
HIGH-LEVEL, VENDOR-NEUTRAL
GPU PROGRAMMING USING CHAPEL

Engin Kayraklioglu
January 9th, 2024

2

IT IS HARD TO AVOID GPUS IN HPC

With GPUs

Without GPUs

41%
72%

of top 10 have GPUs

in the last 3 years

27%
52%

of top 100 have GPUs

in the last 3 years

13x more systems w/GPUs

www.top500.org

http://www.top500.org/

• ... but programming for multiple nodes with GPUs appears to require at least 2 programming models
• all of the models rely on C/C++/Fortran, which are different than the languages being taught these days
• as a result, using GPUs in HPC has a high barrier of entry

3

GPUS ARE EASY TO FIND... BUT DIFFICULT TO PROGRAM

OpenMP
Potential Users HPC Experts

MPI
MPI+OpenMP

CUDA

HIP

SYCL

OpenAcc

OpenMP

RAJA

Kokkos

MPI+CUDA

MPI+OpenMP+X

All are effective, powerful, essential and tested technologies!

Shared
Memory

Distributed
Memory

From
Vendors

Portable Solutions
(directives)

GPU Programming No distributed memory
support here

(C++ templates)

Chapel is an alternative for productive
distributed/shared memory GPU programming in a vendor-neutral way.

Chapel: A modern parallel programming language
• portable & scalable
• open-source & collaborative

Goals:
• Support general parallel programming
• Make parallel programming at scale far more productive

WHAT IS CHAPEL?

4

chapel-lang.org

http://chapel-lang.org/

Chapel works everywhere
• you can develop on your laptop and have the code scale on a supercomputer
• runs on Linux laptops/clusters, Cray systems, MacOS, WSL, AWS, Raspberry Pi
• shown to scale on Cray networks (Slingshot, Aries), InfiniBand, RDMA-Ethernet

Chapel makes distributed/shared memory parallel programming easy
• data-parallel, locality-aware loops,
• ability to move execution to remote nodes,
• distributed arrays and bulk array operations
• ...

5

WHAT IS CHAPEL?

Can we expand this list to

GPUs from all vendors?

While using the

same expressive features?

APPLICATIONS OF CHAPEL

6(images provided by their respective teams and used with permission)

CHAMPS: 3D Unstructured CFD
Laurendeau, Bourgault-Côté, Parenteau, Plante, et al.

École Polytechnique Montréal

ChplUltra: Simulating Ultralight Dark Matter
Nikhil Padmanabhan, J. Luna Zagorac, et al.

Yale University et al.

Arkouda: Interactive Data Science at Massive Scale
Mike Merrill, Bill Reus, et al.

U.S. DoD

ChOp: Chapel-based Optimization
T. Carneiro, G. Helbecque, N. Melab, et al.

INRIA, IMEC, et al.

Chapel-based Hydrological Model Calibration
Marjan Asgari et al.

University of Guelph

?

Your Application Here?CHGL: Chapel Hypergraph Library
Louis Jenkins, Cliff Joslyn, Jesun Firoz, et al.

PNNL

CrayAI HyperParameter Optimization (HPO)
Ben Albrecht et al.

Cray Inc. / HPE

Lattice-Symmetries: a Quantum Many-Body Toolbox
Tom Westerhout

Radboud University

ChapQG: Layered Quasigeostrophic CFD
Ian Grooms and Scott Bachman

University of Colorado, Boulder et al.

Desk dot chpl: Utilities for Environmental Eng.
Nelson Luis Dias

The Federal University of Paraná, Brazil

RapidQ: Mapping Coral Biodiversity
Rebecca Green, Helen Fox, Scott Bachman, et al.

The Coral Reef Alliance

Active GPU efforts

7

CORAL REEF SPECTRAL BIODIVERSITY

1. Read in a (M x N) raster image of habitat data M

N

P

P

2. Create a (P x P) mask to find all points within a
given radius.

3. Convolve this mask over the entire domain and
perform a weighted reduce at each location.

Algorithmic complexity: 𝑂 𝑀𝑁𝑃!

Typically:
- M, N > 10,000

- P ~ 400

proc convolve(InputArr, OutputArr) { // 3D Input, 2D Output

for ... {
tonOfMath();
}
}
proc main() {
var InputArr: ...;
var OutputArr: ...;

convolve(InputArr, OutputArr);
}

8

CORAL REEF SPECTRAL BIODIVERSITY

proc convolve(InputArr, OutputArr) { // 3D Input, 2D Output

foreach ... {
tonOfMath();
}
}
proc main() {
var InputArr: ...;
var OutputArr: ...;

coforall loc in Locales do on loc { // use all nodes in parallel...

coforall gpu in here.gpus do on gpu { // using GPUs on this node in parallel...

coforall task in 0..#numWorkers { // using numWorkers on this GPU in parallel.

var MyInputArr = InputArr[...];
var MyOutputArr: ...;
convolve(MyInputArr, MyOutputArr);
OutputArr[...] = MyOutputArr;

}}}}

9

CORAL REEF SPECTRAL BIODIVERSITY

Using a different loop flavor to enable GPU execution.

Multi-node, multi-GPU, multi-thread parallelism
are expressed using the same language constructs.

High-level, intuitive array operations
work across nodes and/or devices

proc convolve(InputArr, OutputArr) { // 3D Input, 2D Output

foreach ... {
tonOfMath();
}
}
proc main() {
var InputArr: ...;
var OutputArr: ...;

coforall loc in Locales do on loc { // use all nodes in parallel...

coforall gpu in here.gpus do on gpu { // using GPUs on this node in parallel...

coforall task in 0..#numWorkers { // using parallel tasks on this GPU.

var MyInputArr = InputArr[...];
var MyOutputArr: ...;
convolve(MyInputArr, OutputArr);
OutputArr[...] = MyOutputArr;

}}}}

10

CORAL REEF SPECTRAL BIODIVERSITY
Ready to run on multiple nodes on Frontier!

• 5x improvement going from 2 to 64 nodes
• (from 16 to 512 GPUs)

• Straightforward code changes:
• from sequential Chapel code
• to GPU-enabled one
• to multi-node, multi-GPU, multi-thread

• Scalability improvements coming soon!

• Native GPU programming in Chapel using simple snippets
• Very high-level overview of how it's implemented in Chapel
• Teasers on ongoing work and future plans

What we will not discuss today:
• Comprehensive list of Chapel features

– (important ones will be covered)

• Everything you can do with GPUs using Chapel
– (there's only so much time J)

11

WHAT WE WILL DISCUSS TODAY

GPU PROGRAMMING
IN CHAPEL

13

• In Chapel, a locale refers to a compute resource with…
• processors, so it can run tasks
• memory, so it can store variables

• For now, think of each compute node as being a locale

14

LOCALES IN CHAPEL

Processor Core

Memory

Compute
Node 0

Compute
Node 1

Compute
Node 2

Compute
Node 3

• Two key built-in variables for referring to locales in Chapel programs:
•Locales: An array of locale values representing the system resources on which the program is running
•here: The locale on which the current task is executing

LOCALES IN CHAPEL

Locale 0 Locale 1 Locale 2 Locale 3

15

Processor Core

Memory

1. parallelism: Which tasks should run simultaneously?
2. locality: Where should tasks run? Where should data be allocated?

KEY CONCERNS FOR SCALABLE PARALLEL COMPUTING

Locale 0 Locale 1 Locale 2 Locale 3

16

Processor Core

Memory

17

PARALLELISM AND LOCALITY

Locale 0

Execution/allocation
moves to Locale 1

A

var A: [1..2, 1..2] real;

 on Locales[1] {
 var B: [1..2, 1..2] real;
 B = 2;
 A = B;
 }

writeln(A);

MemoryCPU Core

Locale 1

B

18

PARALLELISM AND LOCALITY

Locale 0

A

var A: [1..2, 1..2] real;

 for l in Locales do on l {
 var B: [1..2, 1..2] real;
 B = 2;
 A = B;
 }

writeln(A);

MemoryCPU Core

Locale 1

B

19

PARALLELISM AND LOCALITY

Locale 0

A

var A: [1..2, 1..2] real;

 for l in Locales do on l {
 var B: [1..2, 1..2] real;
 B = 2;
 A = B;
 }

writeln(A);

MemoryCPU Core

Locale 1

B

20

PARALLELISM AND LOCALITY

Locale 0

A

var A: [1..2, 1..2] real;

 coforall l in Locales do on l {
 var B: [1..2, 1..2] real;
 B = 2;
 A = B;
 }

writeln(A);

MemoryCPU Core

Locale 1

B

B

The coforall loop creates
a parallel task per iteration

1. parallelism: Which tasks should run simultaneously?
2. locality: Where should tasks run? Where should data be allocated?

• complicating matters, compute nodes now often have GPUs with their own processors and memory

KEY CONCERNS FOR SCALABLE PARALLEL COMPUTING

21

Locale 0 Locale 1 Locale 2 Locale 3

Processor Core

Memory

1. parallelism: Which tasks should run simultaneously?
2. locality: Where should tasks run? Where should data be allocated?

• complicating matters, compute nodes now often have GPUs with their own processors and memory
• we represent these as sub-locales in Chapel

KEY CONCERNS FOR SCALABLE PARALLEL COMPUTING

Locale 0 Locale 1 Locale 2 Locale 3

22

CPU Core

Memory

GPU Core

23

PARALLELISM AND LOCALITY IN THE CONTEXT OF GPUS

Locale 0

GPU 0

GPU 1

Execution/allocation
moves to the sublocale

B

A

GPU Core MemoryCPU Core
var A: [1..2, 1..2] real;

 on here.gpus[0] {
 var B: [1..2, 1..2] real;
 B = 2;
 A = B;
 }

writeln(A);

var A: [1..2, 1..2] real;

 coforall g in here.gpus do on g {
 var B: [1..2, 1..2] real;
 B = 2;
 A = B;
 }

writeln(A);
24

PARALLELISM AND LOCALITY IN THE CONTEXT OF GPUS

Locale 0

GPU 0

GPU 1

B

B

coforall across local GPUs

GPU Core MemoryCPU Core

var A: [1..2, 1..2] real;
coforall l in Locales do on l {

 coforall g in here.gpus do on g {
 var B: [1..2, 1..2] real;
 B = 2;
 A = B;
 }

}
writeln(A);

25

PARALLELISM AND LOCALITY IN THE CONTEXT OF GPUS

Locale 0

GPU 0

GPU 1

B

B

Locale 1

GPU 0

GPU 1

B

B

coforall across 'Locales'

inner
coforall

GPU Core MemoryCPU Core

var A: [1..2, 1..2] real;
coforall l in Locales do on l {
 cobegin {
 coforall g in here.gpus do on g {
 var B: [1..2, 1..2] real;
 B = 2;
 A = B;
 }
 {
 var B: [1..2, 1..2] real;
 B = 2;
 A = B;
 }
 }
}
writeln(A);

26

PARALLELISM AND LOCALITY IN THE CONTEXT OF GPUS

Locale 0

GPU 0

GPU 1

GPU Core Memory

B

B

Locale 1

GPU 0

GPU 1

B

B

B
A
B

CPU Core

parallel statements
with cobegin

outer coforall

inner
coforall

HOW DOES IT WORK?

27

Loop body
is outlined

28

COMPILATION TRAJECTORY

LLVM IR

proc kernel(...) {
 foo();
}

LLVM IR

PTX

GCN

Device
Binary

ptxas,
fatbinary

llvm-mc,
clang tools

Runtime

NVIDIA

AMD

Host
Binary

Executable

Transformations Code
Generation

Binary
Generation

Linkage

clang
on loc {
 if loc.isGpu then
 launch(kernel,...);
 else
 forall ... do
 foo();
}
proc foo() {...}

AST (Host)

AST (Device)

Device
Binary

Host
Binary

Runtime's kernel
launcher is called

on loc {
 forall ... do
 foo();
}
proc foo() {
 ...
}

Chapel Code

29

RUNTIME ARCHITECTURE

GPU Layer

CUDA
Driver

API

Compiled binary

NVIDIA
Interface

AMD
Interface

HIP
API

CPU
Interface

Tas
kin

g
M

em
or

y
Com

m
un

ica
tio

n
Diag

no
st

ics

Interface for:
• Compiler-injected calls

– e.g. kernel prep and launch

• Extern calls from modules
– e.g. memory management, data movement

Interacts with the rest of the runtime to:
• Maintain task-private data

– e.g. GPU streams

• Make host-based allocations
• Move data across locales
• Trigger diagnostics

• Thin layer for primitive GPU operations
– e.g. call a kernel, initialize driver, query info

• Wraps around drivers

• Implements "cpu-as-device"
• to use Chapel's GPU features without GPUs

ONGOING WORK AND PLANS

30

• We plan to add support for Intel GPUs
• Status quo for targeting Intel GPUs is using SYCL

• dpc++ is Intel's fork of LLVM that can target Intel GPUs

31

INTEL GPU SUPPORT

on loc {
 forall ... do
 foo();
}
proc foo() {
 ...
}

32

COMPILATION TRAJECTORY

LLVM IR

proc kernel(...) {
 foo();
}

LLVM IR

PTX

GCN

Device
Binary

Runtime

NVIDIA

AMD

Host
Binary

Executable

Transformations Code
Generation

Binary
Generation

Linkage

clang
on loc {
 if loc.isGpu then
 launch(kernel,...);
 else
 forall ... do
 foo();
}
proc foo() {...}

Device
Binary

Host
Binary

Chapel Code

IntelAST (Host)

AST (Device)

33

RUNTIME ARCHITECTURE

GPU Layer

CUDA
Driver

API

Compiled binary

NVIDIA
Interface

AMD
Interface

HIP
API

CPU
Interface

Tas
kin

g
M

em
or

y
Com

m
un

ica
tio

n
Diag

no
st

ics

oneAPI
Level
Zero

Intel
Interface

• We plan to add support for Intel GPUs
• Status quo for targeting Intel GPUs is using SYCL

• dpc++ is Intel's fork of LLVM that can target Intel GPUs

Potential Challenges:
• dpc++ may have diverged from upstream LLVM in other ways, too

• Using it as our backend is not very straightforward
• But we have some leads

• We don't foresee any significant challenges on the runtime side at the moment

34

INTEL GPU SUPPORT

35

DISTRIBUTED ARRAY SUPPORT

Locale 0

GPU 0

GPU 1

Locale 1

GPU 0

GPU 1

GPU Core MemoryCPU Core

var Dom = {1..n, 1..m};

var Arr: [Dom] real;

forall a in Arr {
 a = compute(a);
}

Executes on Locale 0's CPUs

'Arr' is allocated on Locale 0's main memory

36

DISTRIBUTED ARRAY SUPPORT

Locale 0

GPU 0

GPU 1

Locale 1

GPU 0

GPU 1

GPU Core MemoryCPU Core

var Dom = blockDist.createDomain({1..n, 1..m});

var Arr: [Dom] real;

forall a in Arr {
 a = compute(a);
}

Executes on all CPUs

37

DISTRIBUTED ARRAY SUPPORT

Locale 0

GPU 0

GPU 1

Locale 1

GPU 0

GPU 1

GPU Core MemoryCPU Core

var Dom = blockDist.createDomain({1..n, 1..m},
 targetLocales=Locales);
var Arr: [Dom] real;

forall a in Arr {
 a = compute(a);
}

Executes on all CPUs

Redundant: 'Locales' is the default value

38

DISTRIBUTED ARRAY SUPPORT

Locale 0

GPU 0

GPU 1

Locale 1

GPU 0

GPU 1

GPU Core MemoryCPU Core

var Dom = blockDist.createDomain({1..n, 1..m},
 targetLocales=here.gpus);
var Arr: [Dom] real;

forall a in Arr {
 a = compute(a);
}

Executes on Locale 0's GPUs

Using 'targetLocales' to distribute arrays
on GPU memory is a work-in-progress.

39

DISTRIBUTED ARRAY SUPPORT

Locale 0

GPU 0

GPU 1

Locale 1

GPU 0

GPU 1

GPU Core MemoryCPU Core

var Dom = blockDist.createDomain({1..n, 1..m},
 targetLocales=Locales[1].gpus);
var Arr: [Dom] real;

forall a in Arr {
 a = compute(a);
}

Executes on Locale 1's GPUs

Using 'targetLocales' to distribute arrays
on GPU memory is a work-in-progress.

40

DISTRIBUTED ARRAY SUPPORT

Locale 0

GPU 0

GPU 1

Locale 1

GPU 0

GPU 1

GPU Core MemoryCPU Core

var Dom = blockDist.createDomain({1..n, 1..m},
 targetLocales=allGpus());
var Arr: [Dom] real;

forall a in Arr {
 a = compute(a);
}

Executes on all GPUs

Using 'targetLocales' to distribute arrays
on GPU memory is a work-in-progress.

41

DISTRIBUTED ARRAY SUPPORT

Locale 0

GPU 0

GPU 1

var Dom = blockDist.createDomain({1..n, 1..m},
 targetLocales=everywhere());
var Arr: [Dom] real;

forall a in Arr {
 a = compute(a);
}

Locale 1

GPU 0

GPU 1

GPU Core MemoryCPU Core

Executes on all CPUs and GPUs

Using 'targetLocales' to distribute arrays
on GPU memory is a work-in-progress.

SUMMARY

42

Over ~3 years we have been steadily improving
• NVIDIA, AMD GPUs are supported
• Multiple nodes with multiple GPUs can be used
• Parallel tasks can use GPUs concurrently
• GPU features can be emulated on CPUs

Mature enough to get started, big efforts are still underway
• Distributed arrays
• Intel support
• Improving language features to support GPU programming
• Performance improvements
• Bug fixes

43

WHERE WE ARE TODAY

December

2023
October

2020

• Ongoing efforts to port existing Chapel applications

• More interactions on our community channels, including GitHub
• Many new names, too!

• Active collaborations with existing users and researchers

44

COMMUNITY REACTION SO FAR

HPCC-Stream Performance
• On par with HIP, very close to CUDA

User Applications

Nightly Performance Testing
• Testing performance on NVIDIA and AMD

• ~16 tests and counting• We have recently started focusing on performance

45

PERFORMANCE STATUS

Improvement in Each Release

Initial Runs on Frontier
• >10TB/s Stream BW in one node

• ~160GiB/s peer-to-peer BW

Blogpost: chapel-lang.org/blog/posts/intro-to-gpus
• Tutorial on GPU programming in Chapel

– Covers the basics, more to come soon!

Technote: https://chapel-lang.org/docs/main/technotes/gpu.html
• Anything and everything about our GPU support

– configuration, advanced features, links to some tests, caveats/limitations

• More of a reference manual than a tutorial

Previous talks
• CHIUW '23 Talk: updates from May '22-May '23 period

– https://chapel-lang.org/CHIUW/2023/KayrakliogluSlides.pdf

• SIAM PP '22 Talk: a lot of details on how the Chapel compiler works to create GPU kernels
– https://chapel-lang.org/presentations/Engin-SIAM-PP22-GPU-static.pdf

• Recent Release Notes: almost everything that happened in each release
– https://chapel-lang.org/release-notes-archives.html

46

IF YOU WANT TO LEARN MORE ABOUT GPU PROGRAMMING IN CHAPEL

https://chapel-lang.org/blog/posts/intro-to-gpus/
https://chapel-lang.org/docs/main/technotes/gpu.html
https://chapel-lang.org/CHIUW/2023/KayrakliogluSlides.pdf
https://chapel-lang.org/presentations/Engin-SIAM-PP22-GPU-static.pdf
https://chapel-lang.org/release-notes-archives.html

• GPUs are becoming more and more common in HPC
• However, programming GPUs is more challenging than programming CPUs

• On multiple nodes, users are typically required to use multiple paradigms

• HPC and GPUs should be more accessible
• from wider range of disciplines,
• with varying levels of expertise, and
• limited time to invest in programming

• Chapel wants to make HPC more accessible
• Existing applications prove that Chapel delivers on the promise
• Its growing support for GPU programming can:

– enable programming GPUs in a productive and vendor-neutral way
– provide an all-inclusive solution for programming in HPC

48

SUMMARY

chapel-lang.org

http://chapel-lang.org/

Chapel homepage: https://chapel-lang.org
• (points to all other resources)

Social Media:
• Twitter: @ChapelLanguage
• Facebook: @ChapelLanguage
• YouTube: https://www.youtube.com/c/ChapelParallelProgrammingLanguage

• Blog: https://chapel-lang.org/blog/

Community Discussion / Support:
• Discourse: https://chapel.discourse.group/
• Gitter: https://gitter.im/chapel-lang/chapel
• Stack Overflow: https://stackoverflow.com/questions/tagged/chapel

• GitHub Issues: https://github.com/chapel-lang/chapel/issues

CHAPEL RESOURCES

49

https://chapel-lang.org/
https://twitter.com/ChapelLanguage
https://www.facebook.com/ChapelLanguage/
https://www.youtube.com/c/ChapelParallelProgrammingLanguage
https://chapel-lang.org/blog/
https://chapel.discourse.group/
https://gitter.im/chapel-lang/chapel
https://stackoverflow.com/questions/tagged/chapel
https://github.com/chapel-lang/chapel/issues

