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Combinatorial Optimization Problems (COPs)

Optimization problem :
{

min / max f(x),
subject to x ∈ X

Optimization problems are increasingly big in many application areas:
High-dimensionality, e.g., number of decision variables
Time-demanding objectives

Motivating example: Flowshop scheduling problem
Big instance ta056 (50 jobs, 20 machines): 1064 potential subproblems
22 years using a single-core processor [Mezmaz et al., 2007]
We need supercomputers to solve big COPs to optimality!

M1 M2 M3 M4
J1 5 3 4 1
J2 2 2 1 4
J3 1 3 5 2
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Branch-and-Bound (B&B) algorithms

B&B is a search algorithm based on implicit enumeration of candidate
solutions, explored by constructing a tree.

Four operators:

Branching
Bounding

Selection
Pruning
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Branch-and-Bound (B&B) algorithms

B&B is a search algorithm based on implicit enumeration of candidate
solutions, explored by constructing a tree.

Four operators:

Branching
Bounding

Selection
Pruning

Main properties:
Huge and unpredictable trees
Dynamic and irregular loads

3
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Architecture of modern supercomputers
TOP500 list (Nov. 2024): 9 out of TOP10 supercomputers are heterogeneous

Rank Name System Country Cores Rmax [PFlop/s]

1 El Capitan AMD 4th Gen EPYC 24C 1.8GHz,
AMD Instinct MI300A, Slingshot-11 United States 11,039,616 1,742.00

2 Frontier AMD Optimized 3rd Generation EPYC 64C 2GHz,
AMD Instinct MI250X, Slingshot-11 United States 9,066,176 1,353.00

3 Aurora Xeon CPU Max 9470 52C 2.4GHz,
Intel Data Center GPU Max, Slingshot-11 United States 9,264,128 1,012.00

4 Eagle Xeon Platinum 8480C 48C 2GHz,
NVIDIA H100, NVIDIA Infiniband NDR United States 2,073,600 561.20

5 HPC6 AMD Optimized 3rd Generation EPYC 64C 2GHz,
AMD Instinct MI250X, Slingshot-11 Italy 3,143,520 477.90

6 Supercomputer
Fugaku A64FX 48C 2.2GHz, Tofu interconnect D Japan 7,630,848 442.01

7 Alps NVIDIA Grace 72C 3.1GHz,
NVIDIA GH200 Superchip, Slingshot-11 Switzerland 2,121,600 434.90

8 LUMI AMD Optimized 3rd Generation EPYC 64C 2GHz,
AMD Instinct MI250X, Slingshot-11 Finland 2,752,704 379.70

9 Leonardo Xeon Platinum 8358 32C 2.6GHz, NVIDIA A100 SXM4
64 GB, Quad-rail NVIDIA HDR100 Infiniband Italy 1,824,768 241.20

10 Tuolumne AMD 4th Gen EPYC 24C 1.8GHz,
AMD Instinct MI300A, Slingshot-11 United States 1,161,216 208.10
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Architecture of modern supercomputers
TOP500 list (Nov. 2024): devices by three different vendors are present

Rank Name System Country Cores Rmax [PFlop/s]

1 El Capitan
AMD 4th Gen EPYC 24C 1.8GHz,

AMD Instinct MI300A , Slingshot-11
United States 11,039,616 1,742.00

2 Frontier AMD Optimized 3rd Generation EPYC 64C 2GHz,
AMD Instinct MI250X, Slingshot-11 United States 9,066,176 1,353.00

3 Aurora
Xeon CPU Max 9470 52C 2.4GHz,

Intel Data Center GPU Max , Slingshot-11
United States 9,264,128 1,012.00

4 Eagle
Xeon Platinum 8480C 48C 2GHz,

NVIDIA H100 , NVIDIA Infiniband NDR
United States 2,073,600 561.20

5 HPC6 AMD Optimized 3rd Generation EPYC 64C 2GHz,
AMD Instinct MI250X, Slingshot-11 Italy 3,143,520 477.90

6 Supercomputer
Fugaku A64FX 48C 2.2GHz, Tofu interconnect D Japan 7,630,848 442.01

7 Alps NVIDIA Grace 72C 3.1GHz,
NVIDIA GH200 Superchip, Slingshot-11 Switzerland 2,121,600 434.90

8 LUMI AMD Optimized 3rd Generation EPYC 64C 2GHz,
AMD Instinct MI250X, Slingshot-11 Finland 2,752,704 379.70

9 Leonardo Xeon Platinum 8358 32C 2.6GHz, NVIDIA A100 SXM4
64 GB, Quad-rail NVIDIA HDR100 Infiniband Italy 1,824,768 241.20

10 Tuolumne AMD 4th Gen EPYC 24C 1.8GHz,
AMD Instinct MI300A, Slingshot-11 United States 1,161,216 208.10
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PGAS alternative to MPI+X

MPI+X
“Evolutionary” approach

PGAS
“Revolutionary” approach
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Objectives

Huge and unpredictable trees
Dynamic and irregular loads

Challenges
Efficient operators with scalable data structures
Efficient multi-level parallelism

Bigger than ever
Heterogeneous

Complex programming
Unreliable (MTBF<1h)

Overall objective: Revisit the design and implementation of parallel B&B for
solving complex problems on ultra-scale supercomputers
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Related work

Limitation of existing parallel B&B algorithms, e.g. [Lalami et al., 2012];
[Gmys et al., 2017]; [Chakroun et al., 2013]; [Alba et al., 2002]:

Focus only on performance
Combine low-level programming environments

Focus on holistic PGAS-based approaches:
GPU computing in this context is at its infancy
Some initiatives to support GPU exist [Cunningham et al., 2011]; [Chen et al.,
2011]; [Hayashi et al., 2023]
GPU-native supports recently became available, e.g., Chapel [Milthorpe et al.,
2024]

→ Chapel (HPE/Cray) is considered in this thesis

Few works explore PGAS-based GPU-accelerated tree search
approaches [Carneiro et al., 2021]

7
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The Chapel programming language

High-level PGAS-based language:
Portable & scalable
Abstractions for data and task parallelism, concurrency, and nested parallelism
Open-source & collaborative, e.g., ChapelCon

GPU-native support:
CPU parallelism features also target GPU
Vendor-neutral, through the LLVM compiler framework:

PTX for NVIDIA GPUs
AMDGCN for AMD GPUs

More at: https://chapel-lang.org/.
8
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Contributions

Scalable data structure for billions of subproblems
→ The distBag_DFS data structure

Efficient mechanisms to deal with dynamic and irregular loads

Efficient implementation of these mechanisms
→ PGAS-based parallel B&B for CPU-based systems
→ PGAS-based parallel B&B for GPU-based systems
→ Software platform in Chapel

Collaboration with HPE/Cray (Spring, Texas, USA)

9
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Incremental design of the distBag_DFS data structure

Single-core pool-based B&B:
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Incremental design of the distBag_DFS data structure

Single-core pool-based B&B:

We iterate until the pool is empty → termination

10
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Model for parallel B&B on CPU

Parallel tree exploration [Melab, 2005]

Massively parallel and generic, but highly
irregular

Challenges: single-pool → multi-pool
Efficient load balancing mechanism
Efficient termination detection

11
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Parallel multi-pool B&B:
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Incremental design of the distBag_DFS data structure
Parallel multi-pool B&B:

Dynamic load balancing based on Work Stealing (WS):
WS = victim selection + granularity policy

12
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Parallel multi-pool B&B:

Dynamic load balancing based on Work Stealing (WS):
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Incremental design of the distBag_DFS data structure

Scalable synchronization mechanism: non-blocking split double-ended
queues [Dijk et al., 2014]

Concurrent accesses from both ends
Lock-free local access
Copy-free transfer from shared to private parts

13



Context and objectives CPU-based B&B GPU-based B&B Software platform Conclusions References

Incremental design of the distBag_DFS data structure
Locality-aware WS at the inter-node level: local, then global

Victim locale selection: random
Granularity: steal-one in each pool (if possible)

14
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Global termination detection
“Wave algorithm” [Matocha et al., 1998];

Each thread owns a state variable (IDLE or BUSY)
The initiator thread checks all other states
Termination = all threads are IDLE

Algorithm 1: Pseudo-code of PGAS-based termination detection
input : allThreadStates: global array of thread states

1 for localeID from 0 to numLocales do
2 for threadID from 0 to D-1 do
3 if allThreadStates[localeID][threadID]=BUSY then
4 return false; // At least one thread is still working

5 return true; // Triggers termination

15
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Experimental testbed

MeluXina - Cluster module (ranked 460th in June 2024 TOP500)
Up to 400 compute nodes × 2 AMD EPYC Rome 7H12 64 cores @ 2.6 GHz
CPUs and 512 GB of RAM
InfiniBand HDR high-speed fabric

Chapel release 2.1.0

16
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Benchmark problems: Permutation Flowshop Scheduling

Objective: Minimize the completion time of the last job on the last
machine.

M1 M2 M3 M4
J1 5 3 4 1
J2 2 2 1 4
J3 1 3 5 2

Main characteristics:

NP-hard COP
Minimization problem

Permutation-based
Coarse-grained bounding

17
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Benchmark problems: Binary Knapsack

Objective: Maximize total profit while satisfying capacity constraint.

A B C D E F
Profit 3 5 7 2 1 4

Weight 3 4 12 4 7 2

Main characteristics:

NP-hard COP
Maximization problem

Binary decision variables
Medium-grained bounding

17
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Benchmark problems: N-Queens

Objective: Determine the total number of valid configurations for
placing N non-attacking queens on an N ×N chessboard.

Main characteristics:

Constraint satisfaction problem
Permutation-based

Fine-grained evaluation

17
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Benchmark problems: Unbalanced Tree Search
Objective: Count the number of nodes in an implicitly constructed

tree that is parameterized in shape, depth, size, and imbalance.

Binomial: q child nodes with probability p and no children with
probability 1− p

Geometric: Each node has a branching factor that follows a
geometric distribution with an expected value that is specified by the
parameter b0 > 1

Main characteristics:

Performance benchmark
Trees follow a given
distribution

Fine-grained evaluation
Focus on load balancing

17
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Evaluation of dynamic load balancing

1 16 32 64 128
Processing cores

1
16
32

64

128

Sp
ee

d-
up

Linear
UTS - geo
UTS - bin

Fig. 1: Speed-up achieved solving geometrical
and binomial synthetic UTS trees.

59% of the ideal speed-up solving
UTS-geo

Only 29% solving UTS-bin
→ branching factor

High WS success rate

Instance Nb. of nodes (106) Time (s) nodes/s (103) WS attempts (% success)
UTS-geo 91.4 36.06 2,534.6 48,433 (99.0%)
UTS-bin 131.7 36.30 3,628.1 1,473,048 (96.8%)
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Strong scaling efficiency on three different problems
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Comparison against MPI+X baseline on PFSP
Baseline: MPI-PBB, state-of-the-art MPI+PThreads implementation [Gmys,
2017].

29 30 22 27 23 28 25 26 24 21
Instance index

0

20

40

60

80

100

120
Sp

ee
d-

up
 (i

n 
%

 o
f t

he
 li

ne
ar

)

MPI-PBB
Linear
8 nodes
16 nodes
32 nodes
64 nodes

Fig. 3: Speed-up achieved by P3D-DFS and MPI-PBB up to 64 compute nodes compared to
the execution on one node.
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Solving hard PFSP instances at scale
Proof of optimality for hard PFSP instances:

Instance # CPU cores Time (s) Core-hour # tree nodes (109) Optimum
ta056 51,200 18.1 257.4 (∼ 11 days) 173.3 3,679
ta052 8,192 7,960.5 18,114.6 (∼ 2 years) 17,117.8 3,699
ta057 51,200 2,017.6 28,694.8 (∼ 4 years) 28,340.7 3,704
ta053 8,192 43,605.5 99,226.7 (∼ 12 years) 94,885.1 3,640
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Model for parallel B&B on GPU
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Model for parallel B&B on GPU

Challenges:

Tune parameters: {m, M}
Manage initialization

Redesign WS mechanism
Ensure portability 22
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Initial search and static distribution

1 Initial search on CPU (assuming D GPUs):
Sequential (or weakly parallel) B&B
Until numNodes ∗D ∗m pending nodes

2 Static workload distribution:

23
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Redesign of WS and synchronization

Revisit of WS mechanism:
Victim selection: random
Granularity: steal-half, only if at least 2 ∗m available nodes

Revisit of synchronization mechanism: spin-locks

Source for image: https://www.slideserve.com/deiondre/spin-locks-and-contention.

24
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Experimental testbed

Evaluating code portability:

NVIDIA P100
NVIDIA V100
NVIDIA A100

AMD MI50
AMD MI250X
AMD MI300X

Evaluating scalability at intra-node level: LUMI, ranked 8th in Nov. 2024
TOP500 ranking

64-core AMD EPYC 7A53 “Trento” CPU and four AMD Instinct MI250X GPUs

Chapel release 2.1.0

25
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Code performance and portability
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Fig. 4: Normalized execution time, Chapel vs. C+CUDA/HIP, single-GPU.
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Loop-Invariant Code Motion (LICM) compiler optimization

Algorithm 2: Example of LICM optimization in PGAS-based languages.
input : n: number of iterations

A, B: arrays of constant data
1 Aptr ← constPtr(A[0]);
2 Bptr ← constPtr(B[0]);
3 for i from 0 to n do

// arithmetic operations, accessing Aptr and Bptr

LICM optimization not always triggered by Chapel compiler
→ Bug report

Performance improvement with manual LICM:

GPU architecture NVIDIA P100 NVIDIA V100 NVIDIA A100 AMD MI50 AMD MI250X AMD MI300X

Execution time -10% -17% -26% -26% -11% -7%
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Calibration of parameters
Solving PFSP ta030:

Table 1: Calibration of (m, M) parameters on AMD MI250X. Whiter is better.

m M 50,000 100,000 200,000 300,000 400,000 500,000 600,000
10 9.78 9.55 9.41 9.42 9.36 9.36 9.42
20 9.78 9.52 9.4 9.39 9.38 9.36 9.38
30 9.78 9.56 9.41 9.4 9.36 9.36 9.38
40 9.78 9.56 9.4 9.38 9.37 9.37 9.37
50 9.78 9.55 9.41 9.38 9.37 9.36 9.36
60 9.79 9.56 9.4 9.38 9.37 9.36 9.36
70 9.78 9.56 9.42 9.4 9.36 9.36 9.37
80 9.78 9.55 9.41 9.38 9.36 9.37 9.38
90 9.79 9.56 9.41 9.37 9.37 9.36 9.38
100 9.8 9.56 9.41 9.39 9.36 9.36 9.39

Optimal values: m = 50 and M = 500, 000
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Strong scaling efficiency: intra-node

Table 2: Strong scaling efficiency at the intra-node level.

Instance GPU×1 GPU×2 GPU×4 GPU×8
kn/s kn/s speed-up kn/s speed-up kn/s speed-up

15-Queens 34,744.0 57,970.7 1.67 82,106.1 2.36 88,475.6 2.54
16-Queens 34,884.4 60,163.2 1.72 95,487.7 2.74 119,120.2 3.41
17-Queens 34,940.7 64,458.7 1.84 93,966.3 2.69 124,720.3 3.57

AVG 34,856.4 60,864.2 1.74 90,553.4 2.60 110,768.8 3.17
ta028 1,366.0 2,092.4 1.53 3,569.3 2.61 5,993.0 4.39
ta025 1,361.2 2,102.2 1.54 3,673.6 2.70 6,468.7 4.75
ta026 1,393.4 2,166.3 1.55 3,814.3 2.74 6,745.3 4.84
ta024 1,393.6 2,167.5 1.56 3,973.0 2.85 8,086.0 5.80
ta021 1,421.1 2,175.4 1.53 3,992.2 2.81 7,170.0 5.05
AVG 1381.1 1762.8 1.54 3804.5 2.7 6892.6 5.0

Chapel on average 60% slower than C+HIP considering GPU×1 on PFSP

29
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Scalable code development

Motivations:
Reducing the costs of software development
Targeting as wider community as possible
Ensuring maintainability and portability across diverse architectures

Tools:
Object-oriented programming
High-level abstraction for parallelism
Distribution (e.g., GitHub), etc.

30
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The Chapel’s DistributedBag module
Package module for importing the distBag_DFS data structure.

Available from Chapel 2.0 release

Usage:

use DistributedBag;

var bag = new distBag(int);
...

Code demo at ChapelCon ’24 (broadcast
on YouTube).

31
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Software platform
Node type + Problem concrete class = set of parallel B&B skeletons (--mode)

Fig. 5: UML diagram of the pBB-chpl software platform.
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The Problem interface
Template for problem-specific operators (branching, bounding, etc.)

Algorithm 3: The Problem interface.
1 class Problem

// CORE PROCEDURES
2 proc copy() {}
3 proc decompose(/*args*/) {}
4 proc getInitSolution(): int {}

// UTILITY PROCEDURES
5 proc print_settings(): void {}
6 proc print_results(/*args*/): void {}
7 proc output_filepath(): string {}
8 proc help_message(): void {}

33



Context and objectives CPU-based B&B GPU-based B&B Software platform Conclusions References

Skeletons for parallel B&B: example
Algorithm 4: Chapel-based B&B skeleton for sequential execution.

1 use List;
2 use Node, Problem;
3 proc search_sequential(Node, problem)
4 var best = problem.getInitSolution();
5 problem.print_settings();

// INITIALIZATION
6 var pool: list(Node);
7 var root = new Node (problem);
8 pool.pushBack(root);

// TREE EXPLORATION
9 while !pool.isEmpty() do

10 var parent: Node = pool.popBack();
11 var children = problem.decompose(Node, parent, best);
12 pool.pushBack(children);

// OUTPUT
13 problem.print_results(best);
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Conclusions (1)

Design and implementation of the PGAS-based distBag_DFS data structure
→ Highly parallel and scalable
→ Hierarchical and locality-aware
→ Packaged into Chapel

Design and implementation of a distBag_DFS-based parallel B&B
→ High level of abstraction
→ Genericity w.r.t. the problem solved
→ Performance depends on characteristics of problem
→ Competitive against MPI+X implementation
→ Proof of optimality for hard PFSP instances
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Conclusions (2)

Design and implementation of a PGAS-based GPU-accelerated B&B
→ Unification of all parallel levels
→ Genericity w.r.t. the problem solved
→ Portability on both NVIDIA and AMD
→ High relative performance at the intra-node level
→ Limited compiler optimization

Distribution of a Chapel software platform for parallel B&B
→ Open-source and freely available
→ Extensible to other problems
→ B&B skeletons targeting various parallel systems
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Perspectives

Extend/improve proposed approaches
→ Adaptive load balancing mechanism [Chakroun et al., 2012]

Design fault-tolerance mechanisms
→ Checkpoint-and-restart [Bendjoudi et al., 2014]

Hybridize B&B with metaheuristics
→ Low-level and high-level teamwork hybrids [Talbi, 2009]

Solve open instances of hard COPs
→ Some PFSP Taillard’s instances remain open, more than 30 years after

their release [Gmys, 2022] (e.g., ta051, ta054, ta055, etc.)

Within the framework of the ANR/FNR UltraBO research project
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Software

The Chapel’s DistributedBag module:
https://github.com/chapel-lang/chapel (Chapel release ≥ 2.0)

Chapel-based parallel B&B skeletons for CPU-based systems:
https://github.com/Guillaume-Helbecque/P3D-DFS

Chapel-based parallel B&B skeletons for GPU-based systems:
https://github.com/Guillaume-Helbecque/GPU-accelerated-tree-search-Chapel
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GPU approach, strong scaling efficiency inter-node

Table 3: Strong scaling efficiency at the inter-node level.

Instance node×1 node×16 node×32 node×64 node×128
kn/s kn/s speed-up kn/s speed-up kn/s speed-up kn/s speed-up

17-Queens 124,720.3 408,788.8 3.28 708,250.0 5.68 1,288,628.5 10.33 2,362,483.6 18.94
18-Queens 80,571.4 526,908.5 6.54 914,021.0 11.34 1,520,257.5 18.87 2,913,535.2 36.16
19-Queens 79,308.8 631,282.6 7.96 1,205,458.2 15.20 2,029,609.9 25.59 3,210,848.4 40.49

AVG 94,866.8 522,326.6 5.93 942,576.4 10.74 1,612,832.0 18.26 2,828,955.7 31.86
ta028 5,993.0 26,172.8 4.37 38,768.2 6.47 44,693.5 7.46 40,969.0 6.84
ta025 6,468.7 30,628.0 4.86 42,100.1 6.69 58,218.3 9.25 63,865.0 10.15
ta026 6,745.3 33,022.3 4.89 48,921.9 7.25 64,821.5 9.60 93,878.2 13.92
ta024 8,086.0 40,293.7 5.01 68,731.1 8.54 100,030.1 12.44 141,005.3 17.54
ta021 7,170.0 37,642.5 5.25 67,637.6 9.43 93,249.8 13.00 131,768.6 18.37
AVG 6,892.6 33,551.8 4.88 53,231.7 7.68 72,202.6 10.35 94,297.2 13.36

Need to investigate larger instances
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Execution statistics

Table 4: Execution statistics of the largest instance solved for each problem using 128 CPU
cores.

Instance kn/s
Percentage of total execution time

Remove Decompose Insert Termination
ta030 2,204.7 < 1% 98% < 1% < 1%

17-Queens 269,751.7 18% 62% 10% 8%
kp3 161,505.5 42% 47% 5% 4%
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