Optimizing PGAS overhead in a multi-locale
Chapel implementation of CoMD

Riyaz Haque and David F. Richards

LLNL-PRES- 708978 B Lawrence Livermore

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory

under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC National Laboratory

Acknowledgements

1802 00 2%
™ 3
:.E}}; Our sincere thanks to gz»:
%E’; Tom MacDonald :‘E§,
= Ben Albrecht &=
0 Ben Harshbarger o
gﬁ Brad Chamberlain ‘«‘Eﬁ’:
= o
tgg for their invaluable advice and timely help in 323:
,“é’i optimizing various aspects of CoMD-Chapel jé\%
= -
R A e e

t Lawrence Livermore National Laboratory NISZ@"{ 2
LLNL-PRES-708978

National Nuclear Security Administration

The CoMD proxy app

Domain decomposition
— Spatial “linked-cell” decomposition

= Force calculation '. © O
— Iterate atom pairs and calculate contribution to 00 © %90 e)
energy & forces -
— Lennard-Jones and EAM potential energy models S @)

Halo exchange communication o

— Data from adjacent nodes needed to R
compute forces on local particles

— Data needed depends on potential used

Implemented in several programming models
— Our reference version based on MPI+OpenMP

& Lawrence Livermore National Laboratory N IS@Q‘.“ 3

LLNL-PRES-708978 National Nuclear Security Administration

The Chapel programming language _,

= A PGAS language

— Implicit access of non-local data
Multiresolution Design

= Abstractions for parallel and distributed
computing (
— coforall and forall for concurrency

— Locales gs independent units of exec.utlon Task Parallelism
— Separation of concurrency and locality
* ONn statement for switching execution between locales

Domain Maps

Base Language

Locality Control
= Extensive support for distributed arrays
— Domains as index sets for arrays
— Distributions for dividing domains and arrays

across locales
« Standard (e.g. BlockDist) and user-defined

— Bulk array assignment for aggregating inter-locale
communication

Chapel is designed for productivity at scale

t Lawrence Livermore National Laboratory NI {’g‘;‘ 4
National Nuclear Security Administration

LLNL-PRES-708978

CoMD-Chapel implementation

= Manually decompose the problem domain across all the locales
— Simplifies analysis of data access patterns
— To be abstracted away from application logic as a Chapel distribution

= Launching computation steps
— SPMD manner of execution

— Master locale creates independent tasks on other locales for each step
» Simple, though not very scalable

= Avalid simulation preserves the total (potential + kinetic) energy of the system

& Lawrence Livermore National Laboratory N IS@Q‘.“ 5

LLNL-PRES-708978 National Nuclear Security Administrati

The problem space is decomposed manually

= Linked-cell approach, similar to CoMD

— Create an n-dimensional domain of locales (1ocbom : domain(2) = {1..xproc, 1..yproc})
— On each locale,

« Decompose problem space into a set of local boxes (1ocalDom) using Chapel’s BlockDist
« Expand this set of local boxes in each dimension to accomodate the halo region (1ocalbom.expand(d))

— On the master locale, create an array, Grid, corresponding to the expanded region on each locale

1..xproc

/—/R

I:H:I |Z| Halo
e

: locale (x, y, @ (x+1,y)
Ledla s J/ :
B _ \% :

1..yproc

Distr_ibute‘a problem s,b.dce > k
.
xproc'; X/
o —:
g § Region Local boxes

Grid
master locale (1, 1)

. . a
b Lawrence Livermore National Laboratory N A‘Sfé;“ 6
LLNL-PRES-708978

National Nuclear Security Administration

The problem space is decomposed manually

Start by breaking the problem domain into link cells

t Lawrence Livermore National Laboratory NIS@"»“ 7

LLNL-PRES-708978 National Nuclear Security Administration

The problem space is decomposed manually

|
1
!

4

-0 W+ O -

e JHEN] JEE .

i
=
|

Start by breaking the problem domain into link cells,
and then divide the link cells between locales using Chapel BlockDist

This decomposition has terrible performance due to over-communication

t Lawrence Livermore National Laboratory N ISE&;} 8
LLNL-PRES-708978

National Nuclear Security Administration

The problem space is decomposed manually

|

]
o

|

|

]
W

|

| |

1 2

l l

T 1T T
4111115

L]

|
7

|

=

| |
6 3
| |

!
|
i
i
!

Add explicit storage for halos on each locale

This looks like an MPI decomposition. Glass half empty or half full?

t Lawrence Livermore National Laboratory

LLNL-PRES-708978

NIYSY o

National Nuclear Security Administration

Halo exchange minimizes inter-locale communication

locale (x, y+1)

= Exchange atoms along the faces
— 2 data exchanges per dimension

— Execute serially for each dimension ——
locale (x-1, y) locale (x, y) Ipcale (x+1, y)
T Nt
X § x [\F —

= Simultaneously update positions and apply periodic
boundary conditions

= Aggregate data transfer using Chapel bulk array
assignment

b Lawrence Livermore National Laboratory N I‘S(c'f‘,‘l 10

LLNL-PRES-708978 National Nuclear Security Administration

Inter-particle force computation is the dominant step

= CoMD-Chapel supports both Lennard-Jones and EAM potential energy models
— force object stores force model parameters
— fArr stores force data for particles

coforall box in cells[localDom] { // box
for nBox in neighs[box] { // neighbor box
for i in 1..box.count { // box atom
for j in 1..nBox.count { // nBox atom
if(dist(i, j) <= cutoff) {
force.compute(i, j, fArr);

}YYr)

= Full-neighbor computation
— Each atom computes all forces independently
— Half-neighbor approach possible using atomics but not implemented

= Most compute-intense step of the application
— Crucial to eliminate redundant inter-locale communication

& Lawrence Livermore National Laboratory N IS@Q‘.“ 11

LLNL-PRES-708978 National Nuclear Security Administration

Naively written code can result in unintended inter-locale
communication

= The force object is initialized once on master locale; accessed each time-step on all
locales
— However, once created, it does not change

= Always referencing the copy on master locale results in extremely fine-grained
communication
— Severely hurts performance!

= Solution: Replicate the force object on each locale and access the local copy
— ~1200x faster than the non-replicated version

file: nurepl—ﬁ—mxzoxm—s—vwi ax Tasks file: repl-8-20x20x20-5-vis
tag: computelForce tag: computelJForce

Without replication] With replication

Replication is an important optimization for CoMD-Chapel

t Lawrence Livermore National Laboratory N A‘Sﬁ 12

LLNL-PRES-708978 National Nuclear Security Administration

Wide-pointers may be generated for data accessed locally

= Compiler may generate wide pointers for local data
— Accessing local data through wide pointers incurs additional overhead

= Solution: Use local statement

local {

// Access only local data
}

— Compiler eliminates wide pointers for all references within the 1ocal block

4x106 atoms, 1000 timesteps

(] 6000
Lower -
iS 8 4000
(")
better! g 2000 e local
oo — oca
1 8 ® nolocal
local 2106.97 270.73
v nolocal 5951.55 748.61

Number of locales

Localization results in a ~3x speedup for CoMD-Chapel

t Lawrence Livermore National Laboratory

NYSE
LLNL-PRES-708978

National Nuclear Security Administration

Performance is comparable to the reference implementation

= Code compiled using Chapel v1.13

— The compiler itself was compiled with gcc-4.9.2, ibv on gasnet and qthreads as the threading
framework

= Executed on 1-32 nodes of 64-bit Intel Xeon processors
— 12 cores, 24 GB RAM, Infiniband high-speed interconnect

8 locales 32 locales
¥ CoMD-Chapel ®CoMD-Ref (] B CoMD-Chapel ®CoMD-Ref

— 300 — 100

g Lower 8

S 200 - . 3

> is s 907

g 100 £

- 0 - Ee— bette r! = 0 - h

total force halo total force halo
CoMD-Chapel 270.73 212.09 21.60 CoMD-Chapel 95.81 58.06 22.26
CoMD-Ref 236.03 184.78 17.22 v CoMD-Ref 59.24 40.52 11.35
Steps Steps

CoMD-Chapel vs. CoMD-Ref, 4x10°¢ atoms

CoMD-Chapel performs to within 87% (8 locales) to 67% (32 locales) of the reference

t Lawrence Livermore National Laboratory NA‘S‘@J 14

LLNL-PRES-708978 National Nuclear Security Administration

The local statement works for CoMD-Chapel, but ...

= local statementis local { const x = f.m(); } // f.m() is local
— Scope-based func(x); // compile error! x is out of scope

* May necessitate non-trivial code
refactoring

— Reactive local { const x = f.m(); }
* Programmer has to ensure all // may fail at runtime if f.m() is modified
accesses are indeed local; possible // to perform a non-local access

runtime error otherwise
* No compile-time checks

— Restrictive // all accesses are safe but may still throw
// a runtime error due to the on statement

local { /* on Locale(Q) */

» Does not work even if a single non-

:ocalaccdessi)rcc;rsm an arbitrarily x.m(); // x.m() is local to Locale(®)
arge C(_) € bloc on(Locale(1l)) { // switch to Locale(1)
* May reject completely safe programs y.n(); // y.n() is local to Locale(1)

— Practical only for codes with visible |}
and predictable access patterns }

The local statement has restricted applicability to complex real-life codes

t Lawrence Livermore National Laboratory N ISS@ 15

LLNL-PRES-708978 National Nuclear Security Administration

Type-based (data-centric) locality is a more robust option

Treats locality as an attribute of data const local x = f.m();

ratherpharICOQetﬂocks func(x); // no error since x is in scope
— Avoids scoping problems

// compile-time error if f.m() returns a
// non-local reference, otherwise ok
const local x = f.m();

= Allows for more precise compile-time
locality analysis

= Can support advanced locale

topologies e.g. hierarchical places // Possible hierarchical locale topology

local < levell < level2 ... < global

= Can be expressed quite naturally
within Chapel’s rich type system

= Proposed for Chapel by Harshbarger [CHIUW 2015]
— http://chapel.cray.com/CHIUW/2015/talks/data-centric-locality-chiuw-2015.pdf
— More robust than asserting locality using the local statement
— Implemented on a dev branch in Chapel v1.11

Data-centric locality should be made more widely available in Chapel

t Lawrence Livermore National Laboratory N ISS@ 16

LLNL-PRES-708978 National Nuclear Security Administration

Summary

= Preventing unintended inter-locale communication is crucial for performance of
CoMD-Chapel

— Explicitly manage data decomposition and halo exchange
— Force object requires replication on all locales

= Localization of wide pointers for local data is also very important
— The local statement works for CoMD-Chapel but has serious limitations
— Data-centric locality is a more robust approach

= With above optimizations in place, CoMD-Chapel performs between 69%-87% of
the reference implementation

= Future work
— Separating application logic from data distribution
— Investigating strategies for improving scalability and reducing the task creation
overhead for launching the computation steps
— Replacing the local statement with data-centric locality analysis

& Lawrence Livermore National Laboratory NV Séo" 17

LLNL-PRES-708978 tional Nuclear Security Admi

B Lawrence Livermore
National Laboratory

Questions

t Lawrence Livermore National Laboratory NIS«Q?‘{ 19

LLNL-PRES-708978 National Nuclear Security Administration

