
PhD defense - Computer Science

PGAS-based Parallel Branch-and-Bound for Ultra-Scale
GPU-powered Supercomputers

Guillaume HELBECQUE

Jointly supervised by:
Prof. Dr. Nouredine MELAB and Prof. Dr. Pascal BOUVRY



Context and objectives CPU-based B&B GPU-based B&B Software platform Conclusions References

Outline

1 Context and objectives

2 PGAS-based B&B for CPU-based systems

3 PGAS-based B&B for GPU-based systems

4 Software platform for parallel B&B

5 Conclusions and perspectives

1



Context and objectives



Context and objectives CPU-based B&B GPU-based B&B Software platform Conclusions References

Combinatorial Optimization Problems (COPs)

Optimization problem :
{

min / max f(x),
subject to x ∈ X

Optimization problems are increasingly big in many application areas:
High-dimensionality, e.g., number of decision variables
Time-demanding objectives

Motivating example: Flowshop scheduling problem
Big instance ta056 (50 jobs, 20 machines): 1064 potential subproblems
22 years using a single-core processor [Mezmaz et al., 2007]
We need supercomputers to solve big COPs to optimality!

M1 M2 M3 M4
J1 5 3 4 1
J2 2 2 1 4
J3 1 3 5 2

2



Context and objectives CPU-based B&B GPU-based B&B Software platform Conclusions References

Combinatorial Optimization Problems (COPs)

Optimization problem :
{

min / max f(x),
subject to x ∈ X

Optimization problems are increasingly big in many application areas:
High-dimensionality, e.g., number of decision variables
Time-demanding objectives

Motivating example: Flowshop scheduling problem
Big instance ta056 (50 jobs, 20 machines): 1064 potential subproblems
22 years using a single-core processor [Mezmaz et al., 2007]
We need supercomputers to solve big COPs to optimality!

M1 M2 M3 M4
J1 5 3 4 1
J2 2 2 1 4
J3 1 3 5 2

2



Context and objectives CPU-based B&B GPU-based B&B Software platform Conclusions References

Branch-and-Bound (B&B) algorithms

B&B is a search algorithm based on implicit enumeration of candidate
solutions, explored by constructing a tree.

Four operators:

Branching
Bounding

Selection
Pruning

3



Context and objectives CPU-based B&B GPU-based B&B Software platform Conclusions References

Branch-and-Bound (B&B) algorithms
B&B is a search algorithm based on implicit enumeration of candidate
solutions, explored by constructing a tree.

Four operators:

Branching

Bounding
Selection
Pruning

3



Context and objectives CPU-based B&B GPU-based B&B Software platform Conclusions References

Branch-and-Bound (B&B) algorithms
B&B is a search algorithm based on implicit enumeration of candidate
solutions, explored by constructing a tree.

Four operators:

Branching
Bounding

Selection
Pruning

3



Context and objectives CPU-based B&B GPU-based B&B Software platform Conclusions References

Branch-and-Bound (B&B) algorithms
B&B is a search algorithm based on implicit enumeration of candidate
solutions, explored by constructing a tree.

Four operators:

Branching
Bounding

Selection

Pruning

3



Context and objectives CPU-based B&B GPU-based B&B Software platform Conclusions References

Branch-and-Bound (B&B) algorithms
B&B is a search algorithm based on implicit enumeration of candidate
solutions, explored by constructing a tree.

Four operators:

Branching
Bounding

Selection
Pruning

3



Context and objectives CPU-based B&B GPU-based B&B Software platform Conclusions References

Branch-and-Bound (B&B) algorithms

B&B is a search algorithm based on implicit enumeration of candidate
solutions, explored by constructing a tree.

Four operators:

Branching
Bounding

Selection
Pruning

Main properties:
Huge and unpredictable trees
Dynamic and irregular loads

3



Context and objectives CPU-based B&B GPU-based B&B Software platform Conclusions References

Architecture of modern supercomputers
TOP500 list (Nov. 2024): 9 out of TOP10 supercomputers are heterogeneous

Rank Name System Country Cores Rmax [PFlop/s]

1 El Capitan AMD 4th Gen EPYC 24C 1.8GHz,
AMD Instinct MI300A, Slingshot-11 United States 11,039,616 1,742.00

2 Frontier AMD Optimized 3rd Generation EPYC 64C 2GHz,
AMD Instinct MI250X, Slingshot-11 United States 9,066,176 1,353.00

3 Aurora Xeon CPU Max 9470 52C 2.4GHz,
Intel Data Center GPU Max, Slingshot-11 United States 9,264,128 1,012.00

4 Eagle Xeon Platinum 8480C 48C 2GHz,
NVIDIA H100, NVIDIA Infiniband NDR United States 2,073,600 561.20

5 HPC6 AMD Optimized 3rd Generation EPYC 64C 2GHz,
AMD Instinct MI250X, Slingshot-11 Italy 3,143,520 477.90

6 Supercomputer
Fugaku A64FX 48C 2.2GHz, Tofu interconnect D Japan 7,630,848 442.01

7 Alps NVIDIA Grace 72C 3.1GHz,
NVIDIA GH200 Superchip, Slingshot-11 Switzerland 2,121,600 434.90

8 LUMI AMD Optimized 3rd Generation EPYC 64C 2GHz,
AMD Instinct MI250X, Slingshot-11 Finland 2,752,704 379.70

9 Leonardo Xeon Platinum 8358 32C 2.6GHz, NVIDIA A100 SXM4
64 GB, Quad-rail NVIDIA HDR100 Infiniband Italy 1,824,768 241.20

10 Tuolumne AMD 4th Gen EPYC 24C 1.8GHz,
AMD Instinct MI300A, Slingshot-11 United States 1,161,216 208.10

4



Context and objectives CPU-based B&B GPU-based B&B Software platform Conclusions References

Architecture of modern supercomputers
TOP500 list (Nov. 2024): devices by three different vendors are present

Rank Name System Country Cores Rmax [PFlop/s]

1 El Capitan
AMD 4th Gen EPYC 24C 1.8GHz,

AMD Instinct MI300A , Slingshot-11
United States 11,039,616 1,742.00

2 Frontier AMD Optimized 3rd Generation EPYC 64C 2GHz,
AMD Instinct MI250X, Slingshot-11 United States 9,066,176 1,353.00

3 Aurora
Xeon CPU Max 9470 52C 2.4GHz,

Intel Data Center GPU Max , Slingshot-11
United States 9,264,128 1,012.00

4 Eagle
Xeon Platinum 8480C 48C 2GHz,

NVIDIA H100 , NVIDIA Infiniband NDR
United States 2,073,600 561.20

5 HPC6 AMD Optimized 3rd Generation EPYC 64C 2GHz,
AMD Instinct MI250X, Slingshot-11 Italy 3,143,520 477.90

6 Supercomputer
Fugaku A64FX 48C 2.2GHz, Tofu interconnect D Japan 7,630,848 442.01

7 Alps NVIDIA Grace 72C 3.1GHz,
NVIDIA GH200 Superchip, Slingshot-11 Switzerland 2,121,600 434.90

8 LUMI AMD Optimized 3rd Generation EPYC 64C 2GHz,
AMD Instinct MI250X, Slingshot-11 Finland 2,752,704 379.70

9 Leonardo Xeon Platinum 8358 32C 2.6GHz, NVIDIA A100 SXM4
64 GB, Quad-rail NVIDIA HDR100 Infiniband Italy 1,824,768 241.20

10 Tuolumne AMD 4th Gen EPYC 24C 1.8GHz,
AMD Instinct MI300A, Slingshot-11 United States 1,161,216 208.10

4



Context and objectives CPU-based B&B GPU-based B&B Software platform Conclusions References

PGAS alternative to MPI+X

MPI+X
“Evolutionary” approach

PGAS
“Revolutionary” approach

5



Context and objectives CPU-based B&B GPU-based B&B Software platform Conclusions References

PGAS alternative to MPI+X

MPI+X
“Evolutionary” approach

PGAS
“Revolutionary” approach

5



Context and objectives CPU-based B&B GPU-based B&B Software platform Conclusions References

Objectives

Huge and unpredictable trees
Dynamic and irregular loads

Challenges
Efficient operators with scalable data structures
Efficient multi-level parallelism

Bigger than ever
Heterogeneous

Complex programming
Unreliable (MTBF<1h)

Overall objective: Revisit the design and implementation of parallel B&B for
solving complex problems on ultra-scale supercomputers

6



Context and objectives CPU-based B&B GPU-based B&B Software platform Conclusions References

Related work

Limitation of existing parallel B&B algorithms, e.g. [Lalami et al., 2012];
[Gmys et al., 2017]; [Chakroun et al., 2013]; [Alba et al., 2002]:

Focus only on performance
Combine low-level programming environments

Focus on holistic PGAS-based approaches:
GPU computing in this context is at its infancy
Some initiatives to support GPU exist [Cunningham et al., 2011]; [Chen et al.,
2011]; [Hayashi et al., 2023]
GPU-native supports recently became available, e.g., Chapel [Milthorpe et al.,
2024]

→ Chapel (HPE/Cray) is considered in this thesis

Few works explore PGAS-based GPU-accelerated tree search
approaches [Carneiro et al., 2021]

7



Context and objectives CPU-based B&B GPU-based B&B Software platform Conclusions References

The Chapel programming language

High-level PGAS-based language:
Portable & scalable
Abstractions for data and task parallelism, concurrency, and nested parallelism
Open-source & collaborative, e.g., ChapelCon

GPU-native support:
CPU parallelism features also target GPU
Vendor-neutral, through the LLVM compiler framework:

PTX for NVIDIA GPUs
AMDGCN for AMD GPUs

More at: https://chapel-lang.org/.
8

https://chapel-lang.org/


Context and objectives CPU-based B&B GPU-based B&B Software platform Conclusions References

Contributions

Scalable data structure for billions of subproblems
→ The distBag_DFS data structure

Efficient mechanisms to deal with dynamic and irregular loads

Efficient implementation of these mechanisms
→ PGAS-based parallel B&B for CPU-based systems
→ PGAS-based parallel B&B for GPU-based systems
→ Software platform in Chapel

Collaboration with HPE/Cray (Spring, Texas, USA)

9



PGAS-based B&B for CPU-based systems



Context and objectives CPU-based B&B GPU-based B&B Software platform Conclusions References

Incremental design of the distBag_DFS data structure

Single-core pool-based B&B:

10



Context and objectives CPU-based B&B GPU-based B&B Software platform Conclusions References

Incremental design of the distBag_DFS data structure

Single-core pool-based B&B:

10



Context and objectives CPU-based B&B GPU-based B&B Software platform Conclusions References

Incremental design of the distBag_DFS data structure

Single-core pool-based B&B:

10



Context and objectives CPU-based B&B GPU-based B&B Software platform Conclusions References

Incremental design of the distBag_DFS data structure

Single-core pool-based B&B:

10



Context and objectives CPU-based B&B GPU-based B&B Software platform Conclusions References

Incremental design of the distBag_DFS data structure

Single-core pool-based B&B:

10



Context and objectives CPU-based B&B GPU-based B&B Software platform Conclusions References

Incremental design of the distBag_DFS data structure

Single-core pool-based B&B:

We iterate until the pool is empty → termination

10



Context and objectives CPU-based B&B GPU-based B&B Software platform Conclusions References

Model for parallel B&B on CPU

Parallel tree exploration [Melab, 2005]

Massively parallel and generic, but highly
irregular

Challenges: single-pool → multi-pool
Efficient load balancing mechanism
Efficient termination detection

11



Context and objectives CPU-based B&B GPU-based B&B Software platform Conclusions References

Incremental design of the distBag_DFS data structure

Parallel multi-pool B&B:

12



Context and objectives CPU-based B&B GPU-based B&B Software platform Conclusions References

Incremental design of the distBag_DFS data structure
Parallel multi-pool B&B:

Dynamic load balancing based on Work Stealing (WS):
WS = victim selection + granularity policy

12



Context and objectives CPU-based B&B GPU-based B&B Software platform Conclusions References

Incremental design of the distBag_DFS data structure
Parallel multi-pool B&B:

Dynamic load balancing based on Work Stealing (WS):
Victim selection: random

12



Context and objectives CPU-based B&B GPU-based B&B Software platform Conclusions References

Incremental design of the distBag_DFS data structure
Parallel multi-pool B&B:

Dynamic load balancing based on Work Stealing (WS):
Victim selection: random
Granularity: steal-one 12



Context and objectives CPU-based B&B GPU-based B&B Software platform Conclusions References

Incremental design of the distBag_DFS data structure
Parallel multi-pool B&B:

Dynamic load balancing based on Work Stealing (WS):
Victim selection: random
Granularity: steal-one 12



Context and objectives CPU-based B&B GPU-based B&B Software platform Conclusions References

Incremental design of the distBag_DFS data structure
Parallel multi-pool B&B:

Dynamic load balancing based on Work Stealing (WS):
Victim selection: random
Granularity: steal-one 12



Context and objectives CPU-based B&B GPU-based B&B Software platform Conclusions References

Incremental design of the distBag_DFS data structure

Scalable synchronization mechanism: non-blocking split double-ended
queues [Dijk et al., 2014]

Concurrent accesses from both ends
Lock-free local access
Copy-free transfer from shared to private parts

13



Context and objectives CPU-based B&B GPU-based B&B Software platform Conclusions References

Incremental design of the distBag_DFS data structure
Locality-aware WS at the inter-node level: local, then global

Victim locale selection: random
Granularity: steal-one in each pool (if possible)

14



Context and objectives CPU-based B&B GPU-based B&B Software platform Conclusions References

Global termination detection
“Wave algorithm” [Matocha et al., 1998];

Each thread owns a state variable (IDLE or BUSY)
The initiator thread checks all other states
Termination = all threads are IDLE

Algorithm 1: Pseudo-code of PGAS-based termination detection
input : allThreadStates: global array of thread states

1 for localeID from 0 to numLocales do
2 for threadID from 0 to D-1 do
3 if allThreadStates[localeID][threadID]=BUSY then
4 return false; // At least one thread is still working

5 return true; // Triggers termination

15



Context and objectives CPU-based B&B GPU-based B&B Software platform Conclusions References

Experimental testbed

MeluXina - Cluster module (ranked 460th in June 2024 TOP500)
Up to 400 compute nodes × 2 AMD EPYC Rome 7H12 64 cores @ 2.6 GHz
CPUs and 512 GB of RAM
InfiniBand HDR high-speed fabric

Chapel release 2.1.0

16

https://docs.lxp.lu/


Context and objectives CPU-based B&B GPU-based B&B Software platform Conclusions References

Benchmark problems: Permutation Flowshop Scheduling

Objective: Minimize the completion time of the last job on the last
machine.

M1 M2 M3 M4
J1 5 3 4 1
J2 2 2 1 4
J3 1 3 5 2

Main characteristics:

NP-hard COP
Minimization problem

Permutation-based
Coarse-grained bounding

17



Context and objectives CPU-based B&B GPU-based B&B Software platform Conclusions References

Benchmark problems: Binary Knapsack

Objective: Maximize total profit while satisfying capacity constraint.

A B C D E F
Profit 3 5 7 2 1 4

Weight 3 4 12 4 7 2

Main characteristics:

NP-hard COP
Maximization problem

Binary decision variables
Medium-grained bounding

17



Context and objectives CPU-based B&B GPU-based B&B Software platform Conclusions References

Benchmark problems: N-Queens

Objective: Determine the total number of valid configurations for
placing N non-attacking queens on an N ×N chessboard.

Main characteristics:

Constraint satisfaction problem
Permutation-based

Fine-grained evaluation

17



Context and objectives CPU-based B&B GPU-based B&B Software platform Conclusions References

Benchmark problems: Unbalanced Tree Search
Objective: Count the number of nodes in an implicitly constructed

tree that is parameterized in shape, depth, size, and imbalance.

Binomial: q child nodes with probability p and no children with
probability 1− p

Geometric: Each node has a branching factor that follows a
geometric distribution with an expected value that is specified by the
parameter b0 > 1

Main characteristics:

Performance benchmark
Trees follow a given
distribution

Fine-grained evaluation
Focus on load balancing

17



Context and objectives CPU-based B&B GPU-based B&B Software platform Conclusions References

Evaluation of dynamic load balancing

1 16 32 64 128
Processing cores

1
16
32

64

128

Sp
ee

d-
up

Linear
UTS - geo
UTS - bin

Fig. 1: Speed-up achieved solving geometrical
and binomial synthetic UTS trees.

59% of the ideal speed-up solving
UTS-geo

Only 29% solving UTS-bin
→ branching factor

High WS success rate

Instance Nb. of nodes (106) Time (s) nodes/s (103) WS attempts (% success)
UTS-geo 91.4 36.06 2,534.6 48,433 (99.0%)
UTS-bin 131.7 36.30 3,628.1 1,473,048 (96.8%)

18



Context and objectives CPU-based B&B GPU-based B&B Software platform Conclusions References

Strong scaling efficiency on three different problems

1 16 32 64 128
Processing cores

1
16
32

64

128

Sp
ee

d-
up

PFSP
Linear
ta030
ta020
ta010

1 16 32 64 128
Processing cores

1
16
32

64

128
0/1-Knapsack

Linear
kp3
kp2
kp1

1 16 32 64 128
Processing cores

1
16
32

64

128
N-Queens

Linear
N=17
N=16
N=15

(a) Intra-node parallel level.

1 8 16 32 64
Compute nodes

1
8

16

32

64

Sp
ee

d-
up

PFSP
Linear
ta024
ta026
ta027

1 8 16 32 64
Compute nodes

1
8

16

32

64
0/1-Knapsack

Linear
kp6
kp5
kp4

1 8 16 32 64
Compute nodes

1
8

16

32

64
N-Queens

Linear
N=19
N=18
N=17

(b) Inter-node parallel level.
19



Context and objectives CPU-based B&B GPU-based B&B Software platform Conclusions References

Comparison against MPI+X baseline on PFSP
Baseline: MPI-PBB, state-of-the-art MPI+PThreads implementation [Gmys,
2017].

29 30 22 27 23 28 25 26 24 21
Instance index

0

20

40

60

80

100

120
Sp

ee
d-

up
 (i

n 
%

 o
f t

he
 li

ne
ar

)

MPI-PBB
Linear
8 nodes
16 nodes
32 nodes
64 nodes

Fig. 3: Speed-up achieved by P3D-DFS and MPI-PBB up to 64 compute nodes compared to
the execution on one node.

20



Context and objectives CPU-based B&B GPU-based B&B Software platform Conclusions References

Solving hard PFSP instances at scale
Proof of optimality for hard PFSP instances:

Instance # CPU cores Time (s) Core-hour # tree nodes (109) Optimum
ta056 51,200 18.1 257.4 (∼ 11 days) 173.3 3,679
ta052 8,192 7,960.5 18,114.6 (∼ 2 years) 17,117.8 3,699
ta057 51,200 2,017.6 28,694.8 (∼ 4 years) 28,340.7 3,704
ta053 8,192 43,605.5 99,226.7 (∼ 12 years) 94,885.1 3,640

20 21 22 23 24 25 26 27 28 29

Compute nodes

20

21

22

23

24

25

26

27

28

29

Sp
ee

d-
up

128

70%

Linear
ta056

21



PGAS-based B&B for GPU-based systems



Context and objectives CPU-based B&B GPU-based B&B Software platform Conclusions References

Model for parallel B&B on GPU

22



Context and objectives CPU-based B&B GPU-based B&B Software platform Conclusions References

Model for parallel B&B on GPU

Challenges:

Tune parameters: {m, M}
Manage initialization

Redesign WS mechanism
Ensure portability 22



Context and objectives CPU-based B&B GPU-based B&B Software platform Conclusions References

Initial search and static distribution

1 Initial search on CPU (assuming D GPUs):
Sequential (or weakly parallel) B&B
Until numNodes ∗D ∗m pending nodes

2 Static workload distribution:

23



Context and objectives CPU-based B&B GPU-based B&B Software platform Conclusions References

Redesign of WS and synchronization

Revisit of WS mechanism:
Victim selection: random
Granularity: steal-half, only if at least 2 ∗m available nodes

Revisit of synchronization mechanism: spin-locks

Source for image: https://www.slideserve.com/deiondre/spin-locks-and-contention.

24

https://www.slideserve.com/deiondre/spin-locks-and-contention


Context and objectives CPU-based B&B GPU-based B&B Software platform Conclusions References

Experimental testbed

Evaluating code portability:

NVIDIA P100
NVIDIA V100
NVIDIA A100

AMD MI50
AMD MI250X
AMD MI300X

Evaluating scalability at intra-node level: LUMI, ranked 8th in Nov. 2024
TOP500 ranking

64-core AMD EPYC 7A53 “Trento” CPU and four AMD Instinct MI250X GPUs

Chapel release 2.1.0

25



Context and objectives CPU-based B&B GPU-based B&B Software platform Conclusions References

Code performance and portability

15 16 17 18
N

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

No
rm
al
ize
d 
ex
ec
ut
io
n 
tim
e

N-Queens

29 30 22 27 23 28 25 26 24 21
Instance index

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0 PFSP

29 30 22 27 23 28 25 26 24 21

7

8

baseline
Chapel - P100

Chapel - V100
Chapel - A100

Chapel - MI50
Chapel - MI250X

Chapel - MI300X

Fig. 4: Normalized execution time, Chapel vs. C+CUDA/HIP, single-GPU.

26



Context and objectives CPU-based B&B GPU-based B&B Software platform Conclusions References

Loop-Invariant Code Motion (LICM) compiler optimization

Algorithm 2: Example of LICM optimization in PGAS-based languages.
input : n: number of iterations

A, B: arrays of constant data
1 Aptr ← constPtr(A[0]);
2 Bptr ← constPtr(B[0]);
3 for i from 0 to n do

// arithmetic operations, accessing Aptr and Bptr

LICM optimization not always triggered by Chapel compiler
→ Bug report

Performance improvement with manual LICM:

GPU architecture NVIDIA P100 NVIDIA V100 NVIDIA A100 AMD MI50 AMD MI250X AMD MI300X

Execution time -10% -17% -26% -26% -11% -7%

27



Context and objectives CPU-based B&B GPU-based B&B Software platform Conclusions References

Calibration of parameters
Solving PFSP ta030:

Table 1: Calibration of (m, M) parameters on AMD MI250X. Whiter is better.

m M 50,000 100,000 200,000 300,000 400,000 500,000 600,000
10 9.78 9.55 9.41 9.42 9.36 9.36 9.42
20 9.78 9.52 9.4 9.39 9.38 9.36 9.38
30 9.78 9.56 9.41 9.4 9.36 9.36 9.38
40 9.78 9.56 9.4 9.38 9.37 9.37 9.37
50 9.78 9.55 9.41 9.38 9.37 9.36 9.36
60 9.79 9.56 9.4 9.38 9.37 9.36 9.36
70 9.78 9.56 9.42 9.4 9.36 9.36 9.37
80 9.78 9.55 9.41 9.38 9.36 9.37 9.38
90 9.79 9.56 9.41 9.37 9.37 9.36 9.38
100 9.8 9.56 9.41 9.39 9.36 9.36 9.39

Optimal values: m = 50 and M = 500, 000

28



Context and objectives CPU-based B&B GPU-based B&B Software platform Conclusions References

Calibration of parameters
Solving PFSP ta030:

Table 1: Calibration of (m, M) parameters on AMD MI250X. Whiter is better.

m M 50,000 100,000 200,000 300,000 400,000 500,000 600,000
10 9.78 9.55 9.41 9.42 9.36 9.36 9.42
20 9.78 9.52 9.4 9.39 9.38 9.36 9.38
30 9.78 9.56 9.41 9.4 9.36 9.36 9.38
40 9.78 9.56 9.4 9.38 9.37 9.37 9.37
50 9.78 9.55 9.41 9.38 9.37 9.36 9.36
60 9.79 9.56 9.4 9.38 9.37 9.36 9.36
70 9.78 9.56 9.42 9.4 9.36 9.36 9.37
80 9.78 9.55 9.41 9.38 9.36 9.37 9.38
90 9.79 9.56 9.41 9.37 9.37 9.36 9.38
100 9.8 9.56 9.41 9.39 9.36 9.36 9.39

Optimal values: m = 50 and M = 500, 000
28



Context and objectives CPU-based B&B GPU-based B&B Software platform Conclusions References

Strong scaling efficiency: intra-node

Table 2: Strong scaling efficiency at the intra-node level.

Instance GPU×1 GPU×2 GPU×4 GPU×8
kn/s kn/s speed-up kn/s speed-up kn/s speed-up

15-Queens 34,744.0 57,970.7 1.67 82,106.1 2.36 88,475.6 2.54
16-Queens 34,884.4 60,163.2 1.72 95,487.7 2.74 119,120.2 3.41
17-Queens 34,940.7 64,458.7 1.84 93,966.3 2.69 124,720.3 3.57

AVG 34,856.4 60,864.2 1.74 90,553.4 2.60 110,768.8 3.17
ta028 1,366.0 2,092.4 1.53 3,569.3 2.61 5,993.0 4.39
ta025 1,361.2 2,102.2 1.54 3,673.6 2.70 6,468.7 4.75
ta026 1,393.4 2,166.3 1.55 3,814.3 2.74 6,745.3 4.84
ta024 1,393.6 2,167.5 1.56 3,973.0 2.85 8,086.0 5.80
ta021 1,421.1 2,175.4 1.53 3,992.2 2.81 7,170.0 5.05
AVG 1381.1 1762.8 1.54 3804.5 2.7 6892.6 5.0

Chapel on average 60% slower than C+HIP considering GPU×1 on PFSP

29



Software platform for parallel B&B



Context and objectives CPU-based B&B GPU-based B&B Software platform Conclusions References

Scalable code development

Motivations:
Reducing the costs of software development
Targeting as wider community as possible
Ensuring maintainability and portability across diverse architectures

Tools:
Object-oriented programming
High-level abstraction for parallelism
Distribution (e.g., GitHub), etc.

30



Context and objectives CPU-based B&B GPU-based B&B Software platform Conclusions References

The Chapel’s DistributedBag module
Package module for importing the distBag_DFS data structure.

Available from Chapel 2.0 release

Usage:

use DistributedBag;

var bag = new distBag(int);
...

Code demo at ChapelCon ’24 (broadcast
on YouTube).

31

https://www.youtube.com/watch?v=jMQ-WYRz-AQ&list=PLuqM5RJ2KYFi2yV4sFLc6QeRYpS35UeKl&index=13


Context and objectives CPU-based B&B GPU-based B&B Software platform Conclusions References

Software platform
Node type + Problem concrete class = set of parallel B&B skeletons (--mode)

Fig. 5: UML diagram of the pBB-chpl software platform.

32



Context and objectives CPU-based B&B GPU-based B&B Software platform Conclusions References

The Problem interface
Template for problem-specific operators (branching, bounding, etc.)

Algorithm 3: The Problem interface.
1 class Problem

// CORE PROCEDURES
2 proc copy() {}
3 proc decompose(/*args*/) {}
4 proc getInitSolution(): int {}

// UTILITY PROCEDURES
5 proc print_settings(): void {}
6 proc print_results(/*args*/): void {}
7 proc output_filepath(): string {}
8 proc help_message(): void {}

33



Context and objectives CPU-based B&B GPU-based B&B Software platform Conclusions References

Skeletons for parallel B&B: example
Algorithm 4: Chapel-based B&B skeleton for sequential execution.

1 use List;
2 use Node, Problem;
3 proc search_sequential(Node, problem)
4 var best = problem.getInitSolution();
5 problem.print_settings();

// INITIALIZATION
6 var pool: list(Node);
7 var root = new Node (problem);
8 pool.pushBack(root);

// TREE EXPLORATION
9 while !pool.isEmpty() do

10 var parent: Node = pool.popBack();
11 var children = problem.decompose(Node, parent, best);
12 pool.pushBack(children);

// OUTPUT
13 problem.print_results(best);

34



Conclusions and perspectives



Context and objectives CPU-based B&B GPU-based B&B Software platform Conclusions References

Conclusions (1)

Design and implementation of the PGAS-based distBag_DFS data structure
→ Highly parallel and scalable
→ Hierarchical and locality-aware
→ Packaged into Chapel

Design and implementation of a distBag_DFS-based parallel B&B
→ High level of abstraction
→ Genericity w.r.t. the problem solved
→ Performance depends on characteristics of problem
→ Competitive against MPI+X implementation
→ Proof of optimality for hard PFSP instances

35



Context and objectives CPU-based B&B GPU-based B&B Software platform Conclusions References

Conclusions (1)

Design and implementation of the PGAS-based distBag_DFS data structure
→ Highly parallel and scalable
→ Hierarchical and locality-aware
→ Packaged into Chapel

Design and implementation of a distBag_DFS-based parallel B&B
→ High level of abstraction
→ Genericity w.r.t. the problem solved
→ Performance depends on characteristics of problem
→ Competitive against MPI+X implementation
→ Proof of optimality for hard PFSP instances

35



Context and objectives CPU-based B&B GPU-based B&B Software platform Conclusions References

Conclusions (2)

Design and implementation of a PGAS-based GPU-accelerated B&B
→ Unification of all parallel levels
→ Genericity w.r.t. the problem solved
→ Portability on both NVIDIA and AMD
→ High relative performance at the intra-node level
→ Limited compiler optimization

Distribution of a Chapel software platform for parallel B&B
→ Open-source and freely available
→ Extensible to other problems
→ B&B skeletons targeting various parallel systems

36



Context and objectives CPU-based B&B GPU-based B&B Software platform Conclusions References

Conclusions (2)

Design and implementation of a PGAS-based GPU-accelerated B&B
→ Unification of all parallel levels
→ Genericity w.r.t. the problem solved
→ Portability on both NVIDIA and AMD
→ High relative performance at the intra-node level
→ Limited compiler optimization

Distribution of a Chapel software platform for parallel B&B
→ Open-source and freely available
→ Extensible to other problems
→ B&B skeletons targeting various parallel systems

36



Context and objectives CPU-based B&B GPU-based B&B Software platform Conclusions References

Perspectives

Extend/improve proposed approaches
→ Adaptive load balancing mechanism [Chakroun et al., 2012]

Design fault-tolerance mechanisms
→ Checkpoint-and-restart [Bendjoudi et al., 2014]

Hybridize B&B with metaheuristics
→ Low-level and high-level teamwork hybrids [Talbi, 2009]

Solve open instances of hard COPs
→ Some PFSP Taillard’s instances remain open, more than 30 years after

their release [Gmys, 2022] (e.g., ta051, ta054, ta055, etc.)

Within the framework of the ANR/FNR UltraBO research project

37



Context and objectives CPU-based B&B GPU-based B&B Software platform Conclusions References

Perspectives

Extend/improve proposed approaches
→ Adaptive load balancing mechanism [Chakroun et al., 2012]

Design fault-tolerance mechanisms
→ Checkpoint-and-restart [Bendjoudi et al., 2014]

Hybridize B&B with metaheuristics
→ Low-level and high-level teamwork hybrids [Talbi, 2009]

Solve open instances of hard COPs
→ Some PFSP Taillard’s instances remain open, more than 30 years after

their release [Gmys, 2022] (e.g., ta051, ta054, ta055, etc.)

Within the framework of the ANR/FNR UltraBO research project

37



Context and objectives CPU-based B&B GPU-based B&B Software platform Conclusions References

Perspectives

Extend/improve proposed approaches
→ Adaptive load balancing mechanism [Chakroun et al., 2012]

Design fault-tolerance mechanisms
→ Checkpoint-and-restart [Bendjoudi et al., 2014]

Hybridize B&B with metaheuristics
→ Low-level and high-level teamwork hybrids [Talbi, 2009]

Solve open instances of hard COPs
→ Some PFSP Taillard’s instances remain open, more than 30 years after

their release [Gmys, 2022] (e.g., ta051, ta054, ta055, etc.)

Within the framework of the ANR/FNR UltraBO research project

37



Context and objectives CPU-based B&B GPU-based B&B Software platform Conclusions References

Perspectives

Extend/improve proposed approaches
→ Adaptive load balancing mechanism [Chakroun et al., 2012]

Design fault-tolerance mechanisms
→ Checkpoint-and-restart [Bendjoudi et al., 2014]

Hybridize B&B with metaheuristics
→ Low-level and high-level teamwork hybrids [Talbi, 2009]

Solve open instances of hard COPs
→ Some PFSP Taillard’s instances remain open, more than 30 years after

their release [Gmys, 2022] (e.g., ta051, ta054, ta055, etc.)

Within the framework of the ANR/FNR UltraBO research project

37



Context and objectives CPU-based B&B GPU-based B&B Software platform Conclusions References

Main publications
International journals (2):

G. Helbecque, J. Gmys, N. Melab, T. Carneiro, and P. Bouvry. Parallel distributed productivity-aware tree-search
using Chapel. Concurrency Computat Pract Exper (CCPE). 35(27):e7874, 2023. DOI: 10.1002/cpe.7874.
G. Helbecque, E. Krishnasamy, T. Carneiro, N. Melab, and P. Bouvry. Portable PGAS-based GPU-accelerated
Branch-and-Bound Algorithms at Scale. Concurrency Computat Pract Exper (CCPE). 2025. [Invited for
publication - submitted].

International conferences and workshops (5):
G. Helbecque, J. Gmys, T. Carneiro, N. Melab, and P. Bouvry. A performance-oriented comparative study of the
Chapel high-productivity language to conventional programming environments. In: Proceedings of the Thirteenth
International Workshop on Programming Models and Applications for Multicores and Manycores (PMAM). pp. 21–29,
2022. DOI: 10.1145/3528425.3529104.
G. Helbecque, E. Krishnasamy, N. Melab, and P. Bouvry. GPU-Accelerated Tree-Search in Chapel versus CUDA
and HIP. In: 14th IEEE Workshop Parallel / Distributed Combinatorics and Optimization (PDCO). 2024. DOI:
10.1109/IPDPSW63119.2024.00156.
G. Helbecque, T. Carneiro, N. Melab, J. Gmys, and P. Bouvry. PGAS Data Structure for Unbalanced Tree-Based
Algorithms at Scale. In: Computational Science – ICCS 2024 (ICCS). vol 14834, 2024. DOI:
10.1007/978-3-031-63759-9_13.
T. Carneiro, E. Kayraklioglu, G. Helbecque, N. Melab. Investigating Portability in Chapel for Tree-based
Optimization on GPU-powered Clusters. In: Euro-Par 2024: Parallel Processing (EuroPar). LNCS, vol. 14803, pp.
386-399, 2024. DOI: 10.1007/978-3-031-69583-4_27.
G. Helbecque, E. Krishnasamy, T. Carneiro, N. Melab, and P. Bouvry. A Chapel-based Multi-GPU
Branch-and-Bound Algorithm: Application to the Flowshop Scheduling Problem. In: 22nd International Workshop
on Algorithms, Models and Tools for Parallel Computing on Heterogeneous Platforms (HeteroPar). 2024.

38

https://doi.org/10.1002/cpe.7874
https://doi.org/10.1145/3528425.3529104
https://doi.org/10.1109/IPDPSW63119.2024.00156
https://doi.org/10.1007/978-3-031-63759-9_13
https://doi.org/10.1007/978-3-031-69583-4_27


Context and objectives CPU-based B&B GPU-based B&B Software platform Conclusions References

Software

The Chapel’s DistributedBag module:
https://github.com/chapel-lang/chapel (Chapel release ≥ 2.0)

Chapel-based parallel B&B skeletons for CPU-based systems:
https://github.com/Guillaume-Helbecque/P3D-DFS

Chapel-based parallel B&B skeletons for GPU-based systems:
https://github.com/Guillaume-Helbecque/GPU-accelerated-tree-search-Chapel

39

https://github.com/chapel-lang/chapel
https://github.com/Guillaume-Helbecque/P3D-DFS
https://github.com/Guillaume-Helbecque/GPU-accelerated-tree-search-Chapel


Context and objectives CPU-based B&B GPU-based B&B Software platform Conclusions References

References I

Alba, E. et al. (2002). “MALLBA: A Library of Skeletons for Combinatorial Optimisation”. In: Euro-Par
2002 Parallel Processing, pp. 927–932. doi: 10.1007/3-540-45706-2_132.

Bendjoudi, A., N. Melab, and E.-G. Talbi (2014). “FTH-B&B: A Fault-Tolerant Hierarchical Branch and
Bound for Large Scale Unreliable Environments”. In: IEEE Transactions on Computers 63.9,
pp. 2302–2315. doi: 10.1109/TC.2013.40.

Carneiro, T. et al. (2021). “Towards Chapel-based Exascale Tree Search Algorithms: dealing with multiple
GPU accelerators”. In: HPCS 2020 - The 18th International Conference on High Performance
Computing & Simulation.

Chakroun, I. and N. Melab (2012). “An Adaptative Multi-GPU Based Branch-and-Bound. A Case Study:
The Flow-Shop Scheduling Problem”. In: 2012 IEEE 14th International Conference on High
Performance Computing and Communication & 2012 IEEE 9th International Conference on
Embedded Software and Systems, pp. 389–395. doi: 10.1109/HPCC.2012.59.

40

https://doi.org/10.1007/3-540-45706-2_132
https://doi.org/10.1109/TC.2013.40
https://doi.org/10.1109/HPCC.2012.59


Context and objectives CPU-based B&B GPU-based B&B Software platform Conclusions References

References II

Chakroun, I. et al. (2013). “Combining multi-core and GPU computing for solving combinatorial
optimization problems”. In: Journal of Parallel and Distributed Computing 73.12, pp. 1563–1577. doi:
10.1016/j.jpdc.2013.07.023.

Chen, L. et al. (2011). “Unified Parallel C for GPU Clusters: Language Extensions and Compiler
Implementation”. In: Languages and Compilers for Parallel Computing, pp. 151–165. doi:
10.1007/978-3-642-19595-2_11.

Cunningham, D., R. Bordawekar, and V. Saraswat (2011). “GPU programming in a high level language:
compiling X10 to CUDA”. In: Proceedings of the 2011 ACM SIGPLAN X10 Workshop. doi:
10.1145/2212736.2212744.

Dijk, T. van and J. C. van de Pol (2014). “Lace: Non-blocking Split Deque for Work-Stealing”. In:
Euro-Par 2014: Parallel Processing Workshops, pp. 206–217. doi: 10.1007/978-3-319-14313-2_18.

Gmys, J. (2017). Heterogeneous cluster computing for many-task exact optimization - Application to
permutation problems. PhD thesis, Université de Mons and Université de Lille.

41

https://doi.org/10.1016/j.jpdc.2013.07.023
https://doi.org/10.1007/978-3-642-19595-2_11
https://doi.org/10.1145/2212736.2212744
https://doi.org/10.1007/978-3-319-14313-2_18


Context and objectives CPU-based B&B GPU-based B&B Software platform Conclusions References

References III

Gmys, J. (2022). “Exactly Solving Hard Permutation Flowshop Scheduling Problems on Peta-Scale
GPU-Accelerated Supercomputers”. In: INFORMS Journal on Computing 34.5, pp. 2502–2522. doi:
10.1287/ijoc.2022.1193.

Gmys, J. et al. (2017). “IVM-based parallel branch-and-bound using hierarchical work stealing on
multi-GPU systems”. In: Concurrency and Computation: Practice and Experience 29.9, e4019. doi:
10.1002/cpe.4019.

Hayashi, A., S. R. Paul, and V. Sarkar (2023). “A Multi-Level Platform-Independent GPU API for
High-Level Programming Models”. In: High Performance Computing. ISC High Performance 2022
International Workshops, pp. 90–107. doi: 10.1007/978-3-031-23220-6_7.

Lalami, M. E. and D. El-Baz (2012). “GPU Implementation of the Branch and Bound Method for
Knapsack Problems”. In: 2012 IEEE 26th International Parallel and Distributed Processing
Symposium Workshops & PhD Forum, pp. 1769–1777. doi: 10.1109/IPDPSW.2012.219.

42

https://doi.org/10.1287/ijoc.2022.1193
https://doi.org/10.1002/cpe.4019
https://doi.org/10.1007/978-3-031-23220-6_7
https://doi.org/10.1109/IPDPSW.2012.219


Context and objectives CPU-based B&B GPU-based B&B Software platform Conclusions References

References IV

Matocha, J. and T. Camp (1998). “A taxonomy of distributed termination detection algorithms”. In:
Journal of Systems and Software 43.3, pp. 207–221. doi: 10.1016/S0164-1212(98)10034-1.

Melab, N. (2005). Contributions à la résolution de problèmes d’optimisation combinatoire sur grilles de
calcul. Thèse HDR, Université des Sciences et Technologies de Lille.

Mezmaz, M., N. Melab, and E-G. Talbi (2007). “A Grid-enabled Branch and Bound Algorithm for Solving
Challenging Combinatorial Optimization Problems”. In: 2007 IEEE International Parallel and
Distributed Processing Symposium, pp. 1–9. doi: 10.1109/IPDPS.2007.370217.

Milthorpe, J., X. Wang, and A. Azizi (2024). “Performance Portability of the Chapel Language on
Heterogeneous Architectures”. In: 2024 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW), pp. 6–13. doi: 10.1109/IPDPSW63119.2024.00011.

Talbi, E.-G. (2009). Metaheuristics: From Design to Implementation. Wiley Publishing. isbn:
978-0-470-27858-1.

43

https://doi.org/10.1016/S0164-1212(98)10034-1
https://doi.org/10.1109/IPDPS.2007.370217
https://doi.org/10.1109/IPDPSW63119.2024.00011


Thank you for your attention
Contact:

guillaume.helbecque@uni.lu

guillaume.helbecque@univ-lille.fr

Work supported by:

guillaume.helbecque@uni.lu
guillaume.helbecque@univ-lille.fr


Appendices



Appendices

GPU approach, strong scaling efficiency inter-node

Table 3: Strong scaling efficiency at the inter-node level.

Instance node×1 node×16 node×32 node×64 node×128
kn/s kn/s speed-up kn/s speed-up kn/s speed-up kn/s speed-up

17-Queens 124,720.3 408,788.8 3.28 708,250.0 5.68 1,288,628.5 10.33 2,362,483.6 18.94
18-Queens 80,571.4 526,908.5 6.54 914,021.0 11.34 1,520,257.5 18.87 2,913,535.2 36.16
19-Queens 79,308.8 631,282.6 7.96 1,205,458.2 15.20 2,029,609.9 25.59 3,210,848.4 40.49

AVG 94,866.8 522,326.6 5.93 942,576.4 10.74 1,612,832.0 18.26 2,828,955.7 31.86
ta028 5,993.0 26,172.8 4.37 38,768.2 6.47 44,693.5 7.46 40,969.0 6.84
ta025 6,468.7 30,628.0 4.86 42,100.1 6.69 58,218.3 9.25 63,865.0 10.15
ta026 6,745.3 33,022.3 4.89 48,921.9 7.25 64,821.5 9.60 93,878.2 13.92
ta024 8,086.0 40,293.7 5.01 68,731.1 8.54 100,030.1 12.44 141,005.3 17.54
ta021 7,170.0 37,642.5 5.25 67,637.6 9.43 93,249.8 13.00 131,768.6 18.37
AVG 6,892.6 33,551.8 4.88 53,231.7 7.68 72,202.6 10.35 94,297.2 13.36

Need to investigate larger instances

44



Appendices

Execution statistics

Table 4: Execution statistics of the largest instance solved for each problem using 128 CPU
cores.

Instance kn/s
Percentage of total execution time

Remove Decompose Insert Termination
ta030 2,204.7 < 1% 98% < 1% < 1%

17-Queens 269,751.7 18% 62% 10% 8%
kp3 161,505.5 42% 47% 5% 4%

45


	Context and objectives
	PGAS-based B&B for CPU-based systems
	PGAS-based B&B for GPU-based systems
	Software platform for parallel B&B
	Conclusions and perspectives
	References
	Appendix
	Appendices


