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Motivation

• Why target irregular memory accesses?
• Why target Partitioned Global Address Space (PGAS) programs?
• Why are compiler optimizations needed?
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Motivation: Irregular memory accesses

Irregular memory access patterns are prevalent in:
• graph analytics
• sparse linear algebra
• PDE solvers
• some machine learning applications

In these applications, performance is often memory-bound 
• irregular memory accesses are performance bottlenecks
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Motivation: Irregular memory accesses

Irregular memory access patterns are prevalent in:
• graph analytics
• sparse linear algebra
• PDE solvers
• some machine learning applications

In these applications, performance is often memory-bound 
• irregular memory accesses are performance bottlenecks

data is large, sparse and unstructured
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• Presents a view of a distributed memory 
system that resembles a single shared 
address space
• Each node “owns” a partition of the address 

space, so there is still the concept of local vs 
remote memory
• Provides one-sided communication 

(puts/gets), allowing for languages/libraries 
that implement the PGAS model to hide data 
distribution/communication details
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Partitioned Global Address Space (PGAS)
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Sparse Matrix Vector Multiply (SpMV)
OpenMP shared-memory
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irregular memory access

Sparse Matrix Vector Multiply (SpMV)
OpenMP shared-memory
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Sparse Matrix Vector Multiply (SpMV)
OpenMP shared-memory

Sparse Matrix Vector Multiply (SpMV)
MPI+OpenMP distributed- and shared-memory
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Sparse Matrix Vector Multiply (SpMV)
OpenMP shared-memory

Sparse Matrix Vector Multiply (SpMV)
MPI+OpenMP distributed- and shared-memory

MPI_Allgatherv à full replication of x
on every process, since we don’t know 
which remote values we need
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Sparse Matrix Vector Multiply (SpMV)
OpenMP shared-memory

Sparse Matrix Vector Multiply (SpMV)
MPI+OpenMP distributed- and shared-memory

Sparse Matrix Vector Multiply (SpMV)
Chapel + Partitioned Global Address Space (PGAS)
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Sparse Matrix Vector Multiply (SpMV)
OpenMP shared-memory

Sparse Matrix Vector Multiply (SpMV)
MPI+OpenMP distributed- and shared-memory

Sparse Matrix Vector Multiply (SpMV)
Chapel + Partitioned Global Address Space (PGAS)

looks like shared-
memory code

executes across 
multiple nodes but no 
replication of x
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Motivation: Irregular memory accesses in PGAS

Sparse Matrix Vector Multiply (SpMV)
Chapel + Partitioned Global Address Space (PGAS)
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Motivation: Irregular memory accesses in PGAS

(implicit) fine grain remote communication
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Motivation: Irregular memory accesses in PGAS

High productivity does not always lead to high performance
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Motivation: Irregular memory accesses in PGAS

High productivity does not always lead to high performance

How can we get better performance 
for these types of codes?
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Just a simple transformation…

Motivation: Irregular memory accesses in PGAS
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Manual optimizations can 
drastically improve performance

original code

new code

linear scaling

Motivation: Irregular memory accesses in PGAS
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Manual optimizations can 
drastically improve performance

original code

new code

linear scaling

Motivation: Irregular memory accesses in PGAS

In this talk: 
Automatic optimization of irregular memory access patterns

Preserve the high productivity of the PGAS model while 
achieving better performance



Outline

• Brief introduction Chapel
• Optimization: selective data replication
• Implementation within compiler:
• Code transformations
• Static analysis

• Performance evaluation:
• NAS-CG
• PageRank

• Future work and conclusions
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• Chapel Parallel Programming Language
• high-level language that implements the PGAS model
• designed for productive parallel computing at scale

• Terminology
• task: set of computations that can be executed in parallel 
• locale: machine resources on which tasks execute (i.e., a node in a cluster)
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Chapel



• Chapel Parallel Programming Language
• high-level language that implements the PGAS model
• designed for productive parallel computing at scale

• Terminology
• task: set of computations that can be executed in parallel 
• locale: machine resources on which tasks execute (i.e., a node in a cluster)
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Chapel

• domain D with indices 0 through 5
• array data defined over D



• Chapel Parallel Programming Language
• high-level language that implements the PGAS model
• designed for productive parallel computing at scale

• Terminology
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• locale: machine resources on which tasks execute (i.e., a node in a cluster)

23

Chapel

• block distributed domain D 
• access to remote array elements looks no 

different than accessing local elements



• Chapel Parallel Programming Language
• high-level language that implements the PGAS model
• designed for productive parallel computing at scale

• Terminology
• task: set of computations that can be executed in parallel 
• locale: machine resources on which tasks execute (i.e., a node in a cluster)
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Chapel

• forall loop provides data parallelism
• Rows is a block distributed array
• task assigned the iteration for a given row will 

execute on the locale where row is
• locale affinity defined implicitly by the loop 

iterand



• We focus on accesses of the form A[B[i]] in forall loops
• A is a distributed array and the values in B are not known until runtime
• more complex access patterns are supported (see paper for details)

• Goal: replicate remotely accessed elements of A so they can be used 
locally in the forall
• inspector: runtime analysis that determines remote accesses
• executor: optimized version of the forall that redirects remote accesses to the 

replicated copies
• both generated by the compiler without user intervention

• Requirements:
• access-of-interest is on the RHS of an operation (i.e., read-only)
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Optimization: Selective Data Replication
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Optimization: Selective Data Replication

The inspector-executor technique has been around for a long time

We leverage the prior work on inspector-executors and adapt them 
for Chapel+PGAS
• we work within Chapel’s compiler, before it lowers the code to 

LLVM
• requires different approaches to statically reason about 

domains/arrays, forall loops and implicit communication



Compiler: Code Transformations
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Inspector: performs memory access analysis

• inspector should only be performed (1) the first 
time we encounter the loop and (2) anytime 
the access pattern A[B[i]] could have changed

Compiler: Code Transformations (cont.)

Executor: executes the loop but redirects remote 
accesses to the replicated copies

• executorPreamble() initializes replicated 
elements of A with values from original array
• we only replicate an element once, 

regardless of how many times it is accessed



Compiler: Static Analysis

• Everything just discussed for code transformations only holds if the 
optimization CAN and SHOULD be applied:
• optimization needs to maintain correct program results
• optimization should improve program performance

• The goal of our static analysis is to achieve the above, all without 
requiring user intervention
• no code annotations, hints, pragmas, etc.
• just a compiler flag that is turned on when compiling the program
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Compiler: Static Analysis (cont.)
• When could code transformations 

produce incorrect behavior?
• if the inspector is not executed 

when needed, the replicated copies 
will be out of date

• à need to be able to statically 
determine when the inspector 
should execute
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Assume candidate access A[B[i]]

1. forall must iterate over a distributed array or 
domain

2. i from A[B[i]] must be yielded by the loop that 
contains A[B[i]] and that loop must iterate over a 
domain/array

3. A, B, and their domains cannot be modified in 
the forall



Compiler: Static Analysis (cont.)
• (1) ensures the optimization can 

reason about which locales the task 
execute on
• (2) ensures that multiple tasks will 

not execute the entire forall in 
parallel (would lead to race 
conditions in inspector)
• (3) ensures the optimization can 

reason about the values of i, 
specifically when they would 
change (i.e., when the 
array/domain changes)
• (4) ensures that the values in B 

analyzed by the inspector will be 
the same as those used in the 
executor and original loop
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Assume candidate access A[B[i]]

1. forall must iterate over a distributed array or 
domain

2. i from A[B[i]] must be yielded by the loop that 
contains A[B[i]] and that loop must iterate over a 
domain/array

3. A, B, and their domains cannot be modified in 
the forall

Controls locale affinity of the loop.
If B.domain changes, we know that the 
locale affinity could change.



Compiler: Static Analysis (cont.)
• (1) ensures the optimization can 

reason about which locales the task 
execute on
• (2) ensures that multiple tasks will 

not execute the entire forall in 
parallel (would lead to race 
conditions in inspector)
• (3) ensures the optimization can 

reason about the values of i, 
specifically when they would 
change (i.e., when the 
array/domain changes)
• (4) ensures that the values in B 

analyzed by the inspector will be 
the same as those used in the 
executor and original loop
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Compiler: Static Analysis (cont.)
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Assume candidate access A[B[i]]

1. forall must iterate over a distributed array or 
domain

2. i from A[B[i]] must be yielded by the loop that 
contains A[B[i]] and that loop must iterate over a 
domain/array

3. A, B, and their domains cannot be modified in 
the forall

The optimization statically identifies 
modifications to the arrays/domains and 

inserts code to turn on flags at runtime to 
indicate that the inspector needs to be 

executed



Compiler: Static Analysis (cont.)
• When could code transformations 

produce poor performance?
• if the inspector is executed each 

time the forall is executed
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Assume candidate access A[B[i]]

I. forall must be nested in an outer serial loop
II. B nor its domain can be modified within the 

outer loop that the forall is nested 
III. A’s domain cannot be modified within the outer 

loop that the forall is nested in

• (I) ensures that the forall is likely 
to be executed multiple times
• (II) ensures the inspector will not 

execute each time the forall is 
performed (if B or its domain is 
modified, the inspector must be 
rerun)
• (III) is the same as (II) but for A’s

domain; changes to A’s values do 
not change the access pattern 
A[B[i]], but alter the domain 
could 
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time the forall is executed
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Compiler: Static Analysis (cont.)

• Additional analyses (see paper for details):
• Non-affine expression analysis to identify candidate accesses beyond A[B[i]]
• Interprocedural analysis to track modifications to arrays/domains across 

function calls
• Alias analysis to track modifications to arrays/domains across to any aliases 

created
• Call path analysis to identify invalid call paths to the function containing the 

forall and “turning off” the optimization at runtime for the invalid paths
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Performance Evaluation

• Applications:
• NAS-CG (conjugate gradient)
• PageRank (iterative SpMV-like operations)

• Systems:
• FDR Infiniband, 20 cores per node, 512 GB of memory per node
• Cray XC, Aries interconnect, 44 cores per node, 128 GB of memory per node

• Experiments:
• measured runtime speed-ups achieved by optimization relative to the original 

Chapel code
• includes any overhead incurred by the inspector
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NAS-CG Data sets
• Each outer iteration performs 26 SpMVs
• Problem size C performs 75 outer iterations
• Other sizes perform 100 outer iterations
• No changes to A[B[i]] access pattern during CG
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NAS-CG Optimization Speed-ups

Take-aways:
• “—” means not enough memory, “NA” means not 

enough nodes
• high degree of data reuse in the kernel, so the 

optimization performs very well
• inspector overhead is small due to many iterations w/o 

the access pattern changing
• optimization provides larger gains on Infiniband

• higher latency for small messages than Aries



45

PageRank Data sets
• PageRank runs until a convergence 

threshold is met
• # of iterations depends on graph structure 
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PageRank Data sets

PageRank Optimization Speed-ups

Take-aways:
• smaller speed-ups overall due to fewer iterations 

than NAS-CG and less data reuse
• because of both the algorithm and the graphs

• speed-ups on the Cray can be negative when the 
data reuse is low (webbase-2001)

• nevertheless, still significant speed-ups overall



Future Work
• Limitations exists for this type of data replication
• forall must execute multiple times without the memory access pattern changing
• could use a lot of memory for the replication
• currently limited to read-only data

• Future work: additional optimizations
• adaptive prefetching for Chapel’s remote cache
• remote data aggregation for remote writes 
• end goal is a single framework that can apply all these optimizations 

automatically, deciding which one to apply considering the specific scenario
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Optimization preserves original high productivity of code but achieves significantly better 
performance:
• runtimes reduced from hours/days to minutes
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