
Compiler Optimization for Irregular
Memory Access Patterns in PGAS Programs

Thomas B. Rolinger (UMD/LPS)
Christopher D. Krieger (LPS)

Alan Sussman (UMD)

Contact: tbrolin@cs.umd.edu

LCPC 2022

mailto:tbrolin@cs.umd.edu

Motivation

• Why target irregular memory accesses?
• Why target Partitioned Global Address Space (PGAS) programs?
• Why are compiler optimizations needed?

2

3

Motivation: Irregular memory accesses

Irregular memory access patterns are prevalent in:
• graph analytics
• sparse linear algebra
• PDE solvers
• some machine learning applications

In these applications, performance is often memory-bound
• irregular memory accesses are performance bottlenecks

4

Motivation: Irregular memory accesses

Irregular memory access patterns are prevalent in:
• graph analytics
• sparse linear algebra
• PDE solvers
• some machine learning applications

In these applications, performance is often memory-bound
• irregular memory accesses are performance bottlenecks

data is large, sparse and unstructured

5

Motivation: Irregular memory accesses

Irregular memory access patterns are prevalent in:
• graph analytics
• sparse linear algebra
• PDE solvers
• some machine learning applications

In these applications, performance is often memory-bound
• irregular memory accesses are performance bottlenecks

• Presents a view of a distributed memory
system that resembles a single shared
address space
• Each node “owns” a partition of the address

space, so there is still the concept of local vs
remote memory
• Provides one-sided communication

(puts/gets), allowing for languages/libraries
that implement the PGAS model to hide data
distribution/communication details

6

Partitioned Global Address Space (PGAS)

7

Sparse Matrix Vector Multiply (SpMV)
OpenMP shared-memory

8

irregular memory access

Sparse Matrix Vector Multiply (SpMV)
OpenMP shared-memory

9

Sparse Matrix Vector Multiply (SpMV)
OpenMP shared-memory

Sparse Matrix Vector Multiply (SpMV)
MPI+OpenMP distributed- and shared-memory

10

Sparse Matrix Vector Multiply (SpMV)
OpenMP shared-memory

Sparse Matrix Vector Multiply (SpMV)
MPI+OpenMP distributed- and shared-memory

MPI_Allgatherv à full replication of x
on every process, since we don’t know
which remote values we need

11

Sparse Matrix Vector Multiply (SpMV)
OpenMP shared-memory

Sparse Matrix Vector Multiply (SpMV)
MPI+OpenMP distributed- and shared-memory

Sparse Matrix Vector Multiply (SpMV)
Chapel + Partitioned Global Address Space (PGAS)

12

Sparse Matrix Vector Multiply (SpMV)
OpenMP shared-memory

Sparse Matrix Vector Multiply (SpMV)
MPI+OpenMP distributed- and shared-memory

Sparse Matrix Vector Multiply (SpMV)
Chapel + Partitioned Global Address Space (PGAS)

looks like shared-
memory code

executes across
multiple nodes but no
replication of x

13

0.0625
0.125

0.25
0.5

1
2
4
8

16

2 4 8 16 32

sp
ee

d-
up

of nodes

NAS-CG (Conjugate Gradient)
Problem Size D (73 million non-zeros)

linear scaling

NOT linear scaling

Motivation: Irregular memory accesses in PGAS

Sparse Matrix Vector Multiply (SpMV)
Chapel + Partitioned Global Address Space (PGAS)

14

0.0625
0.125

0.25
0.5

1
2
4
8

16

2 4 8 16 32

sp
ee

d-
up

of nodes

NAS-CG (Conjugate Gradient)
Problem Size D (73 million non-zeros)

linear scaling

NOT linear scaling

Motivation: Irregular memory accesses in PGAS

(implicit) fine grain remote communication

15

0.0625
0.125

0.25
0.5

1
2
4
8

16

2 4 8 16 32

sp
ee

d-
up

of nodes

NAS-CG (Conjugate Gradient)
Problem Size D (73 million non-zeros)

linear scaling

NOT linear scaling

Motivation: Irregular memory accesses in PGAS

High productivity does not always lead to high performance

16

0.0625
0.125

0.25
0.5

1
2
4
8

16

2 4 8 16 32

sp
ee

d-
up

of nodes

NAS-CG (Conjugate Gradient)
Problem Size D (73 million non-zeros)

linear scaling

NOT linear scaling

Motivation: Irregular memory accesses in PGAS

High productivity does not always lead to high performance

How can we get better performance
for these types of codes?

17

Just a simple transformation…

Motivation: Irregular memory accesses in PGAS

0.0625
0.125

0.25
0.5

1
2
4
8

16
32

2 4 8 16 32

sp
ee

d-
up

nodes

NAS-CG (Conjugate Gradient)
Problem Size D (73 million non-zeros)

18

Manual optimizations can
drastically improve performance

original code

new code

linear scaling

Motivation: Irregular memory accesses in PGAS

0.0625
0.125

0.25
0.5

1
2
4
8

16
32

2 4 8 16 32

sp
ee

d-
up

nodes

NAS-CG (Conjugate Gradient)
Problem Size D (73 million non-zeros)

19

Manual optimizations can
drastically improve performance

original code

new code

linear scaling

Motivation: Irregular memory accesses in PGAS

In this talk:
Automatic optimization of irregular memory access patterns

Preserve the high productivity of the PGAS model while
achieving better performance

Outline

• Brief introduction Chapel
• Optimization: selective data replication
• Implementation within compiler:
• Code transformations
• Static analysis

• Performance evaluation:
• NAS-CG
• PageRank

• Future work and conclusions

20

• Chapel Parallel Programming Language
• high-level language that implements the PGAS model
• designed for productive parallel computing at scale

• Terminology
• task: set of computations that can be executed in parallel
• locale: machine resources on which tasks execute (i.e., a node in a cluster)

21

Chapel

• Chapel Parallel Programming Language
• high-level language that implements the PGAS model
• designed for productive parallel computing at scale

• Terminology
• task: set of computations that can be executed in parallel
• locale: machine resources on which tasks execute (i.e., a node in a cluster)

22

Chapel

• domain D with indices 0 through 5
• array data defined over D

• Chapel Parallel Programming Language
• high-level language that implements the PGAS model
• designed for productive parallel computing at scale

• Terminology
• task: set of computations that can be executed in parallel
• locale: machine resources on which tasks execute (i.e., a node in a cluster)

23

Chapel

• block distributed domain D
• access to remote array elements looks no

different than accessing local elements

• Chapel Parallel Programming Language
• high-level language that implements the PGAS model
• designed for productive parallel computing at scale

• Terminology
• task: set of computations that can be executed in parallel
• locale: machine resources on which tasks execute (i.e., a node in a cluster)

24

Chapel

• forall loop provides data parallelism
• Rows is a block distributed array
• task assigned the iteration for a given row will

execute on the locale where row is
• locale affinity defined implicitly by the loop

iterand

• We focus on accesses of the form A[B[i]] in forall loops
• A is a distributed array and the values in B are not known until runtime
• more complex access patterns are supported (see paper for details)

• Goal: replicate remotely accessed elements of A so they can be used
locally in the forall
• inspector: runtime analysis that determines remote accesses
• executor: optimized version of the forall that redirects remote accesses to the

replicated copies
• both generated by the compiler without user intervention

• Requirements:
• access-of-interest is on the RHS of an operation (i.e., read-only)

25

Optimization: Selective Data Replication

• We focus on accesses of the form A[B[i]] in forall loops
• A is a distributed array and the values in B are not known until runtime
• more complex access patterns are supported (see paper for details)

• Goal: replicate remotely accessed elements of A so they can be
accessed locally in the forall
• inspector: runtime analysis that determines remote accesses
• executor: optimized version of the forall that redirects remote accesses to the

replicated copies
• both generated by the compiler without user intervention

• Requirements:
• access-of-interest is on the RHS of an operation (i.e., read-only)

26

Optimization: Selective Data Replication

• We focus on accesses of the form A[B[i]] in forall loops
• A is a distributed array and the values in B are not known until runtime
• more complex access patterns are supported (see paper for details)

• Goal: replicate remotely accessed elements of A so they can be
accessed locally in the forall
• inspector: runtime analysis that determines remote accesses
• executor: optimized version of the forall that redirects remote accesses to the

replicated copies
• both generated by the compiler without user intervention

• Requirements:
• access-of-interest is read-only in the forall loop

27

Optimization: Selective Data Replication

• We focus on accesses of the form A[B[i]] in forall loops
• A is a distributed array and the values in B are not known until runtime
• more complex access patterns are supported (see paper for details)

• Goal: replicate remotely accessed elements of A so they can be
accessed locally in the forall
• inspector: runtime analysis that determines remote accesses
• executor: optimized version of the forall that redirects remote accesses to the

replicated copies
• both generated by the compiler without user intervention

• Requirements:
• access-of-interest is read-only in the forall loop

28

Optimization: Selective Data Replication

The inspector-executor technique has been around for a long time

We leverage the prior work on inspector-executors and adapt them
for Chapel+PGAS
• we work within Chapel’s compiler, before it lowers the code to

LLVM
• requires different approaches to statically reason about

domains/arrays, forall loops and implicit communication

Compiler: Code Transformations

29

30

Inspector: performs memory access analysis

• inspector should only be performed (1) the first
time we encounter the loop and (2) anytime
the access pattern A[B[i]] could have changed

Compiler: Code Transformations (cont.)

Executor: executes the loop but redirects remote
accesses to the replicated copies

• executorPreamble() initializes replicated
elements of A with values from original array
• we only replicate an element once,

regardless of how many times it is accessed

Compiler: Static Analysis

• Everything just discussed for code transformations only holds if the
optimization CAN and SHOULD be applied:
• optimization needs to maintain correct program results
• optimization should improve program performance

• The goal of our static analysis is to achieve the above, all without
requiring user intervention
• no code annotations, hints, pragmas, etc.
• just a compiler flag that is turned on when compiling the program

31

Compiler: Static Analysis (cont.)
• When could code transformations

produce incorrect behavior?
• if the inspector is not executed

when needed, the replicated copies
will be out of date

• à need to be able to statically
determine when the inspector
should execute

32

Assume candidate access A[B[i]]

1. forall must iterate over a distributed array or
domain

2. i from A[B[i]] must be yielded by the loop that
contains A[B[i]] and that loop must iterate over a
domain/array

3. A, B, and their domains cannot be modified in
the forall

Compiler: Static Analysis (cont.)
• (1) ensures the optimization can

reason about which locales the task
execute on
• (2) ensures that multiple tasks will

not execute the entire forall in
parallel (would lead to race
conditions in inspector)
• (3) ensures the optimization can

reason about the values of i,
specifically when they would
change (i.e., when the
array/domain changes)
• (4) ensures that the values in B

analyzed by the inspector will be
the same as those used in the
executor and original loop

33

Assume candidate access A[B[i]]

1. forall must iterate over a distributed array or
domain

2. i from A[B[i]] must be yielded by the loop that
contains A[B[i]] and that loop must iterate over a
domain/array

3. A, B, and their domains cannot be modified in
the forall

Controls locale affinity of the loop.
If B.domain changes, we know that the
locale affinity could change.

Compiler: Static Analysis (cont.)
• (1) ensures the optimization can

reason about which locales the task
execute on
• (2) ensures that multiple tasks will

not execute the entire forall in
parallel (would lead to race
conditions in inspector)
• (3) ensures the optimization can

reason about the values of i,
specifically when they would
change (i.e., when the
array/domain changes)
• (4) ensures that the values in B

analyzed by the inspector will be
the same as those used in the
executor and original loop

34

Assume candidate access A[B[i]]

1. forall must iterate over a distributed array or
domain

2. i from A[B[i]] must be yielded by the loop that
contains A[B[i]] and that loop must iterate over a
domain/array

3. A, B, and their domains cannot be modified in
the forall

Compiler: Static Analysis (cont.)
• (1) ensures the optimization can

reason about which locales the task
execute on
• (2) ensures that multiple tasks will

not execute the entire forall in
parallel (would lead to race
conditions in inspector)
• (3) ensures the optimization can

reason about the values of i,
specifically when they would
change (i.e., when the
array/domain changes)
• (4) ensures that the values in B

analyzed by the inspector will be
the same as those used in the
executor and original loop

35

Assume candidate access A[B[i]]

1. forall must iterate over a distributed array or
domain

2. i from A[B[i]] must be yielded by the loop that
contains A[B[i]] and that loop must iterate over a
domain/array

3. A, B, and their domains cannot be modified in
the forall

Compiler: Static Analysis (cont.)
• (1) ensures the optimization can

reason about which locales the task
execute on
• (2) ensures that multiple tasks will

not execute the entire forall in
parallel (would lead to race
conditions in inspector)
• (3) ensures the optimization can

reason about the values of i,
specifically when they would
change (i.e., when the
array/domain changes)
• (4) ensures that the values in B

analyzed by the inspector will be
the same as those used in the
executor and original loop

36

Assume candidate access A[B[i]]

1. forall must iterate over a distributed array or
domain

2. i from A[B[i]] must be yielded by the loop that
contains A[B[i]] and that loop must iterate over a
domain/array

3. A, B, and their domains cannot be modified in
the forall

The optimization statically identifies
modifications to the arrays/domains and

inserts code to turn on flags at runtime to
indicate that the inspector needs to be

executed

Compiler: Static Analysis (cont.)
• When could code transformations

produce poor performance?
• if the inspector is executed each

time the forall is executed

37

Assume candidate access A[B[i]]

I. forall must be nested in an outer serial loop
II. B nor its domain can be modified within the

outer loop that the forall is nested
III. A’s domain cannot be modified within the outer

loop that the forall is nested in

• (I) ensures that the forall is likely
to be executed multiple times
• (II) ensures the inspector will not

execute each time the forall is
performed (if B or its domain is
modified, the inspector must be
rerun)
• (III) is the same as (II) but for A’s

domain; changes to A’s values do
not change the access pattern
A[B[i]], but alter the domain
could

Compiler: Static Analysis (cont.)
• When could code transformations

produce poor performance?
• if the inspector is executed each

time the forall is executed

38

Assume candidate access A[B[i]]

I. forall must be nested in an outer serial loop
II. B nor its domain can be modified within the

outer loop that the forall is nested
III. A’s domain cannot be modified within the outer

loop that the forall is nested in

• (I) ensures that the forall is likely
to be executed multiple times
• (II) ensures the inspector will not

execute each time the forall is
performed (if B or its domain is
modified, the inspector must be
rerun)
• (III) is the same as (II) but for A’s

domain; changes to A’s values do
not change the access pattern
A[B[i]] but changes to the
domain can change where
elements of A are located

Compiler: Static Analysis (cont.)
• When could code transformations

produce poor performance?
• if the inspector is executed each

time the forall is executed

39

Assume candidate access A[B[i]]

I. forall must be nested in an outer serial loop
II. B nor its domain can be modified within the

outer loop that the forall is nested
III. A’s domain cannot be modified within the outer

loop that the forall is nested in

• (I) ensures that the forall is likely
to be executed multiple times
• (II) ensures the inspector will not

execute each time the forall is
performed (if B or its domain is
modified, the inspector must be
rerun)
• (III) is the same as (II) but for A’s

domain; changes to A’s values do
not change the access pattern
A[B[i]] but changes to the
domain can change where
elements of A are located

Compiler: Static Analysis (cont.)
• When could code transformations

produce poor performance?
• if the inspector is executed each

time the forall is executed

40

Assume candidate access A[B[i]]

I. forall must be nested in an outer serial loop
II. B nor its domain can be modified within the

outer loop that the forall is nested
III. A’s domain cannot be modified within the outer

loop that the forall is nested in

• (I) ensures that the forall is likely
to be executed multiple times
• (II) ensures the inspector will not

execute each time the forall is
performed (if B or its domain is
modified, the inspector must be
rerun)
• (III) is the same as (II) but for A’s

domain; changes to A’s values do
not change the access pattern
A[B[i]] but changes to the
domain can change where
elements of A are located

Compiler: Static Analysis (cont.)

• Additional analyses (see paper for details):
• Non-affine expression analysis to identify candidate accesses beyond A[B[i]]
• Interprocedural analysis to track modifications to arrays/domains across

function calls
• Alias analysis to track modifications to arrays/domains across to any aliases

created
• Call path analysis to identify invalid call paths to the function containing the

forall and “turning off” the optimization at runtime for the invalid paths

41

Performance Evaluation

• Applications:
• NAS-CG (conjugate gradient)
• PageRank (iterative SpMV-like operations)

• Systems:
• FDR Infiniband, 20 cores per node, 512 GB of memory per node
• Cray XC, Aries interconnect, 44 cores per node, 128 GB of memory per node

• Experiments:
• measured runtime speed-ups achieved by optimization relative to the original

Chapel code
• includes any overhead incurred by the inspector

42

43

NAS-CG Data sets
• Each outer iteration performs 26 SpMVs
• Problem size C performs 75 outer iterations
• Other sizes perform 100 outer iterations
• No changes to A[B[i]] access pattern during CG

44

17.5 36.7 22.5 34 16.7

357 345 364

258
195

0
50

100
150
200
250
300
350
400

2 4 8 16 32 64

sp
ee

d-
up

 o
ve

r b
as

el
in

es

locales

NAS-CG Problem Size E
Optimization Runtime Speed-ups

NAS-CG Data sets
NAS-CG Optimization Speed-ups

Take-aways:
• “—” means not enough memory, “NA” means not

enough nodes
• high degree of data reuse in the kernel, so the

optimization performs very well
• inspector overhead is small due to many iterations w/o

the access pattern changing
• optimization provides larger gains on Infiniband

• higher latency for small messages than Aries

45

PageRank Data sets
• PageRank runs until a convergence

threshold is met
• # of iterations depends on graph structure

46

PageRank Data sets

PageRank Optimization Speed-ups

Take-aways:
• smaller speed-ups overall due to fewer iterations

than NAS-CG and less data reuse
• because of both the algorithm and the graphs

• speed-ups on the Cray can be negative when the
data reuse is low (webbase-2001)

• nevertheless, still significant speed-ups overall

Future Work
• Limitations exists for this type of data replication
• forall must execute multiple times without the memory access pattern changing
• could use a lot of memory for the replication
• currently limited to read-only data

• Future work: additional optimizations
• adaptive prefetching for Chapel’s remote cache
• remote data aggregation for remote writes
• end goal is a single framework that can apply all these optimizations

automatically, deciding which one to apply considering the specific scenario

47

48

0.0625
0.125

0.25
0.5

1

2
4

2 4 8 16 32

sp
ee

d-
up

nodes

NAS-CG (Conjugate Gradient)
Problem Size D (73 million non-zeros)

w/o optimization

w/ optimization

Optimization preserves original high productivity of code but achieves significantly better
performance:
• runtimes reduced from hours/days to minutes

Acknowledgements: Chapel team for providing access to the Cray system and compiler
support

