
ORNL is managed by UT-Battelle LLC for the US Department of Energy

Performance Portability of the Chapel Language
on Heterogeneous Architectures
Heterogeneity in Computing Workshop
IPDPS, 27 May 2024

Josh Milthorpe,
Xianghao Wang, and Ahmad Azizi

ORNL Advanced Computing Systems Research, milthorpejj@ornl.gov
Australian National University

A picture containing text, businesscard, envelope

Description automatically generated

Icon

Description automatically generated

Shape

Description automatically generated with low confidence

Icon

Description automatically generated

Icon

Description automatically generated

This research used resources of the Experimental Computing Laboratory (ExCL) at

the Oak Ridge National Laboratory, which is supported by the Office of Science of

the U.S. Department of Energy under Contract No. DE-AC05-00OR22725.

mailto:milthorpejj@ornl.gov
https://dblp.org/pid/96/1221.html
https://www.linkedin.com/in/josh-milthorpe
https://scholar.google.com/citations?user=heVsEMsAAAAJ
https://www.researchgate.net/profile/Josh-Milthorpe
https://orcid.org/0000-0002-3588-9896

22 Milthorpe: Performance Portability of the Chapel Language on Heterogeneous Architectures

Chapel Programming Language

• Parallel programming language
supporting productive app development, including:

– data exploration

– multi-physics CFD

– computational astrophysics

• Single-source compilation to multiple targets through LLVM

• First-class language features for task & data parallelism, synchronization,
distributed memory

• Rapidly-improving GPU support

– host-side code gen for memory management, kernel launch, synchronization

– NVIDIA (LLVM PTX backend)

– AMD (GCN backend)

A logo with blue and green lines

Description automatically generated

https://chapel-lang.org/

33 Milthorpe: Performance Portability of the Chapel Language on Heterogeneous Architectures

Performance Portability

• Application code should run on many different hardware platforms …

– (without requiring rewriting for each new platform)

• … and achieve acceptable performance on each platform

– (without platform-specific optimizations)

• Pennycook, Sewall, and Lee’s metric : harmonic mean of efficiency on
each platform

– Architectural efficiency e.g. fraction of peak FLOP/s

– Application efficiency e.g. inverse speedup versus fastest version

– = 0 if code doesn’t run on all platforms

• How well does Chapel support development of performance-portable
application codes compared to more widely-used programming models
like OpenMP and Kokkos?

S. J. Pennycook, J. D. Sewall, and V. W. Lee, Implications of a metric for performance portability,

Future Generation Computer Systems, vol. 92, pp. 947–958, 2019.

https://doi.org/10.1016/j.future.2017.08.007

44 Milthorpe: Performance Portability of the Chapel Language on Heterogeneous Architectures

Mini-apps

• We created new Chapel implementations of three mini-apps developed
by the University of Bristol’s High Performance Computing group

• These miniapps have been used extensively to compare parallel
programming models and already have idiomatic implementations in
OpenMP, Kokkos, CUDA, and HIP.

– BabelStream: streaming memory access

– miniBUDE: numerically intensive molecular dynamics

– TeaLeaf: memory-intensive stencil PDE solver

• Not included in this study:

– multi-device

– distributed memory

– programmer productivity

55 Milthorpe: Performance Portability of the Chapel Language on Heterogeneous Architectures

BabelStream

• An update of McCalpin’s Stream memory bandwidth benchmark,
comprising:

• We measure BabelStream version 5.0 triad with 228 64-bit FP elements

Kernel Function Load/Store FLOP

Copy C = A 2 0

Add C = A + B 3 1

Mul B = α * C 2 1

Triad A = B + α * C 3 2 (1 FMA)

Nstream (PRK) A += B + α * C 4 3 (1 FMA)

Dot x = A . B 2 2 (1 FMA)

Deakin, T., Price, J., Martineau, M., & McIntosh-Smith, S. (2018). Evaluating attainable memory bandwidth of parallel programming models

via BabelStream. International Journal of Computational Science and Engineering, 17(3), 247-262.

https://github.com/milthorpe/BabelStream

https://doi.org/10.1504/IJCSE.2017.10011352
https://doi.org/10.1504/IJCSE.2017.10011352
https://github.com/milthorpe/BabelStream

66 Milthorpe: Performance Portability of the Chapel Language on Heterogeneous Architectures

BabelStream Triad Implementations

• Chapel

– CPU: loop is decomposed into chunks to be executed by worker threads

– GPU: compiled to PTX (NVIDIA) or GCN (AMD) for each threads to compute a triad of
elements; compiler generates host-side code for kernel launch and synchronization

• CUDA

proc triad() {
forall i in vectorDom do

A[i] = B[i] + scalar * C[i];
}

}

template <typename T>
__global__ void triad_kernel(T * a, const T * b,
const T * c)
{

const T scalar = startScalar;
const int i = blockDim.x * blockIdx.x +

threadIdx.x;
a[i] = b[i] + scalar * c[i];

}

template <class T>
void CUDAStream<T>::triad()
{

triad_kernel<<<array_size/TBSIZE, TBSIZE>>>
(d_a, d_b, d_c);

check_error();
cudaDeviceSynchronize();
check_error();

}

const streamLocale = if useGPU
then here.gpus[deviceIndex]
else here;

on streamLocale do {
const vectorDom = 0..#arraySize;
var A, B, C: [vectorDom] eltType = noinit;

}

77 Milthorpe: Performance Portability of the Chapel Language on Heterogeneous Architectures

BabelStream Triad Implementations (2)

• Kokkos template <class T>
void KokkosStream<T>::triad()
{

Kokkos::View<T*> a(*d_a);
Kokkos::View<T*> b(*d_b);
Kokkos::View<T*> c(*d_c);

const T scalar = startScalar;
Kokkos::parallel_for(array_size, KOKKOS_LAMBDA (const long index)
{

a[index] = b[index] + scalar*c[index];
});
Kokkos::fence();

}

88 Milthorpe: Performance Portability of the Chapel Language on Heterogeneous Architectures

BabelStream Triad Implementations (3)

• OpenMP

99 Milthorpe: Performance Portability of the Chapel Language on Heterogeneous Architectures

Experimental Platforms
Processor Sockets Cores Clock

GHz

FP TFLOP/s Mem BW

GB/s

STREAM

Balance*

Intel Skylake 2 8 3.70 1.89 256.0 59.2

Intel Cascade Lake 2 24 4.00 6.14 287.3 171.1

Intel Sapphire Rapids 2 52 3.80 12.65 614.4 164.7

AMD Rome 2 64 3.00 6.14 409.6 120.0

AMD Milan 2 32 3.68 3.77 409.6 73.6

ARM ThunderX2 2 28 2.20 0.99 341.2 23.1

IBM POWER9 2 21 3.50 1.18 340.0 27.8

NVIDIA P100 1 56 1.19 4.76 549.1 69.4

NVIDIA V100 1 80 1.30 7.83 897.0 69.9

NVIDIA A100 1 108 1.07 9.75 1935.0 40.3

AMD MI60 1 64 1.20 7.37 1024.0 57.6

AMD MI100 1 120 1.00 11.54 1229.0 75.1

AMD MI250X 1 110 1.00 23.94 1600.0 119.7

GPU

CPU

* GFLOP s−1 / Gword s−1

1010 Milthorpe: Performance Portability of the Chapel Language on Heterogeneous Architectures

Experimental Configuration

Processor Operating System GPU Driver Version Compiler

Intel Skylake Ubuntu 20.04.6 clang 17.0.6

Intel Cascade Lake Ubuntu 22.04.3 clang 17.0.1

Intel Sapphire Rapids Ubuntu 22.04.3 clang 17.0.1

AMD Rome Ubuntu 22.04.3 clang 17.0.6

AMD Milan Ubuntu 22.04.3 clang 17.0.6

ARM ThunderX2 CentOS Stream 8 clang 17.0.2

IBM POWER9 CentOS 8.3 gcc 10.2

NVIDIA P100 Ubuntu 20.04.6 525.147.05 nvcc 11.5

NVIDIA V100 Ubuntu 22.04.3 550.54.15 nvcc 12.3

NVIDIA A100 Ubuntu 22.04.3 555.42.02 nvcc 12.3

AMD MI60 Ubuntu 22.04.3 6.3.6 hipcc 5.4.3

AMD MI100 Ubuntu 22.04.3 5.15.0-15 hipcc 5.4.3

AMD MI250X SUSE LES 15.4 6.3.6 hipcc 5.4.3

https://github.com/milthorpe/performance-portability

Chapel 2.0, Kokkos 4.2.0

GPU

CPU

https://github.com/milthorpe/performance-portability

1111 Milthorpe: Performance Portability of the Chapel Language on Heterogeneous Architectures

BabelStream Performance Portability

Platforms OpenMP Kokkos CUDA HIP Chapel

All platforms 64.9% 65.8% 0 0 64.0%

Supported CPUs 57.5% 57.4% 0 0 56.1%

Supported GPUs 79.1% 82.9% 84.5% 80.9% 80.0%

Bandwidth

(GB/s)

Architectural

efficiency

BabelStream v5 triad – 228 64-bit elements

1212 Milthorpe: Performance Portability of the Chapel Language on Heterogeneous Architectures

miniBUDE

• Proxy app created from University of Bristol BUDE protein simulator

– calculates energy of each ligand-protein pair in different poses (position + rotation)

– highly arithmetically intensive: FP arithmetic & trigonometric

• Kernel is triply-nested loop over proteins, ligands, poses

– Chapel follows CUDA decomposition: 1D kernel assigning multiple poses to thread

– requires transfer of protein, ligand, and pose data to GPU; energies to host
(in Chapel, these are simple array assignments)

const protein = context.protein;
const ligand = context.ligand;
const forcefield = context.forcefield;
const poses: [0:int(32)..<6:int(32), 0..#nposes] real(32) = context.poses[{0..<6, gpuID*nposes..#nposes}];

foreach group in 0..<nposes/PPWI {
for il in 0..<natlig {

for ip in 0..<natpro {
for param i in 0:int(32)..<PPWI {

…

fasten_main<PPWI><<<global, local, shared>>>(//
p.natlig(), p.natpro(), protein, ligand, //
transforms_0, transforms_1, transforms_2, //
transforms_3, transforms_4, transforms_5, //
results, forcefield, p.nposes());

https://github.com/milthorpe/miniBUDE/tree/v2

https://github.com/milthorpe/miniBUDE/tree/v2

1313 Milthorpe: Performance Portability of the Chapel Language on Heterogeneous Architectures

miniBUDE Performance Portability

Platforms OpenMP Kokkos CUDA HIP Chapel

All platforms* 43.0% 44.8% 0 0 33.8%

Supported CPUs* 43.0% 43.1% 0 0 25.9%

Supported GPUs 43.0% 47.1% 60.2% 39.7% 53.1%

Performance

(GFLOP/s)

Architectural

efficiency

* Except POWER9

miniBUDE v2 – small ‘bm1’ input

1414 Milthorpe: Performance Portability of the Chapel Language on Heterogeneous Architectures

TeaLeaf

• Collection of iterative sparse linear solvers, simulating heat conduction
over time using five-point stencils over 2D grid

• Low arithmetic intensity = better suited to low STREAM balance

• 2D index domains: expose parallelism over both loops

https://github.com/milthorpe/TeaLeaf

S. McIntosh-Smith, et al., Tealeaf: A mini-application to enable design-space explorations for iterative sparse linear solvers.

IEEE International Conference on Cluster Computing (CLUSTER), 2017.

#pragma omp target teams distribute parallel for simd
collapse(2)
for (int jj = halo_depth; jj < y - halo_depth; ++jj) {

for (int kk = halo_depth; kk < x - halo_depth; ++kk) {
const int index = kk + jj * x;
p[index] = beta * p[index] + r[index];

}
}

Kokkos::parallel_for(
x * y, KOKKOS_LAMBDA(const int &index) {

const int kk = index % x;
const int jj = index / x;

if (kk >= halo_depth
&& kk < x - halo_depth
&& jj >= halo_depth && jj < y - halo_depth) {
p(index) = beta * p(index) + r(index);

}
});

[(i,j) in Domain.expand(-halo_depth)] p[i,j] = beta * p[i,j] + r[i,j];

https://github.com/milthorpe/TeaLeaf
https://doi.org/10.1109/CLUSTER.2017.105

1515 Milthorpe: Performance Portability of the Chapel Language on Heterogeneous Architectures

TeaLeaf - Reductions

• Many sum reductions to compute global deltas or error metrics

– In Chapel 2.0, these must be computed in global memory

Kokkos::parallel_reduce(
x * y,
KOKKOS_LAMBDA(const int &index, double &rrn_temp) {

const int kk = index % x;
const int jj = index / x;
if (kk >= halo_depth
&& kk < x - halo_depth
&& jj >= halo_depth
&& jj < y - halo_depth) {
u(index) += alpha * p(index);
r(index) -= alpha * w(index);
rrn_temp += r(index) * r(index);

}
},
*rrn);

var temp: [reduced_local_domain] real = noinit;
…
forall oneDIdx in reduced_OneD {

const ij = reduced_local_domain.orderToIndex(oneDIdx);
u[ij] += alpha * p[ij];
r[ij] -= alpha * w[ij];
temp[ij] = r[ij] ** 2;

}
rrn = gpuSumReduce(temp);

var rrn: real;
forall ij in reduced_local_domain

with (+ reduce rrn) {
u[ij] += alpha * p[ij];
r[ij] -= alpha * w[ij];
rrn += r[ij] ** 2;

}

Chapel 2.x

Chapel 2.0

1616 Milthorpe: Performance Portability of the Chapel Language on Heterogeneous Architectures

TeaLeaf – Chapel Multi-Dimensional Indexing

• Using 2D indices improved readability of Chapel code
and performed well on CPU platforms

• However, using 2D domains reduced GPU performance due to under-
utilization of available GPU cores in Chapel 2.0

– first dimension is assigned to GPU threads

– remaining dimensions implemented as loops inside GPU kernel

• We replaced multi-dimensional loops with 1D loop over linearized space
to allow full utilization of GPU cores

const Domain = {0..<y, 0..<x};
forall ij in Domain {

u[ij] = energy[ij] * density[ij];
}

const Domain = {0..<y, 0..<x};
const OneD = {0..<y*x};
foreach oneDIdx in OneD {

const ij = local_domain.orderToIndex(oneDIdx);
u[ij] = energy[ij] * density[ij];

}

1717 Milthorpe: Performance Portability of the Chapel Language on Heterogeneous Architectures

TeaLeaf Performance Portability

Platforms OpenMP Kokkos CUDA HIP Chapel Chapel 2D

All platforms 69.8% 37.3% 0 0 31.5% 5.7%

Supported CPUs 85.8% 25.3% 0 0 93.7% 94.0%

Supported GPUs 57.3% 83.5% 100.0% 56.9% 17.8% 2.7%

Application

efficiency
Runtime (s)

tea_bm_5.in – 4000×4000 CG solve, 10 iters

1818 Milthorpe: Performance Portability of the Chapel Language on Heterogeneous Architectures

Conclusions

• Pennycook, Sewall and Lee’s metric remains a useful lens for
evaluating portable programming models and identifying areas of
strength and weakness

• Performance portability of OpenMP and Kokkos continues to improve

• Chapel is a new option for performance-portable parallel programming

– concise code

– (mostly) good performance across a wide range of platforms

– easier path to multi-device, multi-node distribution

• Some issues remain with Chapel GPU code generation

– fixing these will avoid performance pitfalls for users

1919 Milthorpe: Performance Portability of the Chapel Language on Heterogeneous Architectures

Acknowledgments

• This research used resources of the Experimental Computing Laboratory
(ExCL) and the Oak Ridge Leadership Computing Facility at Oak Ridge
National Laboratory, which are supported by the Office of Science of the
U.S. Department of Energy under Contract No. DE-AC05-00OR22725,
and resources of the National Computational Infrastructure (NCI), which is
supported by the Australian Government.

• This research was funded, in part, by the Brisbane Advanced
Programming Systems Project.

• Thanks to Engin Kayraklioglu, Brad Chamberlain, Michael Ferguson, and
Jade Abraham from the HPE Chapel team for helpful discussions during
our development of the mini-applications in Chapel.

	Default Section
	Slide 1: Performance Portability of the Chapel Language on Heterogeneous Architectures
	Slide 2: Chapel Programming Language
	Slide 3: Performance Portability
	Slide 4: Mini-apps
	Slide 5: BabelStream
	Slide 6: BabelStream Triad Implementations
	Slide 7: BabelStream Triad Implementations (2)
	Slide 8: BabelStream Triad Implementations (3)
	Slide 9: Experimental Platforms
	Slide 10: Experimental Configuration
	Slide 11: BabelStream Performance Portability
	Slide 12: miniBUDE
	Slide 13: miniBUDE Performance Portability
	Slide 14: TeaLeaf
	Slide 15: TeaLeaf - Reductions
	Slide 16: TeaLeaf – Chapel Multi-Dimensional Indexing
	Slide 17: TeaLeaf Performance Portability
	Slide 18: Conclusions
	Slide 19: Acknowledgments

