jones	and	EAM	poten/al	energy	models	

§  Halo	exchange	communica/on	
—  Data	from	adjacent	nodes	needed	to		

compute	forces	on	local	par/cles	
—  Data	needed	depends	on	poten/al	used	

§  Implemented	in	several	programming	models	
—  Our	reference	version	based	on	MPI+OpenMP	

The	CoMD	proxy	app	



LLNL-PRES-708978 

4	

§  A	PGAS	language	
—  Implicit	access	of	non-local	data	

§  Abstrac/ons	for	parallel	and	distributed	
compu/ng	
—  coforall	and	forall	for	concurrency	
—  Locales	as	independent	units	of	execu/on	
—  Separa/on	of	concurrency	and	locality	

•  on	statement	for	switching	execu/on	between	locales	

§  Extensive	support	for	distributed	arrays	
—  Domains	as	index	sets	for	arrays	
—  Distribu/ons	for	dividing	domains	and	arrays	

across	locales	
•  Standard	(e.g.	BlockDist)	and	user-defined	

—  Bulk	array	assignment	for	aggrega/ng	inter-locale	
communica/on	

The	Chapel	programming	language	

Chapel is designed for productivity at scale 

Domain Maps 
Data Parallelism 
Task Parallelism 
Base Language 

Target Machine 

Locality Control 

Multiresolution Design 



LLNL-PRES-708978 

5	

§  Manually	decompose	the	problem	domain	across	all	the	locales	
—  Simplifies	analysis	of	data	access	paSerns	
—  To	be	abstracted	away	from	applica/on	logic	as	a	Chapel	distribu/on	

§  Launching	computa/on	steps	
—  SPMD	manner	of	execu/on	
—  Master	locale	creates	independent	tasks	on	other	locales	for	each	step	

•  Simple,	though	not	very	scalable	

§  A	valid	simula/on	preserves	the	total	(poten/al	+	kine/c)	energy	of	the	system	

CoMD-Chapel	implementa#on	



LLNL-PRES-708978 

6	

§  Linked-cell	approach,	similar	to	CoMD		
—  Create	an	n-dimensional	domain	of	locales	(locDom	:	domain(2)	=	{1..xproc,	1..yproc})	
—  On	each	locale,	

•  Decompose	problem	space	into	a	set	of	local	boxes	(localDom)	using	Chapel’s	BlockDist	
•  Expand	this	set	of	local	boxes	in	each	dimension	to	accomodate	the	halo	region	(localDom.expand(d)	)	

—  On	the	master	locale,	create	an	array,	Grid,	corresponding	to	the	expanded	region	on	each	locale	

The	problem	space	is	decomposed	manually	

… 
… 
… 

… locale	(x,	y)	 locale	(x+1,	y)	

Region	 Local	boxes	

Halo	

1..xproc	

1.
.y
pr
oc
	

Grid	
master	locale	(1,	1)	

xprocs	

Distributed	problem	space	

yp
ro
cs
	

… 



LLNL-PRES-708978 

7	

The	problem	space	is	decomposed	manually	

Start by breaking the problem domain into link cells 



LLNL-PRES-708978 

8	

The	problem	space	is	decomposed	manually	

Start by breaking the problem domain into link cells, 
and then divide the link cells between locales using Chapel BlockDist 

0 2 1 

6 

3 4 

7 

5 

8 

This decomposition has terrible performance due to over-communication 



LLNL-PRES-708978 

9	

The	problem	space	is	decomposed	manually	

Add explicit storage for halos on each locale 

0 2 1 

6 

3 4 

7 

5 

8 

This looks like an MPI decomposition.  Glass half empty or half full? 



LLNL-PRES-708978 

10	

§  Exchange	atoms	along	the	faces		
—  2	data	exchanges	per	dimension		
—  Execute	serially	for	each	dimension	

§  Simultaneously	update	posi/ons	and	apply	periodic	
boundary	condi/ons	

§  Aggregate	data	transfer	using	Chapel	bulk	array	
assignment	

Halo	exchange	minimizes	inter-locale	communica#on	

locale	(x,	y)	 locale	(x+1,	y)	locale	(x-1,	y)	

x+	

x-	
x+	

x-	

locale	(x,	y+1)	

y+	 y-	

y+	 y-	

locale	(x,	y)	

locale	(x,	y-1)	



LLNL-PRES-708978 

11	

§  CoMD-Chapel	supports	both	Lennard-Jones	and	EAM	poten/al	energy	models	
—  force	object	stores	force	model	parameters	
—  fArr	stores	force	data	for	par/cles	

	

	

	

	

§  Full-neighbor	computa/on	
—  Each	atom	computes	all	forces	independently	
—  Half-neighbor	approach	possible	using	atomics	but	not	implemented	

§  Most	compute-intense	step	of	the	applica/on	
—  Crucial	to	eliminate	redundant	inter-locale	communica/on	

Inter-par#cle	force	computa#on	is	the	dominant	step	

coforall	box	in	cells[localDom]	{	//	box	
		for	nBox	in	neighs[box]	{	//	neighbor	box	
				for	i	in	1..box.count	{	//	box	atom	
						for	j	in	1..nBox.count	{	//	nBox	atom	
								if(dist(i,	j)	<=	cutoff)	{	
										force.compute(i,	j,	fArr);	
}}}}}	
	



LLNL-PRES-708978 

12	

§  The	force	object	is	ini/alized	once	on	master	locale;	accessed	each	/me-step	on	all	
locales	
—  However,	once	created,	it	does	not	change	

§  Always	referencing	the	copy	on	master	locale	results	in	extremely	fine-grained	
communica/on	
—  Severely	hurts	performance!	

§  Solu/on:	Replicate	the	force	object	on	each	locale	and	access	the	local	copy	
—  ~1200x	faster	than	the	non-replicated	version	
	

Naïvely	wriJen	code	can	result	in	unintended	inter-locale	
communica#on	

Replication is an important optimization for CoMD-Chapel 

Without	replica#on	 With	replica#on	



LLNL-PRES-708978 

13	

§  Compiler	may	generate	wide	pointers	for	local	data	
—  Accessing	local	data	through	wide	pointers	incurs	addi/onal	overhead	

§  Solu/on:	Use	local	statement	
	 	 	local	{	
	 	 			//	Access	only	local	data	
	 	 	}	

	
—  Compiler	eliminates	wide	pointers	for	all	references	within	the	local	block	

Wide-pointers	may	be	generated	for	data	accessed	locally	

Localization results in a ~3x speedup for CoMD-Chapel 

1 8 
local 2106.97 270.73 
nolocal 5951.55 748.61 

0 

2000 

4000 

6000 

Ti
m

e 
(s

ec
s)

 

Number of locales 

4x106 atoms, 1000 timesteps 

local 

nolocal 

Lower 
is 

better! 



LLNL-PRES-708978 

14	

§  Code	compiled	using	Chapel	v1.13	
—  The	compiler	itself	was	compiled	with	gcc-4.9.2,	ibv	on	gasnet	and	qthreads	as	the	threading	

framework	

§  Executed	on	1-32	nodes	of	64-bit	Intel	Xeon	processors	
—  12	cores,	24	GB	RAM,	Infiniband	high-speed	interconnect	

Performance	is	comparable	to	the	reference	implementa#on	

CoMD-Chapel performs to within 87% (8 locales) to 67% (32 locales) of the reference 

total force halo 
CoMD-Chapel 95.81 58.06 22.26 
CoMD-Ref 59.24 40.52 11.35 

0 

50 

100 

Ti
m

e 
(s

ec
s)

 

Steps 

32 locales 

CoMD-Chapel CoMD-Ref 

total force halo 
CoMD-Chapel 270.73 212.09 21.60 
CoMD-Ref 236.03 184.78 17.22 

0 

100 

200 

300 

Ti
m

e 
(s

ec
s)

 

Steps 

8 locales 

CoMD-Chapel CoMD-Ref 

CoMD-Chapel	vs.	CoMD-Ref,	4x106	atoms	

Lower 
is 

better! 



LLNL-PRES-708978 

15	

§  local	statement	is		
—  Scope-based	

•  May	necessitate	non-trivial	code	
refactoring	

—  Reac/ve	
•  Programmer	has	to	ensure	all	
accesses	are	indeed	local;	possible	
run/me	error	otherwise	

•  No	compile-/me	checks	
—  Restric/ve	

•  Does	not	work	even	if	a	single	non-
local	access	occurs	in	an	arbitrarily	
large	code	block	

•  May	reject	completely	safe	programs	
—  Prac/cal	only	for	codes	with	visible	

and	predictable	access	paSerns	

The	local	statement	works	for	CoMD-Chapel,	but	…	

The local statement has restricted applicability to complex real-life codes 

local	{	const	x	=	f.m();	}	//	f.m()	is	local	
func(x);	//	compile	error!	x	is	out	of	scope	

//	all	accesses	are	safe	but	may	still	throw	
//	a	runtime	error	due	to	the	on	statement	
local	{	/*	on	Locale(0)	*/		
		x.m();	//	x.m()	is	local	to	Locale(0)	
		on(Locale(1))	{	//	switch	to	Locale(1)	
				y.n();	//	y.n()	is	local	to	Locale(1)	
		}	
}	

local	{	const	x	=	f.m();	}	
//	may	fail	at	runtime	if	f.m()	is	modified	
//	to	perform	a	non-local	access	



LLNL-PRES-708978 

16	

§  Treats	locality	as	an	aSribute	of	data	
rather	than	code	blocks	
—  Avoids	scoping	problems	

§  Allows	for	more	precise	compile-/me	
locality	analysis	

§  Can	support	advanced	locale	
topologies	e.g.	hierarchical	places	

§  Can	be	expressed	quite	naturally	
within	Chapel’s	rich	type	system	

Type-based	(data-centric)	locality	is	a	more	robust	op#on	

Data-centric locality should be made more widely available in Chapel 

§  Proposed	for	Chapel	by	Harshbarger	[CHIUW	2015]	
—  hSp://chapel.cray.com/CHIUW/2015/talks/data-centric-locality-chiuw-2015.pdf	
—  More	robust	than	asser/ng	locality	using	the	local	statement	
—  Implemented	on	a	dev	branch	in	Chapel	v1.11	

const	local	x	=	f.m();	
func(x);	//	no	error	since	x	is	in	scope	

//	compile-time	error	if	f.m()	returns	a	
//	non-local	reference,	otherwise	ok	
const	local	x	=	f.m();	

//	Possible	hierarchical	locale	topology	
local	<	level1	<	level2	...	<	global	



LLNL-PRES-708978 

17	

§  Preven/ng	unintended	inter-locale	communica/on	is	crucial	for	performance	of	
CoMD-Chapel	
—  Explicitly	manage	data	decomposi/on	and	halo	exchange	
—  Force	object	requires	replica/on	on	all	locales	

§  Localiza/on	of	wide	pointers	for	local	data	is	also	very	important	
—  The	local	statement	works	for	CoMD-Chapel	but	has	serious	limita/ons	
—  Data-centric	locality	is	a	more	robust	approach	

§  With	above	op/miza/ons	in	place,	CoMD-Chapel	performs	between	69%-87%	of	
the	reference	implementa/on	

§  Future	work	
—  Separa/ng	applica/on	logic	from	data	distribu/on	
—  Inves/ga/ng	strategies	for	improving	scalability	and	reducing	the	task	crea/on	

overhead	for	launching	the	computa/on	steps	
—  Replacing	the	local	statement	with	data-centric	locality	analysis	

Summary	





LLNL-PRES-708978 

19	

Ques#ons	


