Chapel:
A Modern Language for Modern Architectures (and
Modern Programmers)

Sung-Eun Choi, Chapel Team
LLNL Co-Design Summer School
August 21, 2014

=

o

COMPUTE | STORE | ANALYZE

Safe Harbor Statement .

~

Kl'his presentation may contain forward-looking statements that are
based on our current expectations. Forward looking statements
may include statements about our financial guidance and expected
operating results, our opportunities and future potential, our product
development and new product introduction plans, our ability to
expand and penetrate our addressable markets and other
statements that are not historical facts. These statements are only
predictions and actual results may materially vary from those
projected. Please refer to Cray's documents filed with the SEC from
time to time concerning factors that could affect the Company and

these forward-looking statements.
. . Y,

Copyright 2014 Cray Inc.

Quick Survey

e Major? CS or an “actual” science?
e Have you heard of Chapel?
e Have you used Chapel?

e Day-to-day programming language of choice?

@

Modern Processor Architectures Q008

Intel MIC AMD APU

Dragonfly Interconnect (optical fiber)
2 UART, 2 USB DDR3 Controller

.o foee|
JTAG, I’C, SPI
High-Radix Router Module (RM) b
[: 36.Cores

PCle 2.0 - 8 Lanes

3

e 12,
= PCle 2.0 -4 Lanes

Smart NIC Hardware

PCle 2.0 - 4 Lanes

Flexible I/O DDR3 Controller

Echelon System

NVIDIA Echelon Tilera Tile-Gx

nttp://download.intel.con = aes/Aubre NWW.ZANEe oll.no -on-iptels-ivy-bridge-3040

s oA e g prepenledleng Mng Rl Ak B e S 70SB012-01.0d
Copyright 2014 Cray Inc. @

©)

Processor designs...

...are increasingly locality-sensitive

...potentially have multiple processor/memory types

/i\ COMPUTE | STORE | ANALYZE

&
©

Copyright 2014 Cray Inc.

®
!
cRAY |

Data Locality Control in Current HPC Models N

e \
\

Q: Why are current HPC models lacking w.r.t. data locality?

A: Because they...

...lock key data locality policies into the language

e €.g., array layouts, parallel scheduling
...lack support for users to create new policy abstractions
...expose too much about their target architectures

In Chapel, we’re striving to improve upon this status quo

‘How can we define a language that supports high level abstractions
and enables users to plug in their own implementations?”

/i\ COMPUTE | STORE | ANALYZE

Copyright 2014 Cray Inc.

&
©

Outline

v

e Chapel Background and Themes
e Three Features for Tackling Locality

e Summary, Project Status and Next Steps

@

What is Chapel? .

e An emerging parallel programming language

e Design and development led by Cray Inc.
e in collaboration with academia, labs, industry; domestically & internationally

e A work-in-progress

e Goal: Improve productivity of parallel programming

/i\ COMPUTE | STORE | ANALYZE

1t

Copyright 2014 Cray Inc.

What does “Productivity” mean to you? .

Recent Graduate:
“something similar to what | used in school: Python, Matlab, Java, ...”

Seasoned HPC Programmer:
“that sugary stuff that | can’t use because | want full control to ensure
performance”

Computational Scientist:
“something that lets me express my parallel computations without having
to wrestle with architecture-specific details”

Chapel Team:
“something that lets the computational scientist express what they want,
without taking away the control the HPC programmer wants,
implemented in a language as attractive as recent graduates want.”

/i\ COMPUTE | STORE | ANALYZE

1t

Copyright 2014 Cray Inc.

Chapel's Implementation

e Being developed as open source at GitHub
e Licensed as BSD software (future releases will be Apache)

e Portable design and implementation, targeting:
e multicore desktops and laptops
e commodity clusters and the cloud
e HPC systems from Cray and other vendors

e in-progress: manycore processors, CPU+accelerator hybrids, ...

2N COMPUTE | STORE | ANALYZE

=/ Copyright 2014 Cray Inc.

Motivating Themes

1) General Parallel Programming

2) Global-View Abstractions

3) Multiresolution Design

4) Control over Locality/Affinity

5) Reduce HPC < Mainstream Language Gap

1) General Parallel Programming

With a unified set of concepts...

...express any parallelism desired in a user’s program
e Styles: data-parallel, task-parallel, concurrency, nested, ...

e Levels: model, function, loop, statement, expression

...target any parallelism available in the hardware

e Types: machines, nodes, cores, instructions

Type of HW Parallelism Programming Model Unit of Parallelism

Inter-node

Intra-node/multicore
Instruction-level vectors/threads
GPU/accelerator

C

Chapel
Chapel
Chapel
Chapel

executable/task
iteration/task
iteration

SIMD function/task

O

2) Global-View Abstractions

In pictures: “Apply a 3-Point Stencil to a vector”

‘@ Global-View

(Y T |
+ T I)/2

Local-View

3) Multiresolution Design .o

Support multiple tiers of features \
e higher levels for programmability, productivity
e lower levels for greater degrees of control

Chapel language concepts

(Domain Maps)

Task Parallelism
Base Language
Locality Control

Target Machine

e build the higher-level concepts in terms of the lower
e permit the user to intermix layers arbitrarily

4) Control over Locality/Affinity

Consider:
e Scalable architectures package memory near processors
e Remote accesses take longer than local accesses

Therefore:
e Placement of data relative to tasks affects scalability
e Give programmers control of data and task placement

Note:

e Parallelism is an orthogonal concept to locality

/i\ COMPUTE | STORE | ANALYZE
=

=/ Copyright 2014 Cray Inc.

®
!
cRAY |

5) Reduce HPC — Mainstream Language Gap .o

e \
\

Consider: \
e Students graduate with training in Java, Matlab, Python, etc.
e Yet HPC programming is dominated by Fortran, C/C++, MPI

We'd like to narrow this gulf with Chapel:
e to leverage advances in modern language design
e to better utilize the skills of the entry-level workforce...

e ...while not alienating the traditional HPC programmer
e €.g., support object-oriented programming, but make it optional

/i\ COMPUTE | STORE | ANALYZE
=

=/ Copyright 2014 Cray Inc.

Outline

v
v

e Three Features for Tackling Locality

e Summary, Project Status and Next Steps

@

Chapel in 1 Slide! o

const D = {l..n} dmapped Cyclic(startIdx=1);
var A, B, C: [D] real;

forall “fayb.c) in zip(A,B,C) do
Chapel language concepts
|

= b + alpha * c; =
High-level features implemented...
* in Chapel Data Parallelism
* using lower-level features Task Parallelism
* by end-users

Base Language
Locality Control

Target Machine

var buffer$: [0,.auMElts] synC reads

cobegin
on Locales[1l] /o-producer (buffers);

on A[1i] do consumer (buffers$);

Chapel Compiler Architecture SRR

Chapel .
Your ‘ :
Feature A— CetEs
Implementations| ..
l
i
Chapel M Standard
S P Chapel-to-C Generated : Chapel
ouree Compiler) C Code & Lomplier Executable
Code & Linker
| - 1 1
Internal Modules Runtime Support
Standard (in Chapel) Library (in C)
Modules s
: > <
(in Chapel) I ® S c:%
Standard feature implementations
|
& 9

19
Copyright 2014 Cray Inc.

LULESH: a DOE Proxy Application . o

Goal: Solve one octant of the spherical Sedov problem (blast \
wave) using Lagrangian hydrodynamics for a single material

pictures courtesy of Rob Neely, Bert Still, Jeff Keasler, LLNL

LULESH in Chapel

LULESH in Chapel . o

1288 lines of source code
plus 266 lines of comments
487 blank lines

(the corresponding C+MPI+OpenMP version is nearly 4x bigger)

This can be found in Chapel v1.9 in examples/benchmarks/lulesh/*.chpl

LULESH in Chapel

It SpeCIfles i?:i:;i;;;ff
. data structure ch0|ces

I Iocal VS. dlstnbuted data
_sparse vs. dense materlals arrays

Data Parallelism in LULESH (Structured)

const Elems
Nodes

var determ:

= {0
= {0

[Elems]

forall k in Elems {

real;

..determ[k]..

. . felemsPerEdge, O..#elemsPerEdge};\\
. . fnodesPerEdge, 0..#nodesPerEdge};

}

O)

Elems

OO0000000O0
OO0000000O0
OO0000000O0
OO0000000O0
OO0000000O0
OO0000000O0
OO0000000O0
OO0000000O0

9]0]I0]0]0I0I0]0]0.
Nodes

)

i
CcC=RANY
!

\

\

Data Parallelism in LULESH (Unstructured) .
const Elems = {0..#numElems}, \\
Nodes = {0..#numNodes};

var determ: [Elems] real;
var elemToNode: [Elems] nodesPerElem*index (Nodes) ;

forall k in Flems { ..determ[k].. }

Elems

9]0]0]0]0I0]0]0]0]0]10]010I0]10]0]0]0I0]10]0]0I0]0]0I00
Nodes

Implementing Domains and Arrays

Q: How are domains and arrays implemented?
(distributed or local? distributed how? stored in memory how?)

const Elems = {0..#numElems},
Nodes = {0..#numNodes};

var determ: [Elems] real;

~N

A: Via Feature #1 (domain maps)...

Domain Maps: Concept . o

Domain maps are “recipes” that instruct the compiler how \
to map the global view of a computation...

...to the target locales’ memory and processors:

| |
! !
| |
! !
+ | + |
| |
! !
| |
[[

Locale 1

LULESH Data Structures (local)

Nodes

var determ:

const Elems = {O..#numElems},\\

{O..#numNodes};\

[Elems]

forall k in EFlems { ..

real;

}

Elems O Ud C dp SPE 10

O0O00O
Nodes

OO

-
i
CcCRAY |

LULESH Data Structures (distributed, block) .o

S \
\

const Elems = {0..#numElems} dmapped Block(..), \\ i
Nodes = {0..#numNodes} dmapped Block (..);

var determ: [Elems] real;

forall k in EFlems { .. }

Elems ! ' ' '

000000000000000000000000000

Nodes I l | I

-
i
CcCRAY |

LULESH Data Structures (distributed, cyclic) .o

S \
\

const Elems = {0..#numElems} dmapped Cyclic(m),\\ i
Nodes = {0..#numNodes} dmapped Cyclic(..);

var determ: [Elems] real;

forall k in EFlems { .. }

Elems

Q000 00000000000 000000000000
Nodes

Chapel’s Domain Map Philosophy N

1. Chapel provides a library of standard domain maps \
e to support common array implementations effortlessly

2. Expert users can write their own domain maps in Chapel
e to cope with any shortcomings in our standard library

Domain Maps

Task Parallelism

Base Language
Locality Control

3. Chapel’s standard domain maps are written using the

same end-user framework
e to ensure that the framework works and works well

Domain Maps Summary N

e Data locality requires mapping arrays to memory well \
e distributions between distinct memories
e /ayouts within a single memory

e Most languages define a single data layout & distribution
e where the distribution is often the degenerate “everything’s local”

e Domain maps...
...move such policies into Chapel code
...exposing them to the end-user through high-level declarations

const Elems = {0..#numElems} dmapped Block(..)

/i\ COMPUTE | STORE | ANALYZE

&
®

Copyright 2014 Cray Inc.

Implementing Data Parallel Loops .o

Q: How are parallel loops implemented?

(how many tasks? executing where? how are iterations divided up?) |

forall k in Elems { .. }

Q2: What about zippered data parallel operations?

(how to reconcile potentially conflicting parallel implementations?)

forall (k,d) in zip(Elems, determ) { .. }
X += xd * dt;

A: Via Feature #2 (leader-follower iterators)...

\
. mgm CRAY |
Leader-Follower Iterators: Definition Q08

e \
\

e Chapel defines all forall loops in terms of leader-

follower iterators: \
e leader iterators: create parallelism, assign iterations to tasks
o follower iterators: serially execute work generated by leader

e Given...
forall (a,b,c) in zip(A,B,C) do 1

a = b + alpha * c;

...A is defined to be the leader

...A, B, and C are all defined to be followers

e Domain maps support default leader-follower iterators
e specify parallel traversal of a domain’s indices/array’s elements
e typically written to leverage affinity

Leader-Follower Iterators: Rewriting .

Conceptually, the Chapel compiler translates:

A = B + alpha * C

coforall loc in targetlocales do on loc ?\
coforall tid in here.numCores {
into: for (a,b,c) in zip(A,B,C) {
a = b + alpha * c;
}
}

[[[
I I I
I i I i I i I
= +
o 1 | 1 | 1 | 1
I I I
1 1 1

@

\
r cRAY
Writing Leaders and Followers o

e \

Leader iterators are defined using task/locality features: \

\
iter BlockArr.lead () { \\
coforall loc in targetLocales do on loc do
coforall tid in here.numCores do
yield computeMyChunk (loc.id, tid);

Domain Maps
11 I: 11 I: 11 I: 11 1 C p D

Data Parallelism
Task Parallelism

Base Language
Locality Control

Follower iterators simply use serial features: Target Machine
\
)

iter BlockArr.follow (work
for i i1in work do
yield accessElement (1) ;

Leader-Follower Summary N

e Data locality requires parallel loops to execute intelligently
e appropriate number and placement of tasks
e good data-task affinity

e Most languages define fixed parallel loop styles
e where “no parallel loops” is a common choice

e Leader-follower iterators...
...move such policies into Chapel code
...expose them to the end-user through data parallel abstractions

forall k in Elems { .. }
X += xd * dt;

/i\ COMPUTE | STORE | ANALYZE

&
®

Copyright 2014 Cray Inc.

A: Feature #3 (hierarchical locales)
e extends multiresolution philosophy to architectural modeling

/i\ COMPUTE | STORE | ANALYZE
=

=/ Copyright 2014 Cray Inc.

' v

\] \
=AY ,\'
Q \

e \
\

Traditional Locales

Concept: \
e Traditionally, Chapel has supported a 1D array of locales

e Supports inter-node locality well, but not intra-node

/é\ COMPUTE | STORE | ANALYZE
=

= Copyright 2014 Cray Inc.

Hierarchical Locales .

Concept:
e Support locales within locales to describe architectural
sub-structures within a node (e.g., memories, processors)

sub-locale sub-locale sub-locale sub-locale
A A A A
C||C||D||E C||C||D||E C||IC||D||E C||IC||D||E
sub-locale B sub-locale B sub-locale B sub-locale B
locale locale locale locale

e As with top-level locales, on-clauses and domain maps
map tasks and variables to sub-locales
e Locale models are defined using Chapel code

Defining A Locale Model

1) Define the processor’s abstract block structure

2) Define how to run a task on any sublocale

sub-locale

A

C

C||D

E

sub-locale B

locale

3) Define how to allocate/access memory on any sublocale

NUMA node Example

class locale: AbstractLocaleModel {
const numNumaDomains = chpl task getNumSublocales();
const sublocales: [0..#numNumaDomains] numaDomain = ..;
..memory interface..

..tasking interface..

class numaDomain: AbstractlLocaleModel ({

const numCores = ..;

..memory interface..

..tasking interface..

Complete, but not optimized

/é\ COMPUTE | STORE | ANALYZE
=

=/ Copyright 2014 Cray Inc.

Hybrid Processor Example

class locale: AbstractLocaleModel {

const numNumaDomains = .., numGPUs = ..;

const cpus: [0..#numCPUs] numaDomain = ..;

const gpus: [0O..#numGPUs] gpulLoc = ..;
..memory interface..

..tasking interface..

class gpuloc: AbstractLocaleModel ({
..sublocales for different
memory types, thread blocks..?

..memory, tasking interfaces..

In progress

Cray XK6

NVIDIA NVIDIA

OCESSOR NETLINK BLOCK
48-Port YARC-2 ROUTER

Hierarchical Locale Summary .o

e Data locality requires flexibility w.r.t. modern architectures .
e due to uncertainty in processor design
e to support portability between approaches

e Most programming models assume certain features in the

target architecture
e this is why MPI/OpenMP/UPC/CUDAV/... have restricted applicability

e Hierarchical Locales
...move the definition of architectural models to Chapel code
...are exposed to the end-user via Chapel’s traditional locality features

on subloc do

coforall tid in here.numCores do

/i\ COMPUTE | STORE | ANALYZE

Copyright 2014 Cray Inc.

i
®

Outline

v Motivation
v’ Chapel Background and Themes
v Three Features for Tackling Locality

e Summary, Project Status and Next Steps

/é\ COMPUTE | STORE | ANALYZE
=

= Copyright 2014 Cray Inc.

Back to the title .

Modern Language
e Chapel provides high-level abstractions and modern features that
enable productive programming

Modern Architectures
e Chapel’s Locale Models framework enables users to directly target
modern architectures in Chapel code (without changing the code for
their algorithms)

Modern Programmers
e (We think) people think Chapel is cool

/i\ COMPUTE | STORE | ANALYZE
=

=/ Copyright 2014 Cray Inc.

Summary Q00

Chapel’s multiresolution philosophy allows users to write... .
...custom array implementations via domain maps
...custom parallel iterators via leader-follower iterators
...custom architectural models via hierarchical locales

The result is a language that decouples crucial policies for
managing data locality out of the language’s definition
and into an expert programmer’s hand...

...while making them available to end-users through high-
level abstractions

)

k(\
®

\
. . cCcRAaY ||
Implementation Status -- Version 1.9.0 (apr2014) OO0

Overall Status: |
o User-facing Features: generally in good shape
e some require additional attention (e.g., strings, OOP)

e Multiresolution Features: in use today
e their interfaces are likely to continue evolving over time

e Error Messages: not always as helpful as one would like
e correct code works well, incorrect code can be puzzling

e Performance: hit-or-miss depending on the idioms used
e Chapel designed to ultimately support competitive performance
e effort to-date has focused primarily on correctness

This is a good time to:
e Try out the language and compiler
e Use Chapel for non-performance-critical projects
e Give us feedback to improve Chapel

/é\ COMPUTE | STORE | ANALYZE
=

=/ Copyright 2014 Cray Inc.

Chapel: the next five years

e Harden prototype to production-grade
e add/improve lacking features
e optimize performance

e Target more complex/modern compute node types
e e.g., Intel MIC, CPU+GPU, AMD APU, ...

e Continue to grow the user and developer communities
¢ including nontraditional circles: desktop parallelism, “big data”
e transition Chapel from Cray-managed to community-governed

/i\ COMPUTE | STORE | ANALYZE
=

=/ Copyright 2014 Cray Inc.

Chapel...

..is a collaborative effort — join us!

$ LABORATORY FOR
= = AY TELECOMMUNICATIONS
“ SCIENCES

| B Lawrence Livermore

Sandia National Laboratories National Laboratory

S

lﬁbl 6}I ’ OAK %
Argonne RIDGE Pefiegirthueest.,
BERKELEY LAB NATIONAL LABORATORY National Laboratory Proudly Operated by Ballelle Since 1965

Lawrence Berkeley
National Laboratory

4 'ma =
— N . \) ‘ -
% R j: ,i UNIVERSIDAD UNIVERSITY OF

C ’ THE UNIVERSITY OF TOKYO DE MALAGA MARYLAND

For More Information: Online Resources Q008

Chapel project page: http://chapel.cray.com \
e overview, papers, presentations, language spec, ...

Chapel GitHub page: https:qgithub.com/chapel-lang
e source code repository

Chapel SourceForge page: https://sourceforge.net/projects/chapel/
e download 1.9.0 release, join community mailing lists

Mailing Aliases:
o chapel_info@cray.com: contact the team at Cray
» chapel-announce@lists.sourceforge.net: announcement list
o chapel-users@lists.sourceforge.net: user-oriented discussion list
» chapel-developers@lists.sourceforge.net: developer discussion
o chapel-education@lists.sourceforge.net: educator discussion

hapel-bugs @l : olic bug f

/i\ COMPUTE | STORE | ANALYZE
=/

Copyright 2014 Cray Inc. @

\
- . (el — PPN
Legal Disclaimer . o
Information in this document is provided in connection with Cray Inc. products. No license, express or “ \ \

implied, to any intellectual property rights is granted by this document.
Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to
change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may
cause the product to deviate from published specifications. Current characterized errata are available on
request.

Cray uses codenames internally to identify products that are in development and not yet publically
announced for release. Customers and other third parties are not authorized by Cray Inc. to use
codenames in advertising, promotion or marketing and any use of Cray Inc. internal codenames is at the
sole risk of the user.

Performance tests and ratings are measured using specific systems and/or components and reflect the
approximate performance of Cray Inc. products as measured by those tests. Any difference in system
hardware or software design or configuration may affect actual performance.

The following are trademarks of Cray Inc. and are registered in the United States and other

countries: CRAY and design, SONEXION, URIKA, and YARCDATA. The following are trademarks of Cray
Inc.: ACE, APPRENTICEZ2, CHAPEL, CLUSTER CONNECT, CRAYPAT, CRAYPORIT, ECOPHLEX,
LIBSCI, NODEKARE, THREADSTORM. The following system family marks, and associated model
number marks, are trademarks of Cray Inc.. CS, CX, XC, XE, XK, XMT, and XT. The registered trademark
LINUX is used pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the
mark on a worldwide basis. Other trademarks used in this document are the property of their respective
owners.

Copyright 2014 Cray Inc.
7=

= ®

CRANY

THE SUPERCOMPUTER COMPANY

