-

Hewlett Packard
Enterprise

Vendor-Neutral GPU Programming
In Chapel

Jade Abraham | Engin Kayraklioglu

jade.abraham@hpe.com engin@hpe.com
linkedin.com/in/jabraham17 | linkedin.com/in/engink

HPE Developer Meetup
July 31,2024

mailto:jade.abraham@hpe.com
http://www.linkedin.com/in/jabraham17
mailto:engin@hpe.com
http://www.linkedin.com/in/engink

It is Hard to Avoid GPUs

TOP500 Systems with GPUs Over Time

e

S S = = =———
v el = oo
- [= Ty — = =

. < === T = e

With GPUs o B T e g e
1 . = —
Without GPUs S Y g = —

\H

w |

L — ————
P e SR I R ™o — —
e e ==
= = = ——
e =
T o ——
. = __?]
T — e —
— P it ——
— e e e ——
= e —— o ————
e ———

i

i

500

150 -

Systems
w/ GPUs
=
o
o

%
0 of top 10 have GPUs

TNy N

0
2 /0 in the last 3 years

%
0 of top 100 have GPUs
0
¢

in the last 3 years

13X more systems w/GPUs

http://www.top500.org/

GPUs are Easy to Find... but difficult to program

GPU Programming No distributed memory
Shared Distributed From Portable Solutions support here

Memory Memory Vendors (directives) (C++ templates)

OpenAcc *
OpenMP *

All are effective, powerful, essential and tested technologies!

OpenMP

e ... but programming for multiple nodes with GPUs appears to require at least 2 programming models
« all of the models rely on C/C++/Fortran, which are different than the languages being taught these days
e as a result, using GPUs in HPC has a high barrier of entry

Chapel is an alternative for productive
distributed and shared memory GPU programming
in a vendor-neutral way.

What is Chapel?

Chapel: A modern parallel programming language ~\
» portable & scalable
e open-source & collaborative —y,
Goals:

chapel-lang.org

e Support general parallel programming
o Make parallel programming at scale far more productive

http://chapel-lang.org/

What is Chapel?

Chapel works everywhere

e GPUs can be targeted in a vendor-neutral way

Chapel makes distributed/shared memory parallel programming easy
o data-parallel, locality-aware loops,

e ability to move execution and allocation to remote nodes,

e distributed arrays and bulk array operations

o different types of parallelism can be expressed with the same language features

—

5

Applications of Chapel

CHAMPS: 3D Unstructured CFD
Laurendeau, Bourgault-Coté, Parenteau, Plante, et al.
Ecole Polytechnique Montréal

Lattice-Symmetries: a Quantum Many-Body Toolbox Desk dot chpl: Utilities for Environmental Eng.
Tom Westerhout
Radboud University

Chapel-based Hydrological Model Calibration
Marjan Asgari et al.
University of Guelph

—

Chapel Server

Python3 Client ma
S Socket

Code Modules E I

Distributed

Object Store |8
Platform

7 | Acithmetic

Arkouda: Interactive Data Science at Massive Scale

Mike Merrill, Bill Reus, et al.
U.S. DoD

Low-pass filter with LOWESS (intrinsically parallel)

100

80 - .

60

40 + o

RH (%) at Lake Mead

20

0
2010 2011 2012 2013 2014 2015
date.

Nelson Luis Dias
The Federal University of Parana, Brazil

FEATURES ENSEMBLES
EXPLORATIONuPARAMETEMAHONALE

CrayAl HyperParameter Optimization (HPO)
Ben Albrecht et al.
Cray Inc. / HPE

Active GPU efforts

ChOp: Chapel-based Optimization
T. Carneiro, G. Helbecque, N. Melab, et al.
INRIA, IMEC, et al.

RapidQ: Mapping Coral Biodiversity
Rebecca Green, Helen Fox, Scott Bachman, et al.
The Coral Reef Alliance

CHGL: Chapel Hypergraph Library
Louis Jenkins, Cliff Joslyn, Jesun Firoz, et al.
PNNL

(images provided by their respective teams and used with permission)

ChplUltra: Simulating Ultralight Dark Matter
Nikhil Padmanabhan, J. Luna Zagorac, et al.
Yale University et al.

ChapQG: Layered Quasigeostrophic CFD
lan Grooms and Scott Bachman
University of Colorado, Boulder et al.

?

Your Application Here?

Coral Reef Spectral Biodiversity

1. Read in a (M x N) raster image of habitat data M

A
v

2. Create a (P x P) mask to find all points within a 1
given radius.

3. Convolve this mask over the entire domain and
perform a weighted reduce at each location.

P

ryo
A

Algorithmic complexity: O (MNP3)
Typically:

-M,N > 10,000

- P~ 400

»

&

Coral Reef Spectral Biodiversity

proc convolve (InputArr, OutputArr) { //3Dlinput, 2D Output
for ... {
tonOfMath () ;

}
}

proc main () {
var InputArr: ...;
var OutputArr: ...;

convolve (InputArr, OutputArr);

}

Coral Reef Spectral Biodiversity

proc convolve (InputArr, OutputArr) { //3DInput, 2D Output

foreach ... { Ui g . q . e GPU .
tonOfMath () ; sing a different loop flavor to enable execution.

}
}

proc main() { Multi-node, multi-GPU, multi-thread parallelism

var InputArr: are expressed using the same language constructs.

var OutputArr:

.
LA 4

coforall loc in Locales do on loc { // use all nodes in parallel...
coforall gpu in here.gpus do on gpu { //using GPUs on this node in parallel...
coforall task in 0. .#numWorkers { // using numWorkers on this GPU in parallel.
var MyInputArr = InputArr[...];
var MyOutputArr: ...;

High-level, intuitive array operations

convolve (MyInputArr, MyOutputArr) work across nodes and/or devices

OutputArr[...] = MyOutputArr;
BB

—

Coral Reef Spectral Biodiversity

Runs on Frontier!
proc convolve (InputArr, OutputArr) { //3DIng

foreach { e 5x improvement going from 2 to 64 nodes
tonOfMath () ; e (from 16 to 512 GPUs)
J o Straightforward code changes:
} | o from sequential Chapel code
proc Talnt(; { « to GPU-enabled one
var InputArr: ...; . : :
b o to multi-node, multi-GPU, multi-thread
var OutputArr: ...;
Multilocale Coral Image Analysis B
coforall loc in Locales do on loc { //u AT pretlia —
coforall gpu in here.gpus do on gpu { /u §3' i
coforall task in O..#numWorkers { //using pe 32;
1
var MyInputArr = InputArr[...]; ; 7 Speedup over 2 nodes .
var MyOutputArr: ...; 2 umber of Nodes o4
convolve (MyInputArr, OutputArr); (x8 GPUs)
OutputArr[...] = MyOutputArr;

e Scalability improvements coming soon!
b}

—

10

What We Will Discuss Today

e An overview of parallelism and locality concepts in Chapel
e A live demo showcasing GPU capabilities
e Stories from the Chapel community

What we will not discuss today:
o Comprehensive list of Chapel features

- (important ones will be covered)
« How GPU support is implemented

- (happy to go over some backup slides, if there's interest)
« Everything you can do with GPUs using Chapel

— (there's only so much time ©)

11

GPU Programming in Chapel

Locales in Chapel

e In Chapel, a locale refers to a compute resource with...
e processors, so it can run ftasks
e memory, so it can store variables

e For now, think of each compute node as being a locale

Compute Compute Compute Compute
Node O Node 1 Node 2 Node 3

— 0 B .

Processor Core

. Memory

Key Built-In Types and Variables Related to Locales

locale:
Locales:
here

A type that represents system resources on which the program can run

An array of 1ocale values
The 1ocale on which the current task is executing

J

Locale O Locale 1 Locale 2 Locale 3
/ |
here Locales
Processor Core
. Memory

14

Key Concerns for Scalable Parallel Computing

1. parallelism: Which tasks should run simultaneously?
2. locality: Where should tasks run? Where should data be allocated?

Locale O

oo
o

aﬁﬁ

Locale 1

Locale 2

o

o

o
so

o
ooﬁ\ |

Locale 3

oo
dho

. Memory

Processor Core

15

Key Concerns for Scalable Parallel Computing

1. parallelism: Which tasks should run simultaneously?
2. locality: Where should tasks run? Where should data be allocated?
« complicating matters, compute nodes now often have GPUs with their own processors and memory

Locale O

_mm

Locale 1

b

Locale 2

B

. Memory

Locale 3

Processor Core

16

Key Concerns for Scalable Parallel Computing

1. parallelism: Which tasks should run simultaneously?
2. locality: Where should tasks run? Where should data be allocated?

« complicating matters, compute nodes now often have GPUs with their own processors and memory
« we represent these as sub-locales in Chapel

Locale O

GPUO GPU1

Locale 1

GPUO GPU1

GPU Core
CPU Core

. Memory

Locale 2

GPUO GPU1

Locale 3

GPUO

GPU1

17

Live Demo

Example Codes Are Available

https://github.com/jabraham17/hpe-dev-meetup-chapel-july-2024

hpe-dev-meetup-chapel-july-2024

¥ main ~ ¥ 1Branch © 0 Tags

jabraham17 update readme

[01_simpleSingleGpu.chpl
[02_arrayAssign.chpl

[03_sigmoid.chpl

[04_softmax.chpl

[os5_life.chpl

[README.md

07 README

README

Public

Q Gotofile

initial commit of demo codes
initial commit of demo codes
initial commit of demo codes
initial commit of demo codes
initial commit of demo codes

update readme

& Watch 1

t Add file ~ <> Code ~

41ebe00 - 2 hours ago @ 2 Commits

2 hours ago
2 hours ago
2 hours ago
2 hours ago
2 hours ago

2 hours ago

7 =

These codes were used in the HPE Developer Meetup on July 31st 2024 for "Vendor-Neutral GPU Programming in

Chapel".

(Y H

E—

https://github.com/jabraham17/hpe-dev-meetup-chapel-july-2024

Stories From
The Chapel Community

20

Chapel Performance on Different GPU and CPUs

e Comparing Chapel's performance
..against OpenMP, Kokkos, CUDA and HIP
..on different GPU and CPUs
..using BabelStream, miniBUDE and Teal eaf

e Recently presented at
» Heterogeneity in Computing Workshop (HCW)
e In conjunction with IPDPS

Performance Portability of the Chapel Language on
Heterogeneous Architectures

Josh Milthorpe Xianghao Wang Ahmad Azizi
Oak Ridge National Laboratory Australian National University Australian National University
Oak Ridge, Tennessee, USA Canberra, Australia Canberra, Australia

Australian National University
Canberra, Australia
ORCID: 0000-0002-3588-9896

Abstract—A performance-portable application can run on a
variety of different hardware platforms, achieving an acceptable

level of performance without requiring significant rewriting
for each platform. Several performance-portable programming
models are now suitable for high-performance scientific appli-

|cation development, including OpenMP and Kokkos. Chapel is

other heterogeneous programming models that allow single-
source programming for diverse hardware platforms.

We seek to answer the question: how well does Chapel
support the development of performance-portable application
codes compared to more widely-used programming models

Paper is available at milthorpe.org/wp-content/uploads/2024/03/Milthorpe HCW2024.pdf

21

https://milthorpe.org/wp-content/uploads/2024/03/Milthorpe_HCW2024.pdf

miniBUDE

e Proxy for BUDE (a protein docking simulation)
« The computation is very arithmetically intensive and makes significant use of trigonometric functions

70

60

CPUs
P100 BN
V100 | -]
GPUs A100 - '

MI60 | -
MI100 I

N

N s

QQQQ ‘%’8& OB © C&

(b) Architectural efficiency, higher is better

Fig. 2: miniBUDE results for small deck bml

Figure from: "Performance Portability of the Chapel Language on Heterogeneous Architectures". Josh Milthorpe (Oak Ridge National Laboratory, Australian National University), Xianghao
Wang (Australian National University), Ahmad Azizi (Australian National University) Heterogeneity in Computing Workshop (HCW)

—

Native GPU Programming in Chapel at Scale

e Comparing Chapel's native GPU programming
..against interoperability with HIP and CUDA
..on Frontier and Perlmutter
..using N-Queens as proxy for combinatorial optimization

e To be presented at Euro-Par 2024
e 26-30 August
e Madrid, Spain

Investigating Portability in Chapel for Tree-based
Optimization on GPU-powered Clusters

Tiago Carneirol[0000_0002_6145_8352], Engin Kayraklioglu2[0000_0002_4966_3812],

Guillaume Helbecque?»4[0000-0002-8697—3721] 51 Nouredine Melab*

! Interuniversity Microelectronics Centre (IMEC), Belgium

tiago.carneiropessoa@imec.be

2 Hewlett Packard Enterprise, USA

engin@hpe.com
3 University of Luxembourg, Luxembourg
guillaume.helbecque@uni.lu
4 Université de Lille, CNRS, Centrale Lille, Inria, UMR 9189 - CRIStAL - Centre de
Recherche en Informatique Signal et Automatique de Lille, France
nouredine.melab@univ-lille.fr

Native GPU Programming in Chapel at Scale

Linear —|cqu-22 -8 Chpl-22 —& IChpI-21 % CUDA-21 +| Linear — | HIP-21 -5 Chpl-21 —A—l

120

100
o
> 80
©
o 60
Q.
A

40

20

48 16 32 64 128
Number of Nodes Number of Nodes

(a) NVIDIA-based System (b) AMD-based system

Figure from: "Investigating Portability in Chapel for Tree-Based Optimizations on GPU-powered Clusters". Tiago Carneiro, Engin Kayraklioglu, Guillaume Helbecque, Nouredine Melab

Europar 2024
— | 2

Keynote at ChapelCon '24

A Case for Parallel-First Languages in Post-Serial, Accelerated World
Paul Sathre, Virginia Tech

Slides and recording are available on
chapel-lang.org/ChapelCon24.himl#keynote

A case for parallel-first languages in

a post-serial, accelerated world

Paul Sathre

Research Software Engineer

Synergy Lab & NSF Center for Space, High-Performance and Resilient Computing
Virginia Tech

VIRGINIA SyNeRG?

TECH. __synrgy.cs.vt.edu
), 2:20/1:01:11 n

ChapelCon '24 Keynote: A Case for Parallel-First Languages in a Post-Serial, Accelerated World

7~ Chapel Parallel Programming Language @ v @
C\“ 356 subscribers Eﬁ 12 g] A> Share 4 Download & Clip

— | 2

https://chapel-lang.org/ChapelCon24.html

Summary

Where We Are Today

Over ~3 years we have been steadily improving
« NVIDIA, AMD GPUs are supported

o Multiple nodes with multiple GPUs can be used
 Parallel tasks can use GPUs concurrently

o GPU features can be emulated on CPUs

Mature enough to get started, big efforts are still underway

e Distfributed arrays
Intel support

Improving language features to support GPU programming
Performance improvements
Bug fixes

—

=
N
o
(=]
o

GPU Code Volume Evolution

docs

[
tests
scripts
modules
compiler
runtime
[|
*]
I gl

0. 0,9.9,9.9.9.9,0.0,099,9

A W D5 0T AT DT RO AD AN AN AL O A

Chapel Versions

October Macch

2020 2024

| 27

Ongoing Al/ML Efforts

Chapel Tensor Library (github.com/lainmon/gputil

o PyTorch like interface for tensor operations:
—Used for inference using NVIDIA and AMD GPUs
—Builds up composable network layers like PyTorch

—Supports loading in pretrained models from PyTorch
— Tracks computational graph, supports backpropagation

« Ongoing effort is to support PyTorch intferoperability and multi-locale inference

"m,chpl Stay tuned!
o A port of lIm.c in Chapel (https://github.com/karpathy/lim.c)

o Even shorter, even more parallel implementation of GPT-2
— Chapel's multidimensional arrays make implementation much simpler

MLPerf Stay tuned!
« We are actively looking intfo porting some MLPerf benchmarks in Chapel
o If interested, please reach out!

—

28

https://github.com/Iainmon/gputil
https://github.com/karpathy/llm.c

If You Want to Learn More About GPU Programming in Chapel

GPU Programming Blog Series: chapel-lang.org/blog/series/gpu-programming-in-chapel/

Chapel's High-Level Support for CPU-GPU Data Transfers and

Multi-GPU Programming
Posted on April 25, 2024.

Introduction to GPU Programming in Chapel

Posted on January 10, 2024.

Tags: GPU Programming = How-To)
Tags: GPU Programming || How-To

By: Daniel Fedorin . .
By: Engin Kayraklioglu

Technote: https://chapel-lang.org/docs/main/technotes/gpu.html
« Anything and everything about our GPU support
- configuration, advanced features, links fo some tests, caveats/limitations
e More of a reference manual than a tutorial
Previous talks
e LinuxCon / Open Source Summit North America 2024 Talk: GPU Programming in Chapel and a Live Demo
- https://youtu.be/5-jL dKduaJE?si=ezazZS5mDORvmMTjgRL
o CHIUW '23 Talk: updates from May '22-May 23 period
- https://chapel-lang.org/CHIUW/202 3/KayrakliogluSlides.pdf
o LCPC'22 Talk: a lot of details on how the Chapel compiler works to create GPU kernels
- https://chapel-lang.org/presentations/Engin-SIAM-PP22-GPU-static.pdf

—

29

https://chapel-lang.org/blog/series/gpu-programming-in-chapel/
https://chapel-lang.org/docs/main/technotes/gpu.html
https://youtu.be/5-jLdKduaJE?si=ezaz5mDORvmTjgRL
https://chapel-lang.org/CHIUW/2023/KayrakliogluSlides.pdf
https://chapel-lang.org/presentations/Engin-SIAM-PP22-GPU-static.pdf

Chapel is Open Source, Get Involved!

Check out "GPU Support" issues to contribute/report bugs

Try Chapel on GitHub Codespaces
github.com/chapel-lang/chapel-hello-world

See many other ways of trying Chapel
chapel-lang.org/download.html

GPU support coming soon!

| 30

https://gitter.im/chapel-lang/chapel
https://chapel.discourse.group/
https://github.com/chapel-lang/chapel-hello-world
https://chapel-lang.org/download.html
https://github.com/chapel-lang/chapel/issues?q=is%3Aopen+is%3Aissue+label%3A%22area%3A+GPU+Support%22

Other Chapel Resources

Chapel homepage: hitps://chapel-lang.org
 (points to all other resources)

Blog: https://chapel-lang.org/blog/

Social Media:
» Facebook: @ChapellLanguage

e LinkedIn: Chapell anguage

» Mastodon: @ChapelProgramminglanguage
o X/ Twitter: @Chapell anguage

e YouTube: @ChapellLanguage

Community Discussion / Support:
» Discourse: https://chapel.discourse.group/
o Gitter: https://gitter.im/chapel-lang/chapel

o Stack Overflow: https://stackoverflow.com/questions/tagged/chapel

o GitHub Issues: https://github.com/chapel-lang/chapel/issues

—

N The Chapel Parallel Programming Language
@ADEL
=

Home

What is Chapel?
What's New?

Blog

Upcoming Events
Job Opportunities

How Can | Learn Chapel?

Contributing to Chapel
Community

Download Chapel
Try Chapel Online

Documentation
Release Notes

Performance
Powered by Chapel

Presentations
Papers / Publications
Tutorials

ChapelCon
CHUG

Contributors / Credits

chapel+qs@discoursemail.com

O-Dm@mo
Xernomn

What is Chapel?

Chapel is a programming language designed for productive parallel computing at scale.
Why Chapel? Because it simplifies parallel programming through elegant support for:

« data parallelism to trivially use the cores of a laptop, cluster, or supercomputer

« task parallelism to create concurrency within a node or across the system

« a global namespace supporting direct access to local or remote variables

* GPU programming in a vendor-neutral manner using the same features as above
« distributed arrays that can leverage thousands of nodes' memories and cores

Chapel Characteristics

« productive: code tends to be similarly readable/writable as Python

« scalable: runs on laptops, clusters, the cloud, and HPC systems

« fast: performance competes with or beats conventional HPC programming models
« portable: compiles and runs in virtually any *nix environment

« open-source: hosted on GitHub, permissively licensed

« production-ready: used in real-world applications spanning diverse fields

New to Chapel?

As an introduction to Chapel, you may want to...

* watch an overview talk or browse its slides
* read a chapter-length introduction to Chapel
* learn about projects powered by Chapel

* check out performance highlights like these:

PRK Stencil Performance (Gflop/s) NPB-FT Performance (Gop/s)

Gopls

Locales (x 36 cores / locale) Locales (x 36 cores / locale)

« read about GPU programming in Chapel, or watch a recent talk about it
* browse sample programs or learn how to write distributed programs like this one:

use CyclicDist; // use the Cyclic distribution library
config const n = 100; // use —--n=<val> when executing to override this de

forall i in Cyclic.createDomain(1..n) do
writeln("Hello from iteration ", i, " of ", n, " running on node ", here. i

What's Hot?

+ ChapelCon '24 is coming in June (online)—Read about it and register today

* Doing science in Python and needing more speed/scale? Maybe we can help?

https://chapel-lang.org/
https://chapel-lang.org/blog/
https://www.facebook.com/ChapelLanguage/
http://linkedin.com/company/ChapelLanguage
https://mastodon.social/@chapelprogramminglanguage
https://twitter.com/ChapelLanguage
https://www.youtube.com/@chapellanguage
https://chapel.discourse.group/
https://gitter.im/chapel-lang/chapel
https://stackoverflow.com/questions/tagged/chapel
https://github.com/chapel-lang/chapel/issues

Closing Thoughts

GPUs are becoming more common but programming them isn't getting easier.
e C/C++/Fortran are not good starting points for many potential users.
e GPU capability (and parallelism in general) is typically achieved by additional frameworks.

Parallel programming, GPUs and HPC should be more accessible. N
e There are many potential use cases in different fields, including social sciences. ‘
e Making GPUs more accessible (and parallelism in general) accelerates progress. —,

chapel-lang.org

Chapel makes parallel programming, GPUs and HPC more accessible.
 Existing applications prove that Chapel delivers on the promise.
e |ts GPU support makes Chapel an all-inclusive solution for parallel programming.

— |

32

http://chapel-lang.org/

