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Chapel Programming Language

• Parallel programming language 
supporting productive app development, including:

– data exploration

– multi-physics CFD

– computational astrophysics

• Single-source compilation to multiple targets through LLVM

• First-class language features for task & data parallelism, synchronization, 
distributed memory

• Rapidly-improving GPU support

– host-side code gen for memory management, kernel launch, synchronization

– NVIDIA (LLVM PTX backend)

– AMD (GCN backend)

A logo with blue and green lines
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https://chapel-lang.org/
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Performance Portability

• Application code should run on many different hardware platforms … 

– (without requiring rewriting for each new platform) 

• … and achieve acceptable performance on each platform 

– (without platform-specific optimizations)

• Pennycook, Sewall, and Lee’s metric      : harmonic mean of efficiency on 
each platform

– Architectural efficiency e.g. fraction of peak FLOP/s

– Application efficiency e.g. inverse speedup versus fastest version

–      = 0 if code doesn’t run on all platforms

• How well does Chapel support development of performance-portable 
application codes compared to more widely-used programming models 
like OpenMP and Kokkos?

S. J. Pennycook, J. D. Sewall, and V. W. Lee, Implications of a metric for performance portability, 

Future Generation Computer Systems, vol. 92, pp. 947–958, 2019.

https://doi.org/10.1016/j.future.2017.08.007
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Mini-apps

• We created new Chapel implementations of three mini-apps developed 
by the University of Bristol’s High Performance Computing group

• These miniapps have been used extensively to compare parallel 
programming models and already have idiomatic implementations in 
OpenMP, Kokkos, CUDA, and HIP.

– BabelStream: streaming memory access

– miniBUDE: numerically intensive molecular dynamics

– TeaLeaf: memory-intensive stencil PDE solver

• Not included in this study:

– multi-device

– distributed memory

– programmer productivity
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BabelStream

• An update of McCalpin’s Stream memory bandwidth benchmark, 
comprising:

• We measure BabelStream version 5.0 triad with 228 64-bit FP elements

Kernel Function Load/Store FLOP

Copy C = A 2 0

Add C = A + B 3 1

Mul B = α * C 2 1

Triad A = B + α * C 3 2 (1 FMA)

Nstream (PRK) A += B + α * C 4 3 (1 FMA)

Dot x = A . B 2 2 (1 FMA)

Deakin, T., Price, J., Martineau, M., & McIntosh-Smith, S. (2018). Evaluating attainable memory bandwidth of parallel programming models 

via BabelStream. International Journal of Computational Science and Engineering, 17(3), 247-262.

https://github.com/milthorpe/BabelStream

https://doi.org/10.1504/IJCSE.2017.10011352
https://doi.org/10.1504/IJCSE.2017.10011352
https://github.com/milthorpe/BabelStream


66 Milthorpe: Performance Portability of the Chapel Language on Heterogeneous Architectures

BabelStream Triad Implementations

• Chapel

– CPU: loop is decomposed into chunks to be executed by worker threads

– GPU: compiled to PTX (NVIDIA) or GCN (AMD) for each threads to compute a triad of 
elements; compiler generates host-side code for kernel launch and synchronization

• CUDA

proc triad() {
forall i in vectorDom do

A[i] = B[i] + scalar * C[i];
}

}

template <typename T>
__global__ void triad_kernel(T * a, const T * b,     
const T * c)
{

const T scalar = startScalar;
const int i = blockDim.x * blockIdx.x + 

threadIdx.x;
a[i] = b[i] + scalar * c[i];

}

template <class T>
void CUDAStream<T>::triad()
{

triad_kernel<<<array_size/TBSIZE, TBSIZE>>>
(d_a, d_b, d_c);

check_error();
cudaDeviceSynchronize();
check_error();

}

const streamLocale = if useGPU 
then here.gpus[deviceIndex] 
else here;

on streamLocale do {
const vectorDom = 0..#arraySize;
var A, B, C: [vectorDom] eltType = noinit;

}
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BabelStream Triad Implementations (2)

• Kokkos template <class T>
void KokkosStream<T>::triad()
{

Kokkos::View<T*> a(*d_a);
Kokkos::View<T*> b(*d_b);
Kokkos::View<T*> c(*d_c);

const T scalar = startScalar;
Kokkos::parallel_for(array_size, KOKKOS_LAMBDA (const long index)
{

a[index] = b[index] + scalar*c[index];
});
Kokkos::fence();

}
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BabelStream Triad Implementations (3)

• OpenMP



99 Milthorpe: Performance Portability of the Chapel Language on Heterogeneous Architectures

Experimental Platforms
Processor Sockets Cores Clock 

GHz

FP TFLOP/s Mem BW 

GB/s

STREAM 

Balance*

Intel Skylake 2 8 3.70 1.89 256.0 59.2

Intel Cascade Lake 2 24 4.00 6.14 287.3 171.1

Intel Sapphire Rapids 2 52 3.80 12.65 614.4 164.7

AMD Rome 2 64 3.00 6.14 409.6 120.0

AMD Milan 2 32 3.68 3.77 409.6 73.6

ARM ThunderX2 2 28 2.20 0.99 341.2 23.1

IBM POWER9 2 21 3.50 1.18 340.0 27.8

NVIDIA P100 1 56 1.19 4.76 549.1 69.4

NVIDIA V100 1 80 1.30 7.83 897.0 69.9

NVIDIA A100 1 108 1.07 9.75 1935.0 40.3

AMD MI60 1 64 1.20 7.37 1024.0 57.6

AMD MI100 1 120 1.00 11.54 1229.0 75.1

AMD MI250X 1 110 1.00 23.94 1600.0 119.7

GPU

CPU

* GFLOP s−1 / Gword s−1
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Experimental Configuration

Processor Operating System GPU Driver Version Compiler

Intel Skylake Ubuntu 20.04.6 clang 17.0.6

Intel Cascade Lake Ubuntu 22.04.3 clang 17.0.1

Intel Sapphire Rapids Ubuntu 22.04.3 clang 17.0.1

AMD Rome Ubuntu 22.04.3 clang 17.0.6

AMD Milan Ubuntu 22.04.3 clang 17.0.6

ARM ThunderX2 CentOS Stream 8 clang 17.0.2

IBM POWER9 CentOS 8.3 gcc 10.2

NVIDIA P100 Ubuntu 20.04.6 525.147.05 nvcc 11.5

NVIDIA V100 Ubuntu 22.04.3 550.54.15 nvcc 12.3

NVIDIA A100 Ubuntu 22.04.3 555.42.02 nvcc 12.3

AMD MI60 Ubuntu 22.04.3 6.3.6 hipcc 5.4.3

AMD MI100 Ubuntu 22.04.3 5.15.0-15 hipcc 5.4.3

AMD MI250X SUSE LES 15.4 6.3.6 hipcc 5.4.3

https://github.com/milthorpe/performance-portability

Chapel 2.0, Kokkos 4.2.0

GPU

CPU

https://github.com/milthorpe/performance-portability
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BabelStream Performance Portability

Platforms OpenMP Kokkos CUDA HIP Chapel

All platforms 64.9% 65.8% 0 0 64.0%

Supported CPUs 57.5% 57.4% 0 0 56.1%

Supported GPUs 79.1% 82.9% 84.5% 80.9% 80.0%

Bandwidth 

(GB/s)

Architectural 

efficiency

BabelStream v5 triad – 228 64-bit elements
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miniBUDE

• Proxy app created from University of Bristol BUDE protein simulator

– calculates energy of each ligand-protein pair in different poses (position + rotation)

– highly arithmetically intensive: FP arithmetic & trigonometric

• Kernel is triply-nested loop over proteins, ligands, poses

– Chapel follows CUDA decomposition: 1D kernel assigning multiple poses to thread

– requires transfer of protein, ligand, and pose data to GPU; energies to host
(in Chapel, these are simple array assignments)

const protein = context.protein;
const ligand = context.ligand;
const forcefield = context.forcefield;
const poses: [0:int(32)..<6:int(32), 0..#nposes] real(32) = context.poses[{0..<6, gpuID*nposes..#nposes}];
   

foreach group in 0..<nposes/PPWI {
for il in 0..<natlig {

for ip in 0..<natpro {
for param i in 0:int(32)..<PPWI {

…

fasten_main<PPWI><<<global, local, shared>>>( //
p.natlig(), p.natpro(), protein, ligand, //
transforms_0, transforms_1, transforms_2, //
transforms_3, transforms_4, transforms_5, //
results, forcefield, p.nposes());

https://github.com/milthorpe/miniBUDE/tree/v2

https://github.com/milthorpe/miniBUDE/tree/v2
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miniBUDE Performance Portability

Platforms OpenMP Kokkos CUDA HIP Chapel

All platforms* 43.0% 44.8% 0 0 33.8%

Supported CPUs* 43.0% 43.1% 0 0 25.9%

Supported GPUs 43.0% 47.1% 60.2% 39.7% 53.1%

Performance 

(GFLOP/s)

Architectural 

efficiency

* Except POWER9

miniBUDE v2 – small ‘bm1’ input
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TeaLeaf

• Collection of iterative sparse linear solvers, simulating heat conduction 
over time using five-point stencils over 2D grid

• Low arithmetic intensity = better suited to low STREAM balance

• 2D index domains: expose parallelism over both loops

https://github.com/milthorpe/TeaLeaf

S. McIntosh-Smith, et al., Tealeaf: A mini-application to enable design-space explorations for iterative sparse linear solvers. 

IEEE International Conference on Cluster Computing (CLUSTER), 2017.

#pragma omp target teams distribute parallel for simd
collapse(2) 
for (int jj = halo_depth; jj < y - halo_depth; ++jj) {

for (int kk = halo_depth; kk < x - halo_depth; ++kk) {
const int index = kk + jj * x;
p[index] = beta * p[index] + r[index];

}
}

Kokkos::parallel_for(
x * y, KOKKOS_LAMBDA(const int &index) {

const int kk = index % x;
const int jj = index / x;

if (kk >= halo_depth 
&& kk < x - halo_depth 
&& jj >= halo_depth && jj < y - halo_depth) {
p(index) = beta * p(index) + r(index);

}
});

[(i,j) in Domain.expand(-halo_depth)] p[i,j] = beta * p[i,j] + r[i,j];

https://github.com/milthorpe/TeaLeaf
https://doi.org/10.1109/CLUSTER.2017.105
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TeaLeaf - Reductions

• Many sum reductions to compute global deltas or error metrics

– In Chapel 2.0, these must be computed in global memory

Kokkos::parallel_reduce(
x * y,
KOKKOS_LAMBDA(const int &index, double &rrn_temp) {

const int kk = index % x;
const int jj = index / x;
if (kk >= halo_depth 
&& kk < x - halo_depth
&& jj >= halo_depth 
&& jj < y - halo_depth) {
u(index) += alpha * p(index);
r(index) -= alpha * w(index);
rrn_temp += r(index) * r(index);

}
},
*rrn);

var temp: [reduced_local_domain] real = noinit;
…
forall oneDIdx in reduced_OneD {

const ij = reduced_local_domain.orderToIndex(oneDIdx);
u[ij] += alpha * p[ij];
r[ij] -= alpha * w[ij];
temp[ij] = r[ij] ** 2;

}
rrn = gpuSumReduce(temp);

var rrn: real; 
forall ij in reduced_local_domain

with (+ reduce rrn) {
u[ij] += alpha * p[ij];
r[ij] -= alpha * w[ij];
rrn += r[ij] ** 2;

}

Chapel 2.x

Chapel 2.0
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TeaLeaf – Chapel Multi-Dimensional Indexing

• Using 2D indices improved readability of Chapel code
and performed well on CPU platforms

• However, using 2D domains reduced GPU performance due to under-
utilization of available GPU cores in Chapel 2.0

– first dimension is assigned to GPU threads

– remaining dimensions implemented as loops inside GPU kernel

• We replaced multi-dimensional loops with 1D loop over linearized space 
to allow full utilization of GPU cores

const Domain = {0..<y, 0..<x};
forall ij in Domain {

u[ij] = energy[ij] * density[ij];
}

const Domain = {0..<y, 0..<x};
const OneD = {0..<y*x};
foreach oneDIdx in OneD {

const ij = local_domain.orderToIndex(oneDIdx);
u[ij] = energy[ij] * density[ij];

}
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TeaLeaf Performance Portability

Platforms OpenMP Kokkos CUDA HIP Chapel Chapel 2D

All platforms 69.8% 37.3% 0 0 31.5% 5.7%

Supported CPUs 85.8% 25.3% 0 0 93.7% 94.0%

Supported GPUs 57.3% 83.5% 100.0% 56.9% 17.8% 2.7%

Application 

efficiency
Runtime (s)

tea_bm_5.in – 4000×4000 CG solve, 10 iters
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Conclusions

• Pennycook, Sewall and Lee’s metric      remains a useful lens for 
evaluating portable programming models and identifying areas of 
strength and weakness

•  Performance portability of OpenMP and Kokkos continues to improve

• Chapel is a new option for performance-portable parallel programming

– concise code

– (mostly) good performance across a wide range of platforms 

– easier path to multi-device, multi-node distribution

• Some issues remain with Chapel GPU code generation

– fixing these will avoid performance pitfalls for users
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