Hewlett Packard
Enterprise

Chapel's Batteries-Included Approach for
Portable Parallel Programming

Engin Kayraklioglu

Advances in Applied Computer Science Invited Speaker Series

Los Alamos National Laboratory
June 18, 2025

Computational Science

You start to learn programming... One day, you need to use a supercomputer...

* You have a processor (singular) and some memory * You have millions of processors

* You store your datfa in the memory * Some of them are GPUs

* You crunch your numbers in the processor * Your memory is now distributed

* Python is typically good enough * Have to pay attention where your data is

You "just” learn some combination of

Supercomputer

* (C,C++, Fortran

Computer * MPI . . ' .
* OpenMP
* CUDA, HIP, SYCL, Kokkos
e SLURM

CPU Core "Because there is no batteries-included programming
. Memory abstraction to enable you to program both"

| ... Or is there?

What is Chapel?

Chapel: A modern parallel programming language N
» portable & scalable
e open-source & collaborative —y,
Goals:

chapel-lang.org

e Support general parallel programming
o Make parallel programming at scale far more productive

http://chapel-lang.org/
http://chapel-lang.org/
http://chapel-lang.org/

What does Chapel code
look like?

Programming with Chapel: Fundamentals

CPU Core GPU Core

. Memory

Node O Node 1

o

var A: [1..10] int; Local, non-distributed array allocation

GPUO GPUO for elem in A do Sequential iteration over the array

GPU 1 GPU 1

—

elem += 1;

Programming with Chapel: Basic Data Parallelism

CPU Core GPU Core

- Memory

Node O Node 1

<
o

var A: [1..10] int;

GPUO GPU O forall elem in A do EIENE iteration over the array

. . Y

GPU 1 GPU 1

—

Programming with Chapel: Basic Data Parallelism

GPUO

GPU 1

CPU Core GPU Core
. Memory
Node O Node 1
o o
o o

GPU O

GPU 1

—

use BlockDist;

Block-distributedEIFENA: el o]y

var Arr = blockDist.createArray(1l..10, int);

forall elem in Arr do
elem += 1;

B iglel0i(=el, parallel iteration over

the array

Programming with Chapel: Basic Data Parallelism

CPU Core GPU Core

- Memory
Node O Node 1
" var A: [1..10] int;
o

GPUO GPUO forall elem in A do

GPU 1 GPU 1

—

elem += 1;

Programming with Chapel: Locality as a First-Class Citizen

CPU Core GPU Core

. Memory

"locale" is a built-in Chapel type

In the most common scenario: locale == node

Node 0 Under the hood, a locale is always a process

Users can configure their applications to use:
e alocale per socket Predefined Variables
e alocale per GPU for Locality
e alocale per NUMA domain ... here

GPUO The current execution locale
Locales

An array storing all locales

e GPUs are represented as "sublocales" locale.gpus

GPU 1 An array storing GPU sublocales

Programming with Chapel: Locality as a First-Class Citizen

CPU Core

. Memory

GPU Core

"locale" is a built-in Chapel type
In the most common scenario: locale == node

Locale 0

GPUO

GPU 1

Locale 1 Under the hood, a locale is always a process

Users can configure their applications to use:
» alocale per socket

e alocale per GPU

e alocale per NUMA domain ...

e GPUs are represented as "sublocales"

—

Predefined Variables
for Locality
here
The current execution locale
Locales
An array storing all locales
locale.gpus

An array storing GPU sublocales

Programming with Chapel: Basic Data Parallelism + Locality

o

o

GPUO

GPU 1

CPU Core GPU Core
- Memory
Locale 0 Locale 1

GPU O

GPU 1

—

var A: [1..10] int;

forall elem in A do
elem += 1;

11

Programming with Chapel: Basic Data Parallelism + Locality

CPU Core GPU Core
. Memory
Locale 0 Locale 1

GPUO

GPU 1

o

O

GPU O

GPU 1

—

on lLocales[1l] {
var A: [1..10] int;

forall elem in A do
elem += 1;

The 'on' statement [=ERia=R=Cebki(e])

to a remote locale

12

Programming with Chapel: Basic Data Parallelism + Locality

CPU Core GPU Core
. Memory
Locale 0 Locale 1

GPUO

GPU 1

—

on Locales[1l].gpus[0]
var A: [1..10] int;

forall elem in A do
elem += 1;

{

Each locale object has a

that store GPU sublocales

13

Programming with Chapel: Basic Data Parallelism + Locality

CPU Core GPU Core
. Memory
Locale 0 Locale 1

GPU O

GPU 1

on here.gpus[0] {
var A: [1..10] int;

forall elem in A do
elem += 1;

is @ built-in representing

the current execution locale

14

Programming with Chapel: Data + Task Par. + Locality

CPU Core GPU Core
. Memory
Locale 0 Locale 1

GPU O

GPU 1

coforall gpu in here.gpus {

on gpu {
var A: [1..10] int;

forall elem in A do
elem += 1;

[@ei{eI=ll loops run each iteration

in a parallel task

15

Programming with Chapel: Data + Task Par. + Locality

CPU Core GPU Core
. Memory
Locale 0 Locale 1

GPU O

GPU 1

m can be used instead of curly braces

for single-statement blocks
(this is just a matter of style)

coforall gpu in here.gpus do on gpu {
var A: [1..10] int;

forall elem in A do
elem += 1;

16

Programming with Chapel: Data + Task Par. + Locality

CPU Core GPU Core
. Memory
Locale 0 Locale 1

GPU O

GPU 1

A very similar [eej{e]]INESKeTy

for multilocale paralelleism

coforall loc in Locales do on loc {
coforall gpu in here.gpus do on gpu {
var A: [1..10] int;

forall elem in A do
elem += 1;

17

Programming with Chapel: Data + Task Par. + Locality + Data Movement

CPU Core GPU Core

. Memory

Locale 0 Locale 1 var CpulArr: [1..10] int;
coforall loc in Locales do on loc {
coforall gpu in here.gpus do on gpu {

const myChunk = start..end; / math omitted
var A = CpuArr[myChunk];

\ Arrays or Jlfd=§ can be copied across any locales,

including GPU sublocale

forall elem in A do

elem += 1;

Programming with Chapel: Honorable Mentions

'begin' statement
o Starts an asynchronous task

'‘cobegin’ statement
« Every statement in the block becomes a parallel task

'sync’ statement
« Synchronizes all asynchronous tasks at the end of the block

‘atomic' variables
« All operations on the variable is performed atomically, potentially across the network

'sync' variables
o Atomic variables with empty/full semantics: e.g. it can't be read twice in a row

19

How does Chapel
perform?

20

HPCC Stream Triad and RA in C + MPI + OpenMP vs. Chapel

|
1
TAMTRIAD'“MPHOPENMP use BlockDist; STREAM Performance (GB/s)
config const n = 1 000 000, S0000 e
alpha = 0.01; 25000 f Cha%g?%elggz—_—:—_— 7777777777777777777777777
const Dom = blockDist.createDomain({l..n}); | o el
var A, B, C: [Dom] real; % S e
—SUM, 0, comm) 7 10000 ,,
B=2.0; 5000 - e
e = W5 oceectorstoe peaes, 3, sasa ewlel 0) cC = 1. O; 0
1632 64 128 256
— A =B + alpha * C; Locales (x 36 cores / locale)
]
]
HPCC RA: MPI KERNEL
forall (, r) in zip(Updates, RAStream()) do RA Performance (GUPS)
Tlr & indexMask].xor(r):; 14p----------- SRR
12
10
2 8
o 6
4
2
O L
16 32 64 128 256
'72 Locales (x 36 cores / locale)

Bale IG in Chapel vs. SHMEM on HPE Cray EX (Slingshot-11)

Chapel (Simple / Auto-Aggregated version)

d = Src([i];

forall (d, 1) in zip(Dst,

Chapel ——
.. SHMEM Exstack —¢— _ _ _ _ _ _ _ _ _ _ _ _ _ __ _—"_ _ _____

SHMEM (Exstack version)

SHMEM Convey - -% -

GB/s

EM (Conveyors version)

i=0;
while (exstack proceed(ex, (i==1_ num req))) {
i0 = 1;

while(i < 1 num_req) {
1 indx = pckindx[i] >> 16;

pe = pckindx[i] & Oxffff;

if (!exstack push(ex, &l_indx, pe))
break;

Aldrarg

}
exstack_exchange (ex) ;

while (exstack pop(ex, &idx , &fromth)) {
idx ltable[idx];
exstack push(ex, &idx, fromth);

}

lgp_barrier();

exstack_exchange (ex) ;

for (j=i0; j<i; j++) {
fromth = pckindx[j] & Oxffff;
(

tgt[j] = idx;
}
lgp barrier();

}

(more = convey advance (requests, (i == 1 num req)),

Bale Indexgather Performance
HPE Cray EX (Slingshot-11)

convey advance (replies,

num_req; i++) |

pe = pckindx[i]
! convey push (requests,

(convey pull (requests, == convey_OK)
ltable[ptr->vall;
! convey push(replies,
convey unpull (requests);

(convey pull (replies,

exstack pop_ thread(ex, &idx, (uint64_t)fromth); tgt [ptr->idx]

—

512 1024 2048 4096
Compute Nodes

Distributed Sorting Performance and Productivity Survey

e Using distributed sort as proxy to compare
e Chapel, MPI, SHMEM and others

LSD Sort Lines of Code vs Performance
100 -

e All implementations are available

o github.com/mppf/distributed-Isb 50

o [Fhmem
25 -
e ofchprmsa) o[mpioms

& distributed-Isb ' pusiic @Watch 1 v % Fork 6

¥ main ~ ¥ 2Branches © 0 Tags Q Go tofile t Add file ~ <> Code ~ About

Comparing Distributed Programming

Sort Time on 64 EX Nodes (s)

& mppf Merge pull request #10 from ronawho/shmem-convey @ c49c63a - 2 days ago ¥ 56 Commits Frameworl ks with LSD Radix Sort I I i : I : I . :
(S Fixed counts 4 months ago 0 1000 2000 3000 4000 5000
ooooooooooooooo hmem chapel
W dask Update readmes 4 months ago Y t1 b h
Oou want 1o be nere i d
B hpx Add hpx/README.md 3 months ago H Reacme LI nes Of CO e
&5 Apache-2.0 license
B lamellar Add note about getting Rust on an HPC last week A Activity

m mpi Add Verifying printout last week W 4stars ° ° ° °
© tuaching Relatively simple implementations
M shmem Add SHMEM version that uses conve! yors 2 days ago % 6 forks

Optimized implementations

https://github.com/mppf/distributed-lsb
https://github.com/mppf/distributed-lsb
https://github.com/mppf/distributed-lsb
https://github.com/mppf/distributed-lsb
https://github.com/mppf/distributed-lsb
https://github.com/mppf/distributed-lsb
https://github.com/mppf/distributed-lsb

Further Reading on Sorting Capabilities of Standard Libraries

e Chapel's standard library leverages parallelism

out-of-the-box

Read more on Chapel blog

chapel-lang.org/blog/posts/std-sort-performance/

(C, Chapel Language Blog

About Chapel Website Featured Series Tags Authors All Posts

Comparing Standard Library Sorts: The Impact of Parallelism
Posted on January 30, 2024.
Tags: Sorting = Performance = Language Comparison

By: Michael Ferguson

Computing hardware is parallel. Everything from the Raspberry Pi to a supercomputer uses
parallelism. The Chapel language and standard library make it easy to use that parallel hardware
effectively.

The Chapel standard library | sort routine is at least 10 times faster than any other standard
library | sort measured in this benchmarking experiment. The reason: Chapels standard library
sort ' routine is parallel but the others are not. Chapel is designed for parallel computing and its
standard library is built to leverage that parallelism.

Chapel

Rust 57

Julia 47

c 37
C++ 21
Java 8

Go 16
c# 6
NodeJs ! 3
Python 2
0 100 200 300 400 500 600
Million 64-bit Integers Sorted per Second (higher is better)

Sorting 1 GiB of random 64-bit ints on a PC

https://chapel-lang.org/blog/posts/std-sort-performance/
https://chapel-lang.org/blog/posts/std-sort-performance/
https://chapel-lang.org/blog/posts/std-sort-performance/
https://chapel-lang.org/blog/posts/std-sort-performance/
https://chapel-lang.org/blog/posts/std-sort-performance/
https://chapel-lang.org/blog/posts/std-sort-performance/
https://chapel-lang.org/blog/posts/std-sort-performance/

Other Comparisons

e Chapel

Java

C++ 17

Julia®

Charm++

Chapel

Rust

Go

Julia
HPX
Swift
Python

Fa
HPX =
Chay

Swift ¢

st

e+

C++ 17
* Rust

.
Java

*Go

> Difficult

Diehl et al. "Benchmarking the Parallel 1D Heat Equation Solver in Chapel,

50 100

(a)

150 200
Lines of code (LOC)

e Python

Sl

ow

(b)

Charm++, C++, HPX, Go, Julia, Python, Rust, Swift, and Java"

Skylake
Cascade Lake
Sapphire Rapids

(a) Effective GFLOP/s, higher is better

457 444

427 432
53 3
1798

$ & &$ &
OQZ? @\§' 0\30 A &

Cascade Lake
Sapphire Rapids

Fig. 2: miniBUDE results for small deck bm1

o0 NNIRCE 24.1% | 23.5%

(b) Architectural efficiency, higher is better

Milthorpe et al. "Performance Portability of the Chapel Language on
Heterogeneous Architectures"

—

Speed-up

TFLOP/s
o
(=)

N
~
f

o
)

0.0 1

pebigin by

&

e

231

221 223 219 ols Sl 27
Problem Size

——
A

Chapel
Charm++
Dask

MPI
MPI+OpenMP
OmpSs
OpenMP task
PaRSEC DTD
PaRSEC PTG
PaRSEC shard
Realm

Regent

Spark

StarPU
StarPU expl
Swift/T
TensorFlow
X10

Figure 6: FLOPS vs problem size (stencil, 1 node). Higher is better.

Slaughter et al. "Task Bench: A Parameterized Benchmark
for Evaluating Parallel Runtime Performance”

Linear — CUDA-22 £~ Chpl-22 -4~ Chpl-21 % CUDA-21 —*-

Linear —

HIP-21 5~ Chpl-21 —4—

120 - 120 -
100 | 100 |
Qo
80 3 80
?
60 |- o 60 [
Q.
2]
40 40 |
20 20 ;,://,/::; EE———
48 16 32 64 128 48 16 32 64 128

(a) NVIDIA-based System

Number of Nodes

Number of Nodes

(b) AMD-based system

Carneiro et al. "Investigating Portability in Chapel for Tree-Based
Optimization on GPU-Powered Clusters"

| 25

All great... but what
about real-world usage?

26

Productivity Across Diverse Application Scales (code and system size)

Computation: Aircraft simulation / CFD
Code size: 100,000+ lines
Systems: Desktops, HPC systems

o3)

Computation: Coral reef image analysis
Code size: ~300 lines

Systems: Desktops, HPC systems w/ GPUs

Low-pass filter with LOWESS (intrinsically parallel)

100

RH (%) at Lake Mead
S

2010 2011 2012 2013 2014 2015

Computation: Atmospheric data analysis
Code size: 5000+ lines
Systems: Desktops, sometimes w/ GPUs

(i

7 Questions for Eric Laurendeau: Computing
Aircraft Aerodynamics in Chapel
Posted on September 17, 2024.

Tags: Computational Fluid Dynamics == User Experiences Interviews

By: Engin Kayraklioglu, Brad Chamberlain

%

sh
Yq
sg

i

“Chapel worked as intended: the code
maintenance is very much reduced, and
its readability is astonishing. This enables
undergraduate students to contribute,
something almost impossible to think of
when using very complex software.”

—

7 Questions for Scott Bachman: Analyzing
Coral Reefs with Chapel

Posted on October 1, 2024.

Tags: Earth Sciences || Image Analysis = GPU Programming

User Experiences = Interviews

By: Brad Chamberlain, Engin Kayraklioglu

In this second installment of our Seven Questions for Chapel Users series, we're looking at a
recent success story in which Scott Bachman used Chapel to unlock new scales of biodiversity
analysis in coral reefs to study ocean health using satellite image processing. This is work that

7 Questions for Nelson Luis Dias:
Atmospheric Turbulence in Chapel
Posted on October 15, 2024.

Tags: User Experiences | Interviews || Data Analysis

Computational Fluid Dynamics

By: Engin Kayraklioglu, Brad Chamberlain

In this edition of our Seven Questions for Chapel Users series, we turn to Dr. Nelson Luis Dias from

(ATTO), a project dedicated to long-term, 24/7 monitoring of greenhouse gas fluctuations. Read

1 “With the coral reef program, | was able to
speed it up by a factor of 10,000. Some
of that was algorithmic, but Chapel had

=

on

“Chapel allows me to use the available
CPU and GPU power efficiently without
low-level programming of data

| 1 the features that allowed me to do it.” a

synchronization, managing threads, etc.”

[read this interview series at: https://chapel-lang.org/blog/series/7-questions-for-chapel-users/]

https://chapel-lang.org/blog/series/7-questions-for-chapel-users/
https://chapel-lang.org/blog/series/7-questions-for-chapel-users/
https://chapel-lang.org/blog/series/7-questions-for-chapel-users/
https://chapel-lang.org/blog/series/7-questions-for-chapel-users/
https://chapel-lang.org/blog/series/7-questions-for-chapel-users/
https://chapel-lang.org/blog/series/7-questions-for-chapel-users/
https://chapel-lang.org/blog/series/7-questions-for-chapel-users/
https://chapel-lang.org/blog/series/7-questions-for-chapel-users/
https://chapel-lang.org/blog/series/7-questions-for-chapel-users/
https://chapel-lang.org/blog/series/7-questions-for-chapel-users/
https://chapel-lang.org/blog/series/7-questions-for-chapel-users/

More on CHAMPS & CFD: Previous Talk at NASA Ames is Available

@’ NASA Advanced Supercomputing (NAS) Division
Check out : — ‘ '

HOME ABOUT ~ TECHNICAL AREAS ~ SUPERCOMPUTING AT NAS ~ SOFTWARE ~
WwWw.nas.nasa.gov/pubs/ams/2025/02-20-25.html

AMS Seminar Series

High-Performance, Productive Programming using Chapel with

Examples from the CFD Solver CHAMPS

Speakers: Engin Kayraklioglu, Hewlett Packard Enterprise

Eric Laurendeau, Polytechnique Montreal

M. Karim Mohamad Zayni, Ph.D. Student, Polytechnique Montreal
February 20, 2025

Presentation

Advanced Modeling & Simulation (AMS)
Seminar Series

Seminar Slide Deck (PDF-11.8MB),

https://www.nas.nasa.gov/pubs/ams/2025/02-20-25.html
https://www.nas.nasa.gov/pubs/ams/2025/02-20-25.html
https://www.nas.nasa.gov/pubs/ams/2025/02-20-25.html
https://www.nas.nasa.gov/pubs/ams/2025/02-20-25.html
https://www.nas.nasa.gov/pubs/ams/2025/02-20-25.html
https://www.nas.nasa.gov/pubs/ams/2025/02-20-25.html
https://www.nas.nasa.gov/pubs/ams/2025/02-20-25.html
https://www.nas.nasa.gov/pubs/ams/2025/02-20-25.html

Arkouda

29

What is Arkouda?

Q: “What is Arkouda?”

Arkouda Client
(written in Python)

big_add_Sum st cizrs 16 e 5 e

O User writes Python code
ﬂ making familiar NumPy/Pandas calls

30

What is Arkouda?

Q: “What is Arkouda?”

Arkouda Client Arkouda Server
(written in Pythoni)‘_ (written in Chapel)

= Jupyter big_add_sum uasowspore 16 mots s> cnanc

Ta (1) mport arkosda as ak

™

O User writes Python code
ﬂ making familiar NumPy/Pandas calls

A: “A scalable version of NumPy / Pandas for data scientists”

: | 31

Performance and Productivity: Sorting with Arkouda

HPE Cray EX =g
o Slingshot-11 network (200 Gb/s)
e 8192 compute nodes
o 256 TiB of 8-byte values
« ~8500 GiB/s (~31 seconds)

HPE Cray EX @@
o Slingshot-11 network (200 Gb/s)
« 896 compute nodes
o 28 TiB of 8-byte values
e ~1200 GiB/s (~24 seconds)

HPE Apollo =3¢
e HDR-100 InfiniBand network (100 Gb/s)
o 576 compute nodes
o 72 TiB of 8-byte values
o ~480 GiB/s (~150 seconds)

GiB/s

9000
8000
/7000
6000
5000
4000
3000
2000
1000

Arkouda Argsort Performance

= Slingshot-11 May 2023, 32 GiB/node —¢— - - - - - - - - - - _ _——"_
Slingshot-11 April 2023, 32 GiB/node —eo—
~ HDR-100 IB May 2021, 128 GiB/node —— ~~~_~— ~~ "~~~ 7 °

Implemented using ~100 lines of Chapel

—

Performance and Productivity: Telemetry Analysis with Arkouda

e ~500 GB of server telemetry data Execution Time
o Stored in Parquet files (on 16 HPE Cray EX Nodes)
- Loaded in dataframes 400
e Measured time includes: 350
-10 300
~ Histogram, mean, max, covariance ¥ 250
£ 200
F 150
Arkouda performs significantly better than Dask and Spark 100
-
0
g o S
R\ > &
) Q
e *

SEYTEY.

33

What is Arkouda?

Q: “What is Arkouda?”

Arkouda Client Arkouda Server
_(written in Python) (written in Chapel)

LT C———————

o (1) inport arkoods as ak

O User writes Python code
ﬂ making familiar NumPy/Pandas calls

A: “A scalable version of NumPy / Pandas for data scientists”
A’: “An extensible framework for arbitrary HPC computations”
A”: “A way to drive HPC systems interactively from Python on a laptop”

—

34

Arkouda Resources

Website: https://arkouda-www.github.io/

github documentation gitter

Massive-scale data science,
from the comfort of your laptop

Arkouda ‘

° NumPy
Ready for supercomputers Industry standard

inport arkouda as ak

ak. conne

k. random. randint (0, 2##32, 2#k38) # -~
k. random. randint (0, 2432, 2438) #

k.s‘urt(c‘)k
print(clo:10])

Try it Out Tutorial Video [3 Chat on Gitter

Arkouda v2024.12.06 released!

The new release includes a refactored server making it easier to add new features, more Sparse Matrix fucntionality, new pdarray
manipulation functions, and bug fixes.

Read the release notes —+

Arkouda is...

Fast Interactive Extensible
Arkouda is powered by Chapel, a By distributing your data across One can expand on Arkouda’s
programming language buit from the multiple nodes, Arkouda allows you to capabilies, thus enabling arbitrary
ground up to support parallelism and rapidly transform and wrangle datasets scalable computations to be performed
distributed computing. Make the most in real time that are simply intractable from Python.
out of every core and every node in for a laptop or desktop.
your system.

Powered by Chapel

Arkouda’s backend s i in Chapel, an opt parallel

language. Chapel is unique among mainstream languages s it puts parallelism and locality N
in the forefront, while not sacrificing productivity or portability. Chapel enables Arkouda to
perform well and scale on many different architectures, from multicore laptops to cloud @APE L
systems to world's fastest supercomputers. _,

To learn more about Chapel, check out its blog, presentations, tutorials and demos, and the
How Can I Learn Chapel? page.

Arkouda users are saying...

1 . .
...solving problems in a matter of seconds, as opposed to days...

— Tess Hayes, Bytoa

11
[’'m] working with more data than | ever thought possible as a data scientist!

— Jake Trookman, Erias

[0 README [License

apkolda
massive scale
data science

Arkouda (apko0da) 8
Interactive Data Analytics at Supercomputing Scale

Online Documentation
Arkouda docs at Github Pages

Nightly Arkouda Performance Charts

Arkouda nightly performance charts

Gitter channels

Arkouda Gitter channel

Chapel Gitter channel

Talks on Arkouda

Mike Merrill's SIAM PP-22 Talk

Arkouda Hack-a-thon videos

GitHub: hitps://github.com/Bears-R-Us/arkouda

35

https://arkouda-www.github.io/
https://arkouda-www.github.io/
https://arkouda-www.github.io/
https://github.com/Bears-R-Us/arkouda
https://github.com/Bears-R-Us/arkouda
https://github.com/Bears-R-Us/arkouda
https://github.com/Bears-R-Us/arkouda
https://github.com/Bears-R-Us/arkouda

Arkouda Interview

Blog: Interview with founding co-developer, Bill Reus: https://chapel-lang.org/blog/posts/7gs-reus/

Table of Contents

1. Who are you?

2. What do you do? What problems
are you trying to solve?

3. How does Chapel help you with
these problems?

4. What initially drew you to Chapel?

5. What are your biggest successes
that Chapel has helped achieve?

6. If you could improve Chapel with a
finger snap, what would you do?

7. Anything else youd like people to
know?

(., Chapel Language Blog

About Chapel Website Featured Series Tags Authors All Posts

7 Questions for Bill Reus: Interactive
Supercomputing with Chapel for Cybersecurity
Posted on February 12, 2025.

Tags: User Experiences | Interviews | Data Analysis || Arkouda

By: Engin Kayraklioglu, Brad Chamberlain

We're very excited to kick off the 2025 edition of our Seven Questions for Chapel Users series wit
the following interview with Bill Reus. Bill is one of the co-creators of Arkouda, which is one of
Chapels flagship applications. To learn more about Arkouda and its support for interactive data
analysis at massive scales, read on!

1. Who are you?

My name is Bill Reus, and | live near Annapolis, MD and the beautiful Chesapeake Bay. | am
currently a data scientist doing statistical modeling and simulation for the United States
government, but | began my career as an experimental chemist. In graduate school, | measured
electron transport through thin films of organic molecules using an apparatus that our group
invented to collect large volumes of noisy data quickly and with low cost. This approach
contrasted with the typical means of studying molecular electronics, which was to spend weeks
or months collecting a small number of exquisite measurements in ultra-high vacuum and at
ultra-low temperature.

“l was on the verge of resigning
myself to learning MPI when | first
encountered Chapel. After writing my
first Chapel program, | knew | had
found something much more
appealing.”

“Chapel's separation of concerns
immediately felt like the most natural
way to think about large-scale
computing. | would highly encourage
anyone wanting to get into HPC
programming to start with Chapel.”

—

36

https://chapel-lang.org/blog/posts/7qs-reus/
https://chapel-lang.org/blog/posts/7qs-reus/
https://chapel-lang.org/blog/posts/7qs-reus/
https://chapel-lang.org/blog/posts/7qs-reus/
https://chapel-lang.org/blog/posts/7qs-reus/

How do | learn more
about Chapel?

37

Ways to Engage with the Chapel Community

“Live” Virtual Events
e ChapelCon (formerly CHIUW), annually

e Project Meetings, weekly
e Deep Dive / Demo Sessions, weekly tfimeslot

Community / User Forums

e Discord @@ piscord

e Discourse Discourse

e Email Contact Alias chapel+gs@discoursemail.com
e GitHub Issues)

o Gitter |I' cITTER

e Reddit (> reddit

e Stack Overflow =" stackoverflow

—

Electronic Communications

e Chapel Blog, ~biweekly

e Community Newsletter, quarterly
e Announcement Emails, around big events

Social Media

o Bluesky *
e Facebook ﬁ

e Linkedin Linked[fl]
e Mastodon (@astodon

o X/ Twitter X

e YouTube [E3YouTube

38

https://chapel-lang.org/ChapelCon24.html
https://chapel-lang.org/ChapelCon24.html
https://github.com/chapel-lang/chapel/discussions/categories/weekly-meeting-topics?discussions_q=
https://github.com/chapel-lang/chapel/discussions/categories/weekly-meeting-topics?discussions_q=
https://chapel-lang.org/community/
https://chapel-lang.org/community/
https://discord.com/invite/xu2xg45yqH
https://discord.com/invite/xu2xg45yqH
https://chapel.discourse.group/
https://chapel.discourse.group/
https://github.com/chapel-lang/chapel/issues
https://github.com/chapel-lang/chapel/issues
https://gitter.im/chapel-lang/chapel
https://gitter.im/chapel-lang/chapel
https://www.reddit.com/r/chapel/
https://www.reddit.com/r/chapel/
http://stackoverflow.com/questions/tagged/chapel
http://stackoverflow.com/questions/tagged/chapel
https://chapel-lang.org/blog/
https://chapel-lang.org/blog/
https://chapel.discourse.group/c/newsletters/24
https://chapel.discourse.group/c/newsletters/24
https://chapel.discourse.group/c/announcements/8
https://chapel.discourse.group/c/announcements/8
https://bsky.app/profile/chapellanguage.bsky.social
https://bsky.app/profile/chapellanguage.bsky.social
https://www.facebook.com/ChapelLanguage
https://www.facebook.com/ChapelLanguage
https://www.linkedin.com/company/ChapelLanguage/
https://www.linkedin.com/company/ChapelLanguage/
https://mastodon.social/@chapelprogramminglanguage
https://mastodon.social/@chapelprogramminglanguage
https://x.com/ChapelLanguage
https://x.com/ChapelLanguage
https://www.youtube.com/@ChapelLanguage
https://www.youtube.com/@ChapelLanguage

Chapel has been accepted to HPSF

Timeline:
o May 2024: HPSF launched at ISC
« September 2024: Began accepting applications for member projects
« January 2025: Chapel accepted to HPSF at the “established” project level
 May 2025: First-ever HPSFcon

sy HPSF

Resources:
HIGH PERFORMANCE

o Website: hitps://hpsf.io/ m SOFTWARE FOUNDATION

e Blog: hitps://hpsf.io/blog/
e YouTube channel: htfps://www.youtube.com/@HPSF-community
o GitHub org: https://github.com/hpsfoundation

https://events.linuxfoundation.org/hpsf-conference/
https://hpsf.io/
https://hpsf.io/blog/
https://www.youtube.com/@HPSF-community
https://www.youtube.com/@HPSF-community
https://www.youtube.com/@HPSF-community
https://github.com/hpsfoundation

Closing Remarks

Chapel allows programmers to leverage most common parallel hardware
e Multicore, multinode, including cloud resources
e NVIDIA and AMD GPUs are supported with vendor-neutral code

Same set of programming abstractions are used to achieve this portability

« No need to add things on, Chapel comes batteries-included
« No need to paradigm-shift when going from a single node to scaling on a supercomputer

Chapel is being used in many different fields, and in a wide range of institutions
« Some application fields are CFD, data analytics, graph processing, ecological research, astrophysics
e Have been used by academia, industry, and government
e From desktops to supercomputers

40

Thank you

