
Brandon Neth, HPE; Scott Bachman, [C]Worthy;
Michelle Mills Strout, HPE

MARBLChapel: Fortran-Chapel
Interoperability in an Ocean
Simulation

CUG 2025 | © HPE

By Diagram adapted from U.S. DOE, Biological and Environmental Research Information System.

- http://earthobservatory.nasa.gov/Features/CarbonCycle/, Public Domain, https://commons.wikimedia.org/w/index.php?curid=19434238

Carbon cycle processes, in gigatons per year

2

Big Picture: Modeling Climate Interventions like Carbon Dioxide Removal (CDR)

• Climate crisis continues to have widespread effects

• Scientists use computer modeling to study the
potential impacts of different interventions such as
ocean-based carbon dioxide removal (CDR)

• Need for scalable and high-resolution simulations of
• Physical movement of tracers (CO2, NO3, PO4, NaCl,

Fe, etc.) in the ocean
• Biogeochemical (BGC) interactions between those

tracers

• The problem: resolution mis-match between the
physical simulation that determines tracer movement
and interactions

• Execution time of a fully coupled BGC+physics model is
an order of magnitude greater than the BGC
interactions in isolation and the physical model offline

CUG 2025 | © HPE

cworthy.org

3

[C]Worthy Experimenting with Approaches to Manage Resolution Mismatch

• [C]Worthy is a nonprofit startup
working to develop modeling and
data to support ocean-based
carbon dioxide removal (CDR)

• Experimenting with offline ocean
movement and coarser granularity
input to compute biogeochemical
(BGC) interactions of tracers

• Prototyping distributed parallel
CDR simulations using the Chapel
programming language

4

The Chapel Parallel Programming Language

"We ask students at the master's degree to do stuff that would take 2 years and they do it
in 3 months." Eric Laurendeau, Professor of Mechanical Engineering Easy to Use

HPE Cray EX, HPE Apollo, Cray XC, *nix systems, Mac, NVIDIA and AMD GPUsPortable

Apache 2.0 Licensed, hosted on GitHub & accepted into HPSF
Learn more and engage with the Chapel community at chapel-lang.org

Open source

Achieved 8,500 GiB/s when sorting 256 TiB in 31 seconds on 8192 HPE Cray EX Nodes

Fast & Scalable

Chapel is a language designed for productive parallel programming,
particularly on large-scale systems. Chapel is ...

GPU-Ready Real-world applications were ported on GPUs with few changes, and run on
leadership-class systems such as Frontier and Perlmutter

… in just ~100 lines of Chapel

CUG 2025 | © HPE

http://chapel-lang.org/

5

Sort Performance of 64 Billion Elements on 64 HPE Cray EX nodes

Bette
r

Chapel version is
significantly shorter
& faster

See https://github.com/mppf/distributed-lsb CUG 2025 | © HPE

https://github.com/mppf/distributed-lsb

• Analyzing images for coral reef diversity
• Important for prioritizing interventions

• Algorithm implemented productively
• Add up weighted values of all points in a neighborhood
• Developed by Scott Bachman, [C]Worthy tech lead
• Scott …

– started learning Chapel in Sept 2022,
– started Coral Reef app in Dec 2022, and
– had collaborators presenting results in Feb 2023

• In July 2023, changed ~5 lines changed to run on GPU

• Performance
• Fewer than 300 lines of Chapel code scales out to 100s of

processors on Cheyenne (NCAR), also runs on Frontier
• Full maps calculated in seconds, rather than days

– 10,000 times faster than the MATLAB version

6

Scott’s Motivation for Using Chapel

See Scott’s CHIUW 2023 talk at https://youtu.be/lJhh9KLL2X0 CUG 2025 | © HPE

https://youtu.be/lJhh9KLL2X0

7

• MARBL, the Marine Biogeochemistry Library, is
a trusted Fortran library that simulates ocean
biogeochemical processes, the interactions
between the tracers (CO2, NO3, etc.)

• Used in several state-of-the-art global
circulation models including: MOM6, MPAS,
POP, and ROMS
• Decomposes ocean into vertical columns with

variable-height cells, ‘marbl_interface_class’
• Each model like ROMS implements a Fortran

driver/wrapper to exchange data with MARBL

• Nothing parallelized in MARBL, but each
MARBL column instance treated independently

Scott also wanted to use Marine Biogeochemistry Library (MARBL)

Surface

Depth

Ocean volume

MARBL Column Instance

(1) Reformat input data

(2) MARBL
compute

interactions(3) Incorporate output
into movement simulation

CUG 2025 | © HPE

8

• Opportunity and Challenge
• The ocean movement and parallelism can be

rapidly prototyped in Chapel
• The tracer interactions are in the MARBL

Fortran library, and it doesn’t make sense to
rewrite them Chapel

• Solution
• Correct parallel usage of MARBL is possible

using C pointers for interoperability
• Fortran wrapper is necessary for data exchange

AND because MARBL column instances involve
allocatable Fortran arrays

• Preliminary results show excellent weak and
strong scaling on an HPE Cray EX, Perlmutter

Calling MARBL Fortran Library from a Chapel Program

MARBLWrapper

MARBL Globals

MARBLWrapper

MARBL Globals

MARBLWrapper

MARBL Globals

MARBLWrapper

MARBL Globals

> ./chplExec –-numLocales=4

CUG 2025 | © HPE

Outline for the rest of the talk

Conclusion: Chapel Can Provide Parallelism to Trusted Fortran Libraries

Next Steps

Preliminary Scaling Results on Perlmutter

Using Chapel Distributed Arrays for Distributed and Shared Memory Parallelism

Interoperability: Chapel and Fortran Working Together

9CUG 2025 | © HPE

10

• Chapel program calculates the tracer movement
• This is where Scott is experimenting with an

Offline Tracer Transport approach to avoid the
order of magnitude cost of full simulation coupling

• Each tracer can be transported independently

• MARBL simulates biogeochemical interactions

• As with other Global Circulation Models that use
MARBL, there will be a Fortran wrapper for the
data exchange between Chapel and MARBL

Interoperability Overview: Chapel and Fortran Working Together

Surface

Depth

Ocean volume in Chapel

MARBL Column Instance

(1) Reformat input data

(2) MARBL
compute

interactions(3) Incorporate output
into movement simulation

CUG 2025 | © HPE

• To enable shared memory parallelism, there
needs to be a unique MARBL instance per thread

• The pointers to those instances are maintained
in Chapel, but the MARBL instances need to be
instantiated in Fortran

Need One MARBL Instance Per Thread/Task
Shared Memory Parallelism

11

Pointers to MARBL Instances

Surface

Depth

CUG 2025 | © HPE

12

• Parallel Chapel code calls
Fortran wrapper functions

• Wrapper function
arguments are C pointers to
portions of Chapel data and
to Fortran MARBL instances

• Wrapper functions …
0. Initialize MARBL instances
1. Reformat data into MARBL
2. Call MARBL computations
3. Incorporate results back
into Chapel

• Sidenote: MARBL has global
variables accessible in
Fortran Wrapper and
MARBL

Interoperability with C Pointers: Chapel and Fortran working together

Fortran MARBL Instances

Fortran MARBL
Wrapper

Wrapper
function

arguments

Fortran/MARBL Global Variables

Chapel Program

CUG 2025 | © HPE

13

• Parallel Chapel code calls
Fortran wrapper functions

• Wrapper function
arguments are C pointers to
portions of Chapel data and
to Fortran MARBL instances

• Wrapper functions …
0. Initialize MARBL instances
1. Reformat data into MARBL
2. Call MARBL computations
3. Incorporate results back
into Chapel

• Sidenote: MARBL has global
variables accessible in
Fortran Wrapper and
MARBL

Interoperability with C Pointers: Chapel and Fortran working together

Fortran MARBL Instances

Fortran MARBL
Wrapper

Wrapper
function

arguments

Fortran/MARBL Global Variables

Chapel Program

CUG 2025 | © HPE

14

• Parallel Chapel code calls
Fortran wrapper functions

• Wrapper function
arguments are C pointers to
portions of Chapel data and
to Fortran MARBL instances

• Wrapper functions …
0. Initialize MARBL instances
1. Reformat data into MARBL
2. Call MARBL computations
3. Incorporate results back
into Chapel

• Sidenote: MARBL has global
variables accessible in
Fortran Wrapper and
MARBL

Interoperability with C Pointers: Chapel and Fortran working together

Fortran MARBL Instances

Fortran MARBL
Wrapper

Wrapper
function

arguments

Fortran/MARBL Global Variables

Chapel Program

CUG 2025 | © HPE

Need One MARBL Instance Per Thread/Task AND Per Node
Distributed and Shared Memory Parallelism

15

Threads

Nodes

CUG 2025 | © HPE

16

In Chapel, Declare the 2D Array of Handles as Distributed

Node/
Locale 1

. . .

Node/
Locale 4

// Chapel code that declares a block distribution over
// the first dimension of the 2D array of MARBL instance handles.
use BlockDist;

const Dom = {1..Locales.size,1..nThreads};

const myTargetLocales =
 reshape(Locales,{1..Locales.size,1..1});

const DistRows =
 blockDist.createDomain(Dom, myTargetLocales);

// Declare array with distributed domain.
var HandleArray: [DistRows] MarbleHandle;

CUG 2025 | © HPE

17

Distributed Parallel Chapel Program Using MARBL Fortran Library

MARBLWrapper

MARBL Globals

MARBLWrapper

MARBL Globals

MARBLWrapper

MARBL Globals

MARBLWrapper

MARBL Globals

• The Chapel program distributes the ocean
data array and the array of MARBL pointers

• As shown, the executable will launch a Chapel
locale (i.e., rank) per node for 4 nodes

• ‘forall’ loops over distributed arrays results in
distributed and shared memory parallelism

> ./chplExec –-numLocales=4

forall (loc,task) in DistRows {

 // computation for each parallel task on each locale

}

CUG 2025 | © HPE

As expected, due to lack of interactions between columns
Evaluation: Near Perfect Distributed Parallel Scaling on Perlmutter

18

Slight bump from 8 to 16
nodes in weak scaling

CUG 2025 | © HPE

19

• Incorporating the Fortran wrapper into the Offline Tracer
Transport code Scott is writing

• Investigate limits to grid coarsening: how far can [C]Worthy
take the Offline Tracer Transport approach without losing
accuracy?

• Performance tune data exchanges between Chapel and
Fortran data structures

Next Steps for Carbon Dioxide Removal Simulation

Credit: https://www.cworthy.org/media

CUG 2025 | © HPE

• Chapel provides …
• Rapid prototyping of alternative approaches for

tracer movement in the ocean
• Distributed and shared memory parallelism

• Fortran Library MARBL provides …
• Biogeochemical interaction simulation for tracers
• Trust from use in other circulation models

• Scaling and Performance
• Scaling well on Perlmutter
• Data exchange tuning is needed but possible

• Blog Post and Contact Info
• See https://chapel-lang.org/blog/posts/fortran-

marbl1/ for more details on Chapel/Fortran interop
• brandon.neth@hpe.com, scott@cworthy.org,

michelle.strout@hpe.com

20

Conclusion: Chapel Can Provide Parallelism to Trusted Fortran Libraries

MARBLWrapper

MARBL Globals

MARBLWrapper

MARBL Globals

MARBLWrapper

MARBL Globals

MARBLWrapper

MARBL Globals

> ./chplExec –-numLocales=4

CUG 2025 | © HPE

https://chapel-lang.org/blog/posts/fortran-marbl1/
https://chapel-lang.org/blog/posts/fortran-marbl1/
mailto:brandon.neth@hpe.com
mailto:scott@cworthy.org
mailto:michelle.strout@hpe.com

© 2025 Hewlett Packard Enterprise Development LP

michelle.strout@hpe.com

Thank you

CUG 2025 | © HPE

Backup Slides

22

• Step 1: Read input data, including pre-calculated
velocity data

• Step 2: Initialize tracers (concentrations of different
compounds) and diffusivity (how quickly different
compounds diffuse through the ocean)

• Step 3: Begin stepping
• 3.1: Update geometry based on flow
• 3.2: Advective fluxes: Changes in concentration due to

fluid flow (pre-calculated velocities)
• 3.3: Diffusive fluxes: Changes in concentration due to

diffusion
• 3.4: Update tracers: BGC calculations using MARBL
• 3.5: Vertical diffusion (implicit timestep)
• 3.6: Polynomial interpolation for regridding

Offline Tracer Transport Implemented in Chapel That Calls MARBL Library

23
Courtesy of Scott Bachman, [C]Worthy

24

• Fortran does not support interoperability for derived data types (user-defined data structures) that use
`allocatable` arrays, which are present in MARBL’s key `marbl_instance_class` data structure

• Thus, cannot pass `marbl_instance_class` objects directly between Fortran and Chapel code
• However, Fortran does support interoperability for its `c_ptr` type

• Approach: Use a `c_ptr` to the `marbl_instance_class` as a handle between the Chapel and Fortran side
of the interoperability layer
• Chapel-side user application creates a `MarblInteropType` object, which contains a `void*` C pointer field
• Chapel-side procedures accept `MarblInteropType` as an argument
• Fortran-side implementation converts the opaque `c_ptr` field to a usable `marbl_instance_class` object, then

calls the relevant MARBL subroutine

• Bonus: The approach of having code on both sides of the language barrier side-steps the complexity of
setting up the MARBL data structure in the Chapel application
• Can pass Chapel arrays to interop procedures that populate the `marbl_instance_class` fields

Challenge : Limited Fortran Interoperability Support

25

Chapel/Fortran Interoperability: Stepping through an example

User Application
in Chapel

Chapel `MarblInstance`
Record Procedures

MARBL Fortran
Library Subroutines

Low-level interop procedures,
Chapel signatures

var instance: MarblInteropType;

/* initialize geometry, boundary conditions */

// Runs interior tendency computation and updates
// the tracer array
instance.interiorTendencyCompute(myTracerArray, dt);

Low-level interop procedures,
Fortran implementations

uses implemented
with

passes handle
and input data

Unpacks handle and calls

26

Chapel MarblInstance data structure calls into Fortran wrapper for MARBL

User Application
in Chapel

Chapel `MarblInstance`
Record Procedures

MARBL Fortran
Library Subroutines

Low-level interop procedures,
Chapel signatures

proc interiorTendencyCompute(ref tracerArray, dt) {
compute_interior_tendencies(this);

 var nt, nz: int;
 (nt,nz) = tracerArray.shape;
 update_interior_tendencies(this,
 nt: c_int, nz: c_int, c_ptrTo(tracerArray),
 dt: c_double);
}

Low-level interop procedures,
Fortran implementations

uses implemented
with

passes handle
and input data

Unpacks handle and calls

27

Chapel Extern Signature indicates a c_ptr to Fortran Wrapper

User Application
in Chapel

Chapel `MarblInstance`
Record Procedures

MARBL Fortran
Library Subroutines

Low-level interop procedures,
Chapel signatures

extern proc compute_interior_tendencies(
 const ref marblWrapper: marblInteropType);

Low-level interop procedures,
Fortran implementations

uses implemented
with

passes handle
and input data

Unpacks handle and calls

28

FORTRAN Wrapper code pulls C pointer to marbl_instance out of Chapel record

User Application
in Chapel

Chapel `MarblInstance`
Record Procedures

MARBL Fortran
Library Subroutines

Low-level interop procedures,
Chapel signatures

subroutine compute_interior_tendencies(interop_obj)
 bind(C,name='compute_interior_tendencies’)
 ! Parameters
 type(marblInteropType), intent(inout) :: interop_obj
 ! Local Variables
 type(marbl_interface_class), pointer :: marbl_instance

 ! Get the pointer to the marbl instance

call c_f_pointer(interop_obj%marbl_obj, marbl_instance)

 . . .
 call marbl_instance%interior_tendency_compute()
end subroutine compute_interior_tendencies

Low-level interop procedures,
Fortran implementations

uses implemented
with

passes `c_ptr` handle
and input data

Unpacks handle and calls

29

FORTRAN Wrapper then calls compute method on Fortran marbl_instance

User Application
in Chapel

Chapel `MarblInstance`
Record Procedures

MARBL Fortran
Library Subroutines

Low-level interop procedures,
Chapel signatures

subroutine compute_interior_tendencies(interop_obj)
 bind(C,name='compute_interior_tendencies’)
 ! Parameters
 type(marblInteropType), intent(inout) :: interop_obj
 ! Local Variables
 type(marbl_interface_class), pointer :: marbl_instance

 ! Get the pointer to the marbl instance
 call c_f_pointer(interop_obj%marbl_obj, marbl_instance)

 . . .
call marbl_instance%interior_tendency_compute()

end subroutine compute_interior_tendencies

Low-level interop procedures,
Fortran implementations

uses implemented
with

passes `c_ptr` handle
and input data

Unpacks handle and calls

