
Vendor-Neutral GPU Programming
In Chapel

Jade Abraham
jade.abraham@hpe.com
linkedin.com/in/jabraham17

HPE Developer Meetup
July 31, 2024

Engin Kayraklioglu
engin@hpe.com
linkedin.com/in/engink

mailto:jade.abraham@hpe.com
http://www.linkedin.com/in/jabraham17
mailto:engin@hpe.com
http://www.linkedin.com/in/engink

2

It is Hard to Avoid GPUs

With GPUs

Without GPUs

41%
72%

of top 10 have GPUs

in the last 3 years

27%
52%

of top 100 have GPUs

in the last 3 years

13x more systems w/GPUs

www.top500.org

http://www.top500.org/

• ... but programming for multiple nodes with GPUs appears to require at least 2 programming models
• all of the models rely on C/C++/Fortran, which are different than the languages being taught these days
• as a result, using GPUs in HPC has a high barrier of entry

3

GPUs are Easy to Find... but difficult to program

OpenMP

MPI
MPI+OpenMP

CUDA

HIP

SYCL

OpenAcc

OpenMP

RAJA

Kokkos

MPI+CUDA

MPI+OpenMP+X

All are effective, powerful, essential and tested technologies!

Shared
Memory

Distributed
Memory

From
Vendors

Portable Solutions
(directives)

GPU Programming No distributed memory
support here

(C++ templates)

Chapel is an alternative for productive
distributed and shared memory GPU programming

in a vendor-neutral way.

Chapel: A modern parallel programming language
• portable & scalable
• open-source & collaborative

Goals:
• Support general parallel programming
• Make parallel programming at scale far more productive

What is Chapel?

4

chapel-lang.org

http://chapel-lang.org/

Chapel works everywhere
• you can develop on your laptop and have the code scale on a supercomputer
• GPUs can be targeted in a vendor-neutral way
• runs on Linux laptops/clusters, Cray systems, MacOS, WSL, AWS, Raspberry Pi
• shown to scale on Cray networks (Slingshot, Aries), InfiniBand, RDMA-Ethernet

Chapel makes distributed/shared memory parallel programming easy
• data-parallel, locality-aware loops,
• ability to move execution and allocation to remote nodes,
• distributed arrays and bulk array operations
• different types of parallelism can be expressed with the same language features

5

What is Chapel?

Applications of Chapel

6(images provided by their respective teams and used with permission)

CHAMPS: 3D Unstructured CFD
Laurendeau, Bourgault-Côté, Parenteau, Plante, et al.

École Polytechnique Montréal

ChplUltra: Simulating Ultralight Dark Matter
Nikhil Padmanabhan, J. Luna Zagorac, et al.

Yale University et al.

Arkouda: Interactive Data Science at Massive Scale
Mike Merrill, Bill Reus, et al.

U.S. DoD

ChOp: Chapel-based Optimization
T. Carneiro, G. Helbecque, N. Melab, et al.

INRIA, IMEC, et al.

Chapel-based Hydrological Model Calibration
Marjan Asgari et al.

University of Guelph

?

Your Application Here?CHGL: Chapel Hypergraph Library
Louis Jenkins, Cliff Joslyn, Jesun Firoz, et al.

PNNL

CrayAI HyperParameter Optimization (HPO)
Ben Albrecht et al.

Cray Inc. / HPE

Lattice-Symmetries: a Quantum Many-Body Toolbox
Tom Westerhout

Radboud University

ChapQG: Layered Quasigeostrophic CFD
Ian Grooms and Scott Bachman

University of Colorado, Boulder et al.

Desk dot chpl: Utilities for Environmental Eng.
Nelson Luis Dias

The Federal University of Paraná, Brazil

RapidQ: Mapping Coral Biodiversity
Rebecca Green, Helen Fox, Scott Bachman, et al.

The Coral Reef Alliance

Active GPU efforts

7

Coral Reef Spectral Biodiversity

1. Read in a (M x N) raster image of habitat data M

N

P

P

2. Create a (P x P) mask to find all points within a
given radius.

3. Convolve this mask over the entire domain and
perform a weighted reduce at each location.

Algorithmic complexity: 𝑂 𝑀𝑁𝑃!

Typically:
- M, N > 10,000

- P ~ 400

proc convolve(InputArr, OutputArr) { // 3D Input, 2D Output

 for ... {
 tonOfMath();
 }
}
proc main() {
 var InputArr: ...;
 var OutputArr: ...;

 convolve(InputArr, OutputArr);
}

8

Coral Reef Spectral Biodiversity

proc convolve(InputArr, OutputArr) { // 3D Input, 2D Output

 foreach ... {
 tonOfMath();
 }
}
proc main() {
 var InputArr: ...;
 var OutputArr: ...;

 coforall loc in Locales do on loc { // use all nodes in parallel...

 coforall gpu in here.gpus do on gpu { // using GPUs on this node in parallel...

 coforall task in 0..#numWorkers { // using numWorkers on this GPU in parallel.

 var MyInputArr = InputArr[...];
 var MyOutputArr: ...;
 convolve(MyInputArr, MyOutputArr);
 OutputArr[...] = MyOutputArr;
}}}}

9

Coral Reef Spectral Biodiversity

Using a different loop flavor to enable GPU execution.

Multi-node, multi-GPU, multi-thread parallelism
are expressed using the same language constructs.

High-level, intuitive array operations
work across nodes and/or devices

proc convolve(InputArr, OutputArr) { // 3D Input, 2D Output

 foreach ... {
 tonOfMath();
 }
}
proc main() {
 var InputArr: ...;
 var OutputArr: ...;

 coforall loc in Locales do on loc { // use all nodes in parallel...

 coforall gpu in here.gpus do on gpu { // using GPUs on this node in parallel...

 coforall task in 0..#numWorkers { // using parallel tasks on this GPU.

 var MyInputArr = InputArr[...];
 var MyOutputArr: ...;
 convolve(MyInputArr, OutputArr);
 OutputArr[...] = MyOutputArr;
}}}}

10

Coral Reef Spectral Biodiversity
Runs on Frontier!

• 5x improvement going from 2 to 64 nodes
• (from 16 to 512 GPUs)

• Straightforward code changes:
• from sequential Chapel code
• to GPU-enabled one
• to multi-node, multi-GPU, multi-thread

• Scalability improvements coming soon!

• An overview of parallelism and locality concepts in Chapel
• A live demo showcasing GPU capabilities
• Stories from the Chapel community

What we will not discuss today:
• Comprehensive list of Chapel features

– (important ones will be covered)

• How GPU support is implemented
– (happy to go over some backup slides, if there's interest)

• Everything you can do with GPUs using Chapel
– (there's only so much time J)

11

What We Will Discuss Today

GPU Programming in Chapel

12

• In Chapel, a locale refers to a compute resource with…
• processors, so it can run tasks
• memory, so it can store variables

• For now, think of each compute node as being a locale

13

Locales in Chapel

Processor Core

Memory

Compute
Node 0

Compute
Node 1

Compute
Node 2

Compute
Node 3

locale: A type that represents system resources on which the program can run
Locales: An array of locale values
here : The locale on which the current task is executing

Key Built-In Types and Variables Related to Locales

Locale 0 Locale 1 Locale 2 Locale 3

14

Processor Core

Memory

here Locales

1. parallelism: Which tasks should run simultaneously?
2. locality: Where should tasks run? Where should data be allocated?

Key Concerns for Scalable Parallel Computing

Locale 0 Locale 1 Locale 2 Locale 3

15

Processor Core

Memory

1. parallelism: Which tasks should run simultaneously?
2. locality: Where should tasks run? Where should data be allocated?

• complicating matters, compute nodes now often have GPUs with their own processors and memory

Key Concerns for Scalable Parallel Computing

16

Locale 0 Locale 1 Locale 2 Locale 3

Processor Core

Memory

1. parallelism: Which tasks should run simultaneously?
2. locality: Where should tasks run? Where should data be allocated?

• complicating matters, compute nodes now often have GPUs with their own processors and memory
• we represent these as sub-locales in Chapel

Key Concerns for Scalable Parallel Computing

Locale 0 Locale 1 Locale 2 Locale 3

17

CPU Core

Memory

GPU Core

Live Demo

18

19

Example Codes Are Available

https://github.com/jabraham17/hpe-dev-meetup-chapel-july-2024

https://github.com/jabraham17/hpe-dev-meetup-chapel-july-2024

Stories From
The Chapel Community

20

• Comparing Chapel's performance
...against OpenMP, Kokkos, CUDA and HIP
...on different GPU and CPUs
...using BabelStream, miniBUDE and TeaLeaf

• Recently presented at
• Heterogeneity in Computing Workshop (HCW)
• In conjunction with IPDPS

21

Chapel Performance on Different GPU and CPUs

Paper is available at milthorpe.org/wp-content/uploads/2024/03/Milthorpe_HCW2024.pdf

https://milthorpe.org/wp-content/uploads/2024/03/Milthorpe_HCW2024.pdf

22

miniBUDE

• Proxy for BUDE (a protein docking simulation)
• The computation is very arithmetically intensive and makes significant use of trigonometric functions

Figure from: "Performance Portability of the Chapel Language on Heterogeneous Architectures". Josh Milthorpe (Oak Ridge National Laboratory, Australian National University), Xianghao
Wang (Australian National University), Ahmad Azizi (Australian National University) Heterogeneity in Computing Workshop (HCW)

CPUs

GPUs

• Comparing Chapel's native GPU programming
...against interoperability with HIP and CUDA
...on Frontier and Perlmutter
...using N-Queens as proxy for combinatorial optimization

• To be presented at Euro-Par 2024
• 26-30 August
• Madrid, Spain

23

Native GPU Programming in Chapel at Scale

24

Native GPU Programming in Chapel at Scale

Figure from: "Investigating Portability in Chapel for Tree-Based Optimizations on GPU-powered Clusters". Tiago Carneiro, Engin Kayraklioglu, Guillaume Helbecque, Nouredine Melab
Europar 2024

<<
<<

<<

A Case for Parallel-First Languages in Post-Serial, Accelerated World
Paul Sathre, Virginia Tech

25

Keynote at ChapelCon '24

Slides and recording are available on
chapel-lang.org/ChapelCon24.html#keynote

https://chapel-lang.org/ChapelCon24.html

Summary

26

Over ~3 years we have been steadily improving
• NVIDIA, AMD GPUs are supported
• Multiple nodes with multiple GPUs can be used
• Parallel tasks can use GPUs concurrently
• GPU features can be emulated on CPUs

Mature enough to get started, big efforts are still underway
• Distributed arrays
• Intel support
• Improving language features to support GPU programming
• Performance improvements
• Bug fixes

27

Where We Are Today

March

2024
October

2020

Chapel Tensor Library (github.com/Iainmon/gputil)
• PyTorch like interface for tensor operations:

– Used for inference using NVIDIA and AMD GPUs
– Builds up composable network layers like PyTorch
– Supports loading in pretrained models from PyTorch
– Tracks computational graph, supports backpropagation

• Ongoing effort is to support PyTorch interoperability and multi-locale inference

llm.chpl
• A port of llm.c in Chapel (https://github.com/karpathy/llm.c)
• Even shorter, even more parallel implementation of GPT-2

– Chapel's multidimensional arrays make implementation much simpler

MLPerf
• We are actively looking into porting some MLPerf benchmarks in Chapel
• If interested, please reach out!

28

Ongoing AI/ML Efforts

Stay tuned!

Stay tuned!

https://github.com/Iainmon/gputil
https://github.com/karpathy/llm.c

GPU Programming Blog Series: chapel-lang.org/blog/series/gpu-programming-in-chapel/

Technote: https://chapel-lang.org/docs/main/technotes/gpu.html
• Anything and everything about our GPU support

– configuration, advanced features, links to some tests, caveats/limitations

• More of a reference manual than a tutorial

Previous talks
• LinuxCon / Open Source Summit North America 2024 Talk: GPU Programming in Chapel and a Live Demo

– https://youtu.be/5-jLdKduaJE?si=ezaz5mDORvmTjgRL

• CHIUW '23 Talk: updates from May '22-May '23 period
– https://chapel-lang.org/CHIUW/2023/KayrakliogluSlides.pdf

• LCPC '22 Talk: a lot of details on how the Chapel compiler works to create GPU kernels
– https://chapel-lang.org/presentations/Engin-SIAM-PP22-GPU-static.pdf

29

If You Want to Learn More About GPU Programming in Chapel

https://chapel-lang.org/blog/series/gpu-programming-in-chapel/
https://chapel-lang.org/docs/main/technotes/gpu.html
https://youtu.be/5-jLdKduaJE?si=ezaz5mDORvmTjgRL
https://chapel-lang.org/CHIUW/2023/KayrakliogluSlides.pdf
https://chapel-lang.org/presentations/Engin-SIAM-PP22-GPU-static.pdf

Join the discussion on GitterJoin the discussion on Discourse

Try Chapel on GitHub Codespaces
github.com/chapel-lang/chapel-hello-world

See many other ways of trying Chapel
chapel-lang.org/download.html

30

Chapel is Open Source, Get Involved!

Check out "GPU Support" issues to contribute/report bugs

GPU support coming soon!

https://gitter.im/chapel-lang/chapel
https://chapel.discourse.group/
https://github.com/chapel-lang/chapel-hello-world
https://chapel-lang.org/download.html
https://github.com/chapel-lang/chapel/issues?q=is%3Aopen+is%3Aissue+label%3A%22area%3A+GPU+Support%22

Chapel homepage: https://chapel-lang.org
• (points to all other resources)

Blog: https://chapel-lang.org/blog/

Social Media:
• Facebook: @ChapelLanguage
• LinkedIn: ChapelLanguage
• Mastodon: @ChapelProgrammingLanguage
• X / Twitter: @ChapelLanguage
• YouTube: @ChapelLanguage

Community Discussion / Support:
• Discourse: https://chapel.discourse.group/
• Gitter: https://gitter.im/chapel-lang/chapel
• Stack Overflow: https://stackoverflow.com/questions/tagged/chapel

• GitHub Issues: https://github.com/chapel-lang/chapel/issues

Other Chapel Resources

31

https://chapel-lang.org/
https://chapel-lang.org/blog/
https://www.facebook.com/ChapelLanguage/
http://linkedin.com/company/ChapelLanguage
https://mastodon.social/@chapelprogramminglanguage
https://twitter.com/ChapelLanguage
https://www.youtube.com/@chapellanguage
https://chapel.discourse.group/
https://gitter.im/chapel-lang/chapel
https://stackoverflow.com/questions/tagged/chapel
https://github.com/chapel-lang/chapel/issues

GPUs are becoming more common but programming them isn't getting easier.
• C/C++/Fortran are not good starting points for many potential users.
• GPU capability (and parallelism in general) is typically achieved by additional frameworks.

Parallel programming, GPUs and HPC should be more accessible.
• There are many potential use cases in different fields, including social sciences.
• Making GPUs more accessible (and parallelism in general) accelerates progress.

Chapel makes parallel programming, GPUs and HPC more accessible.
• Existing applications prove that Chapel delivers on the promise.
• Its GPU support makes Chapel an all-inclusive solution for parallel programming.

32

Closing Thoughts

chapel-lang.org

http://chapel-lang.org/

