WY

Hewlett Packard
Enterprise

HIGH-LEVEL, VENDOR-NEUTRAL
GPU PROGRAMMING USING CHAPEL

Engin Kayraklioglu
January 9th, 2024

ITISHARD TO AVOID GPUS IN HPC

1
With GPUs

1
Without GPUs

TOP500 Rank

500

150 -

Systems
w/ GPUs
=
o
o

TOP500 Systems with GPUs Over Time

¢

T ——— — —
—_— e ——
O,
e — === —_—1 =
— —— —— i]
= = = —T —_—

I }’
i
I I“

1
| !
I.
i

= e ==
ey B o g o ———1 L —

|
h

|
II

'
|
)
|

III I
l III|
]

I I|||II
I

|

' III

I |I|

|
|

{'I
|

|
| |

fh
I |
III
|

I

il

I
Il
| |
| 1
I
!
|

i

II

II

III

|||| | IIHI

’ |”||| |||| |

—_——— == P
— JE—— — S —
e e e e —— s I e

|
I

0 100
Systems
w/ GPUs

%
0 of top 10 have GPUs

TNy N

0
2 /0 in the last 3 years

%
0 of top 100 have GPUs
0
¢

in the last 3 years

13X more systems w/GPUs

http://www.top500.org/

GPUS ARE EASY TO FIND... BUT DIFFICULT TO PROGRAM
GPU Programming No distributed memory
support here

|

Shared Distributed From Portable Solutions
Memor Memor Vendors (directives) (C++ templates)
Potential Users Y y HPC Experts
e OpenAcc & X % 1(([3?7 S
p &(\l ‘_ﬂ L|_|_| U‘_’” m
Wl w W w

OpenMP *

All are effective, powerful, essential and tested technologies!

e ... but programming for multiple nodes with GPUs appears to require at least 2 programming models
« all of the models rely on C/C++/Fortran, which are different than the languages being taught these days

e as a result, using GPUs in HPC has a high barrier of entry

Chapel is an alternative for productive
distributed/shared memory GPU programming in a vendor-neutral way.

—

WHAT IS CHAPEL?

Chapel: A modern parallel programming language ~\
» portable & scalable
e open-source & collaborative —y,
Goals:

chapel-lang.org

e Support general parallel programming
o Make parallel programming at scale far more productive

http://chapel-lang.org/

WHAT IS CHAPEL?

Chapel works everywhere

e you can develop on your laptop and have the code scale on a supercomputer
e runs on Linux laptops/clusters, Cray systems, MacOS, WSL, AWS, Raspberry Pi Can we expand this list to
e shown to scale on Cray networks (Slingshot, Aries), InfiniBand, RDMA-Ethernet GPUs from all vendors?

Chapel makes distributed/shared memory parallel programming easy
o data-parallel, locality-aware loops,

e ability o move execution fo remote nodes,

e distributed arrays and bulk array operations

While using the

same expressive features?

APPLICATIONS OF CHAPEL

CHAMPS: 3D Unstructured CFD
Laurendeau, Bourgault-Coté, Parenteau, Plante, et al.
Ecole Polytechnique Montréal

Lattice-Symmetries: a Quantum Many-Body Toolbox Desk dot chpl: Utilities for Environmental Eng.
Tom Westerhout
Radboud University

Chapel-based Hydrological Model Calibration
Marjan Asgari et al.
University of Guelph

—

Chapel Server

Python3 Client ma
S Socket

Code Modules E I

Distributed

Object Store |8
Platform

7 | Acithmetic

Arkouda: Interactive Data Science at Massive Scale

Mike Merrill, Bill Reus, et al.
U.S. DoD

Low-pass filter with LOWESS (intrinsically parallel)

100

80 - .

60

40 + o

RH (%) at Lake Mead

20

0
2010 2011 2012 2013 2014 2015
date.

Nelson Luis Dias
The Federal University of Parana, Brazil

FEATURES ENSEMBLES
EXPLORATIONuPARAMETEMAHONALE

CrayAl HyperParameter Optimization (HPO)
Ben Albrecht et al.
Cray Inc. / HPE

Active GPU efforts

ChOp: Chapel-based Optimization
T. Carneiro, G. Helbecque, N. Melab, et al.
INRIA, IMEC, et al.

RapidQ: Mapping Coral Biodiversity
Rebecca Green, Helen Fox, Scott Bachman, et al.
The Coral Reef Alliance

CHGL: Chapel Hypergraph Library
Louis Jenkins, Cliff Joslyn, Jesun Firoz, et al.
PNNL

(images provided by their respective teams and used with permission)

ChplUltra: Simulating Ultralight Dark Matter
Nikhil Padmanabhan, J. Luna Zagorac, et al.
Yale University et al.

ChapQG: Layered Quasigeostrophic CFD
lan Grooms and Scott Bachman
University of Colorado, Boulder et al.

?

Your Application Here?

CORAL REEF SPECTRAL BIODIVERSITY

1. Read in a (M x N) raster image of habitat data M

A
v

2. Create a (P x P) mask to find all points within a 1
given radius.

3. Convolve this mask over the entire domain and
perform a weighted reduce at each location.

P

ryo
A

Algorithmic complexity: O (MNP3)
Typically:

-M,N > 10,000

- P~ 400

»

&

CORAL REEF SPECTRAL BIODIVERSITY

proc convolve (InputArr, OutputArr) { //3Dlinput, 2D Output
for ... {
tonOfMath () ;

}
}

proc main () {
var InputArr: ...;
var OutputArr: ...;

convolve (InputArr, OutputArr);

}

CORAL REEF SPECTRAL BIODIVERSITY

proc convolve (InputArr, OutputArr) { //3DInput, 2D Output

foreach ... { Ui g . q . e GPU .
tonOfMath () ; sing a different loop flavor to enable execution.

}
}

proc main() { Multi-node, multi-GPU, multi-thread parallelism

var InputArr: are expressed using the same language constructs.

var OutputArr:

.
LA 4

coforall loc in Locales do on loc { // use all nodes in parallel...
coforall gpu in here.gpus do on gpu { //using GPUs on this node in parallel...
coforall task in 0. .#numWorkers { // using numWorkers on this GPU in parallel.
var MyInputArr = InputArr[...];
var MyOutputArr: ...;

High-level, intuitive array operations

convolve (MyInputArr, MyOutputArr) work across nodes and/or devices

OutputArr[...] = MyOutputArr;
BB

—

CORAL REEF SPECTRAL BIODIVERSITY

proc convolve (InputArr, OutputArr) { //3Ding

foreach ... | e 5x improvement going from 2 to 64 nodes
tonOfMath () ; e (from 16 to 512 GPUs)
J e Straightforward code changes:

} « from sequential Chapel code

roc main
P : t(; { e to GPU-enabled one
var InputArr: ...; . : .
b e to multi-node, multi-GPU, multi-thread
var OutputArr: ...;
Multilocale Coral Image Analysis B
coforall loc in Locales do on loc { //u Q4' pretlia -
coforall gpu in here.gpus do on gpu { /u ST
() L Y.
coforall task in O..#numWorkers { //using pe 32
1
var MyInputArr = InputArr[...]; ; ¢ Speedup over 2 nodes ,
. . 24 8 16 32 64
var MyOutputArr: ...; Number of Nodes
convolve (MyInputArr, OutputArr); (x8 GPUs)
OutputArr[...] = MyOutputArr;

e Scalability improvements coming soon!
b}

—

Ready to run on multiple nodes on Frontier!

10

WHAT WE WILL DISCUSS TODAY

e Native GPU programming in Chapel using simple snippets

e Very high-level overview of how it's implemented in Chapel
e Teasers on ongoing work and future plans

What we will not discuss today:
o Comprehensive list of Chapel features
- (important ones will be covered)

« Everything you can do with GPUs using Chapel

— (there's only so much time ©)

11

GPU PROGRAMMING
IN CHAPEL

13

LOCALES IN CHAPEL

e In Chapel, a locale refers to a compute resource with...
e processors, so it can run ftasks

e memory, so it can store variables
e For now, think of each compute node as being a locale

Compute
Node O

_mm

Compute

Node 1

b

Compute
Node 2

B

. Memory

Processor Core

Compute

Node 3

14

LOCALES IN CHAPEL

e Two key built-in variables for referring to locales in Chapel programs:

« Locales:
e here:

An array of locale values representing the system resources on which the program is running

The locale on which the current task is executing

Locale O

_mm

Locale 1

b

Locale 2

B

. Memory

Locale 3

Processor Core

15

KEY CONCERNS FOR SCALABLE PARALLEL COMPUTING

1. parallelism: Which tasks should run simultaneously?
2. locality: Where should tasks run? Where should data be allocated?

Locale O

oo

oaﬁ|_\

Locale 1

dhe

0

- Memory

Locale 2

oo

ooﬁﬁ

Locale 3

oo
dho

Processor Core

16

PARALLELISM AND LOCALITY

CPU Core . Memory
Locale 1 | Locale O
OO

N~

Execution/allocation
moves to Locale 1

var A: [1..2,
o

var B: [1.
R = 2;
A = B;

}

o2eete,

Q writeln (A) ;

1.

on Locales|[1]
.2,

2]

{

1.

real;

2]

real;

17

PARALLELISM AND LOCALITY

CPU Core . Memory
avar A: [1..2, 1..2] real;
Locale 1 Locale O
Q‘o a for 1 in Locales do on 1 {
oo o var B: [1..2, 1..2] real;
Q R = 2;
o A = B;

}

I £ writeln () ;

PARALLELISM AND LOCALITY

CPU Core . Memory
avar A: [1..2, 1..2] real;
Locale 1 | Locale O
OO a for 1 in Locales do on 1 {
QO Q var B: [1..2, 1..2] real;
Q R = 2;
& 2 =3B;

}

1 £ writeln(a);

PARALLELISM AND LOCALITY

CPU Core . Memory

avar A: [1..2, 1..2] real;

Locale 1 | Locale O

oo
oo

4%
L°4h°

coforall 1 in Locales do on 1 {
var B: [1..2, 1..2] real;

B = 2;

A = B;

}

o2eete,

The coforall loop creates

a parallel task per iteration

: Q writeln (2) ;

KEY CONCERNS FOR SCALABLE PARALLEL COMPUTING

1. parallelism: Which tasks should run simultaneously?
2. locality: Where should tasks run? Where should data be allocated?
« complicating matters, compute nodes now often have GPUs with their own processors and memory

Locale O

_mm

Locale 1

b

Locale 2

B

. Memory

Locale 3

Processor Core

21

KEY CONCERNS FOR SCALABLE PARALLEL COMPUTING

1. parallelism: Which tasks should run simultaneously?
2. locality: Where should tasks run? Where should data be allocated?

« complicating matters, compute nodes now often have GPUs with their own processors and memory
« we represent these as sub-locales in Chapel

Locale O Locale 1 Locale 2 Locale 3
= =S = iR
= e = =
GPU Core
CPU Core
.Memory

PARALLELISM AND LOCALITY IN THE CONTEXT OF GPUS

CPU Core

Execution/allocation
moves to the sublocale

GPU Core . Memory

var A: [1..2,
G

Locale O

o A = B;

}

&

e

e
o o0

Q writeln (A) ;

1.

Q on here.gpus[0]

var B: [1.
R = 2;

.2,

2]

1.

{

2]

real;

real;

23

PARALLELISM AND LOCALITY IN THE CONTEXT OF GPUS

var A: [1..2, 1..2] real;

CPU Core GPU Core . Memory

Locale 0 coforall g in here.gpus do on g {

var B: [1..2, 1..2] real;
Q B = 2;

A = B;

}

&

e

e
o o0

coforall across local GPUs
GPU1

o oo
o oo
oo o
oo o

writeln (A) ;

PARALLELISM AND LOCALITY IN THE CONTEXT OF GPUS

cPuC - var A: [1..2, 1..2] real;
CPU Core ore emory coforall 1 in Locales do on 1 {

Locale 1 Locale 0 coforall g in here.gpus do on g {

var B: [1..2, 1..2] real;
Q B = 2;

A = B;

}

o o0

RERE-XE-XE -] | o]0 o
glolo glolo
ololo ololo

coforall A

GPU1 GPU 1
olololo ololo

|| [o]o]oo | |[o]ele

olololo - AE-3E - \

writeln (A) ;
: coforall across 'Locales’
| 25

o o0

oo

PARALLELISM AND LOCALITY IN THE CONTEXT OF GPUS

var A: [1..2, 1..2] real;
coforall 1 in Locales do on 1 {

CPU Core GPU Core . Memory

parallel statements cobeg in {
with cobegin Locale 1 Locale 0 coforall g in here.gpus do on g {

var B: [1..2, 1..2] real;

a B = 2;

A = B;

o o0
o o0

FERE3E- 3K R XE:
ololo I ololo var B: [1..2, 1..2] real;
ololo ololo 5.
o B - 2,
. ' A = B;
skl | | | GPU 1 GPU 1
olo/olo J
ololalo }

- ' writeln (A);
— |

e

e

e
o o0

HOW DOES IT WORK?

27

COMPILATION TRAJECTORY

Chapel Code
on loc {
forall ... do
| foo0:
}
proc foo() {
}

Runtime's kernel
launcher is called

—

Transformations

AST (Device)

proc kernel (...) {
foo()

}

AST (Host)

on loc {
if loc.isGpu then

Code
Generation

NVIDIA

GCN

\ 4

1l1lvm-mc,

Binary
Generation

ptxas,

fatbinary

clang tools

clang

Host

launch (kernel, ...);
else
forall ... do
foo (),
}
proc foo() {...}

LLVM IR

\ 4

Binary

Linkage

Executable |

-

Host
Binary

RUNTIME ARCHITECTURE

Interface for:
« Compiler-injected calls

- e.g. kernel prep and launch

« Extern calls from modules
- e.g. memory management, data movement

Interacts with the rest of the runtime to:
« Maintain task-private data GPU Layer

- e.g. GPU streams
« Make host-based allocations

 Move data across locales
« Trigger diagnostics

A 4 \ 4

AMD CPU
Interface Interface

o Thin layer for primitive GPU operations
- e.g. call a kernel, initialize driver, query info

« Wraps around drivers

CUDA LIp e Implements "cpu-as-device
i o to use Chapel's GPU features without GPUs
Driver AP
API

ONGOING WORK AND PLANS

350

INTEL GPU SUPPORT

» We plan to add support for Intel GPUs

e Status quo for targeting Intel GPUs is using SYCL
o dpc++ is Intel's fork of LLVM that can target Intel GPUs

31

COMPILATION TRAJECTORY

Chapel Code

on loc {
forall ... do
foo();
}

proc foo () {

Transformations

AST (Device)

proc kernel (...) {

Code

Generation

NVIDIA

— LLVMIR

foo();
}

AST (Host)

on loc {
if loc.isGpu then

launch (kernel, ...);
else
forall ... do
foo ()
}
proc foo() {...}

\
. AMD

\
N\
Intel™

> LLVM IR

clang

Binary
Generation

\ 4

Host
Binary

Linkage

Executable |

Device
Binary

Host
Binary

Runtime

RUNTIME ARCHITECTURE

GPU Layer
Intel NVIDIA AMD CPU
Interface Interface Interface Interface
|
oneAPI CUDA HIP
Level Driver
Zero API st

INTEL GPU SUPPORT

» We plan to add support for Intel GPUs

e Status quo for targeting Intel GPUs is using SYCL
o dpc++ is Intel's fork of LLVM that can target Intel GPUs

Potential Challenges:

e dpc++ may have diverged from upstream LLVM in other ways, too
« Using it as our backend is not very straightforward
e But we have some leads

» We don't foresee any significant challenges on the runtime side at the moment

34

DISTRIBUTED ARRAY SUPPORT

CPU Core GPU Core . Memory
‘Arr' is allocated on Locale O's main memory
Locale 1 Locale 0 I
™ var Dom = {1..n, 1..m};
var Arr: [Dom] real;
GPUO GPUO
I I forall a in Arr { Executes on Locale O's CPUs
a = compute(a);
}
GPU 1 GPU 1

DISTRIBUTED ARRAY SUPPORT

CPU Core

GPU Core . Memory

Locale 1

GPU O

GPU 1

Locale O

GPU O

GPU 1

var Dom = blockDist.createDomain({1l..n,

var Arr: [Dom] real;

forall a2 in Arr {

a

compute (a) ;

Executes on all CPUs

36

DISTRIBUTED ARRAY SUPPORT

CPU Core GPU Core . Memory

Locale 1 Locale O

var Dom = blockDist.createDomain({1l..n, 1..m},

targetLocales=Locales);

var Arr: [Dom] real;
GPU O GPU 0 Redundant: 'Locales' is the default value
I I forall a in Arr { Executes on all CPUs
a = compute(a);

GPU 1 GPU 1

DISTRIBUTED ARRAY SUPPORT

CPU Core GPU Core . Memory
Locale 1 Locale O

GPUO GPUO

GPU 1 GPU 1

var Dom = blockDist.createDomain({1l..n, 1..m},

targetLocales=here.gpus) ;
var Arr: [Dom] real;

forall a in Arr { Executes on Locale O's GPUs
a = compute(a);

DISTRIBUTED ARRAY SUPPORT

CPU Core GPU Core . Memory
Locale 1 Locale O

GPUO GPUO

GPU 1 GPU 1

var Dom = blockDist.createDomain({1l..n, 1..m},

targetLocales=Locales[1l] .gpus);
var Arr: [Dom] real;

forall a in Arr { Executes on Locale 1's GPUs
a = compute(a);

DISTRIBUTED ARRAY SUPPORT

CPU Core GPU Core . Memory
Locale 1 Locale O

GPUO GPUO

GPU 1 GPU 1

var Dom = blockDist.createDomain({1l..n, 1..m},

targetLocales=allGpus{()) ;
var Arr: [Dom] real;

forall a in Arr { Executes on all GPUs
a = compute(a);

DISTRIBUTED ARRAY SUPPORT

CPU Core GPU Core . Memory
Locale 1 Locale O

GPUO GPUO

GPU 1 GPU 1

var Dom = blockDist.createDomain({1l..n, 1..m},

targetLocales=everywhere ()),
var Arr: [Dom] real;

forall a in Arr { Executes on all CPUs and GPUs
a = compute(a);

WHERE WE ARE TODAY
GPU Code Volume Evolution

° ° ° 14000'
Over ~3 years we have been steadily improving W docs
-
« NVIDIA, AMD GPUs are supported 12000 ::ff:fs
o Multiple nodes with multiple GPUs can be used 10000 ™8 modules
o Parallel tasks can use GPUs concurrently § compiler
U gooo, HEM runtime]
« GPU features can be emulated on CPUs - _
)]
@ 6000 - I
-
Mature enough to get started, big efforts are still underway 4000 I I
« Distri []
Distributed arrays 2000 1 i N
e Intel support
0_

Improving language features to support GPU programming
Performance improvements
Bug fixes

October December

2020 2023
: | 43

COMMUNITY REACTION SO FAR

e Ongoing efforts to port existing Chapel applications

e More interactions on our community channels, including GitHub
e Many new names, too!

» Active collaborations with existing users and researchers

[0
o

Number of Issues

[RY
o

o

Issues Created

&
o

(]
o

N
o

I non-user
user

<1.30 1.30-1.32
Chapel Versions

Lk

PERFORMANCE STATUS

e We have recently started focusing on performance

HPCC-Stream Performance
e On par with HIP, very close to CUDA

Stream (using NVIDIA RTX A2000)
e =Y == =Y — === == = i LL T

5 200
£ 5
On - C+CUDA £
] 9100 -@- 1.30 (1.29+Eager Load+LICM) o
|'E -M- 1.30 Prerelease (1.29+Eager Load)
- 129
0 1 L]
32 64 128
Number of Elements (M)
Stream (using AMD Instinct MI100)
w800
3
2 =600 5
22 5
o o “00 - C+HIP &
_IE 200 -@- Chapel 1.31
-~ Chapel 1.30
O L L]

32 64 128
Number of Elements (M)

Initial Runs on Frontier
e >10TB/s Stream BW in one node
e ~160GiB/s peer-to-peer BW

User Applications

N-Queens Performance with ChOp

(1x NVIDIA P100)
Interop Native
N Offb
(s) (s) y
15 0.30 0.36 19%
16 1.79 2.06 15%
17 12.47 14.76 18%
18 94.94 110.98 17%
Multilocale Coral Image Analysis
xmmm=mmmmm T
4 = —=- 3
o e
22
)
1%
=% Speedup over 2 nodes
24 8 16 32 64
Number of Nodes
(x8 GPUs)

Nightly Performance Testing
e Testing performance on NVIDIA and AMD

e ~16 tests and counting

SHOC Sort - Bandwidth

Bandwidth (GB/s)
w

Oct 2022 Jan 2023 Apr 2023 Jul 2023 Oct2023 Jan 2024

Improvement in Each Release

P
<

Kernel Launch Time

Time (ms)
o 4 N v & o o o~

0.02 milliseconds

Aug 2022 Sep 2022 Oct2022 Nov2022 Dec 2022 Jan2023 Feb2023 Mar 2023

SHOC Sort (Kernel-Only)

<2

o

€ 10

@

£ 8

® %
4
2 .
0

NVIDIA A100 AMD MI250X
m131 m132

Better

—

IF YOU WANT TO LEARN MORE ABOUT GPU PROGRAMMING IN CHAPEL

Blogpost: chapel-lang.org/blog/posts/intro-to-gpus Introduction to GPU Programming in Chapel

Posted on January 8, 2024.

« Tutorial on GPU programming in Chapel
— Covers the basics, more to come soon! By Daniel Fedorin

Tags: GPU Programming || Tutorial

Chapel is a programming language for productive parallel computing. In recent years, a particular
subdomain of parallel computing has exploded in popularity: GPU computing. As a result, the
Chapel team has been hard at work adding GPU support, making it easy to create vendor-

Technote: hitps://chapel-lang.org/docs/main/technotes/gpu.himl
« Anything and everything about our GPU support
- configuration, advanced features, links fo some tests, caveats/limitations
e More of a reference manual than a tutorial

Previous talks
o CHIUW '23 Talk: updates from May '22-May '23 period
— https://chapel-lang.org/CHIUW/202 3/KayrakliogluSlides.pdf
o SIAM PP '22 Talk: a lot of details on how the Chapel compiler works to create GPU kernels
— https://chapel-lang.org/presentations/Engin-SIAM-PP22-GPU-static.pdf
« Recent Release Notes: almost everything that happened in each release
- https://chapel-lang.org/release-notes-archives.himl

— |

46

https://chapel-lang.org/blog/posts/intro-to-gpus/
https://chapel-lang.org/docs/main/technotes/gpu.html
https://chapel-lang.org/CHIUW/2023/KayrakliogluSlides.pdf
https://chapel-lang.org/presentations/Engin-SIAM-PP22-GPU-static.pdf
https://chapel-lang.org/release-notes-archives.html

SUMMARY

e GPUs are becoming more and more common in HPC

e However, programming GPUs is more challenging than programming CPUs
o On multiple nodes, users are typically required to use multiple paradigms

e HPC and GPUs should be more accessible
« from wider range of disciplines,
« with varying levels of expertise, and
« limited time to invest in programming

e Chapel wants to make HPC more accessible
« Existing applications prove that Chapel delivers on the promise
e Its growing support for GPU programming can:
—enable programming GPUs in a productive and vendor-neutral way
—provide an all-inclusive solution for programming in HPC

—

\

=

chapel-lang.org

48

http://chapel-lang.org/

CHAPEL RESOURCES

Chapel homepage: hitps://chapel-lang.org
e (points to all other resources)

Social Media:

o Twitter: @ChapelLanguage

e Facebook: @ChapelLanguage

e YouTube: https://www.youtube.com/c/ChapelParallelProgramminglanguage
e Blog: https://chapel-lang.org/blog/

Community Discussion / Support:

 Discourse: https://chapel.discourse.group/

o Gitter: https://gitter.im/chapel-lang/chapel

o Stack Overflow: https://stackoverflow.com/questions/tagged/chapel
o GitHub Issues: https://github.com/chapel-lang/chapel/issues

—

What is Chapel?
What's New?

Upcoming Events
Job Opportunities

How Can | Learn Chapel?
Contributing to Chapel

Download Chapel
Try Chapel Online

Documentation
Release Notes

Performance
Powered by Chapel

User Resources
Developer Resources

Social Media / Blog Posts
Press

Presentations
Papers / Publications

CHIuw
CHUG

Contributors / Credits

chapel_info@cray.com

O - A
vyEHD

The Chapel Parallel Programming Language

What is Chapel?

Chapel is a programming language designed for productive parallel computing at scale.
Why Chapel? Because it simplifies parallel programming through elegant support for:

« distributed arrays that can leverage thousands of nodes' memories and cores

« a global namespace supporting direct access to local or remote variables

« data parallelism to trivially use the cores of a laptop, cluster, or supercomputer
« task parallelism to create concurrency within a node or across the system

Chapel Characteristics

« productive: code tends to be similarly readable/writable as Python
« scalable: runs on laptops, clusters, the cloud, and HPC systems

« fast: performance competes with or beats C/C++ & MPI & OpenMP
« portable: compiles and runs in virtually any *nix environment

* open-source: hosted on GitHub, permissively licensed

New to Chapel?

As an introduction to Chapel, you may want to...

« watch an overview talk or browse its slides

read a blog-length or chapter-length introduction to Chapel
learn about projects powered by Chapel

check out performance highlights like these:

PRK Stencil Performance (Glop's) NPB-FT Performance (Gop's)

Giop/'s
) §
Viiill
\ |
\
Gopis
st
\
1

Locales (x 36 cores / locale) Locales (x 36 cores / locale)

* browse sample programs or learn how to write distributed programs like this one:

use CyclicDist;
config const n = 100;

// use the Cyclic distribution Llibrary
// use --n=<val> when executing to override this default

forall i in {1..n} dmapped Cyclic(startIdx=1) do
writeln("Hello from iteration ", i, " of ", n,

" running on node ", here.id);

| 49

https://chapel-lang.org/
https://twitter.com/ChapelLanguage
https://www.facebook.com/ChapelLanguage/
https://www.youtube.com/c/ChapelParallelProgrammingLanguage
https://chapel-lang.org/blog/
https://chapel.discourse.group/
https://gitter.im/chapel-lang/chapel
https://stackoverflow.com/questions/tagged/chapel
https://github.com/chapel-lang/chapel/issues

