
The Chapel Parallel Programming Language
and its Ecosystem

Jade Abraham
jade.abraham@hpe.com
linkedin.com/in/jabraham17

October 4, 2024

Engin Kayraklioglu
engin@hpe.com
linkedin.com/in/engink

mailto:jade.abraham@hpe.com
http://www.linkedin.com/in/jabraham17
mailto:engin@hpe.com
http://www.linkedin.com/in/engink

Chapel: A modern parallel programming language
• portable & scalable
• open-source & collaborative

Goals:
• Support general parallel programming
• Make parallel programming at scale far more productive

What is Chapel?

2

chapel-lang.org

http://chapel-lang.org/

Chapel works everywhere
• you can develop on your laptop and have the code scale on a supercomputer
• GPUs can be targeted in a vendor-neutral way
• runs on Linux laptops/clusters, Cray systems, MacOS, WSL, AWS, Raspberry Pi
• shown to scale on Cray networks (Slingshot, Aries), InfiniBand, RDMA-Ethernet

Chapel makes distributed/shared memory parallel programming easy
• data-parallel, locality-aware loops,
• ability to move execution and allocation to remote nodes,
• distributed arrays and bulk array operations
• different types of parallelism can be expressed with the same language features

3

What is Chapel?

4

HPCC Stream Triad and RA: C + MPI +OpenMP vs. Chapel

72

HPCC RA: MPI KERNEL

/* Perform updates to main table. The scalar equivalent is:
*
* for (i=0; i<NUPDATE; i++) {
* Ran = (Ran << 1) ^ (((s64Int) Ran < 0) ? POLY : 0);
* Table[Ran & (TABSIZE-1)] ^= Ran;
* }
*/

MPI_Irecv(&LocalRecvBuffer, localBufferSize, tparams.dtype64,
MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &inreq);

while (i < SendCnt) {
/* receive messages */
do {
MPI_Test(&inreq, &have_done, &status);
if (have_done) {
if (status.MPI_TAG == UPDATE_TAG) {
MPI_Get_count(&status, tparams.dtype64, &recvUpdates);
bufferBase = 0;
for (j=0; j < recvUpdates; j ++) {
inmsg = LocalRecvBuffer[bufferBase+j];
LocalOffset = (inmsg & (tparams.TableSize - 1)) –

tparams.GlobalStartMyProc;
HPCC_Table[LocalOffset] ^= inmsg;

}
} else if (status.MPI_TAG == FINISHED_TAG) {
NumberReceiving--;

} else
MPI_Abort(MPI_COMM_WORLD, -1);

MPI_Irecv(&LocalRecvBuffer, localBufferSize, tparams.dtype64,
MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &inreq);

}
} while (have_done && NumberReceiving > 0);
if (pendingUpdates < maxPendingUpdates) {
Ran = (Ran << 1) ^ ((s64Int) Ran < ZERO64B ? POLY : ZERO64B);
GlobalOffset = Ran & (tparams.TableSize-1);
if (GlobalOffset < tparams.Top)
WhichPe = (GlobalOffset / (tparams.MinLocalTableSize + 1));

else
WhichPe = ((GlobalOffset - tparams.Remainder) /

tparams.MinLocalTableSize);
if (WhichPe == tparams.MyProc) {
LocalOffset = (Ran & (tparams.TableSize - 1)) –

tparams.GlobalStartMyProc;
HPCC_Table[LocalOffset] ^= Ran;

} else {
HPCC_InsertUpdate(Ran, WhichPe, Buckets);
pendingUpdates++;

}
i++;

}
else {
MPI_Test(&outreq, &have_done, MPI_STATUS_IGNORE);
if (have_done) {
outreq = MPI_REQUEST_NULL;
pe = HPCC_GetUpdates(Buckets, LocalSendBuffer, localBufferSize,

&peUpdates);
MPI_Isend(&LocalSendBuffer, peUpdates, tparams.dtype64, (int)pe,

UPDATE_TAG, MPI_COMM_WORLD, &outreq);
pendingUpdates -= peUpdates;

}
}

}
/* send remaining updates in buckets */
while (pendingUpdates > 0) {

/* receive messages */
do {
MPI_Test(&inreq, &have_done, &status);
if (have_done) {
if (status.MPI_TAG == UPDATE_TAG) {
MPI_Get_count(&status, tparams.dtype64, &recvUpdates);
bufferBase = 0;
for (j=0; j < recvUpdates; j ++) {
inmsg = LocalRecvBuffer[bufferBase+j];
LocalOffset = (inmsg & (tparams.TableSize - 1)) –

tparams.GlobalStartMyProc;
HPCC_Table[LocalOffset] ^= inmsg;

}
} else if (status.MPI_TAG == FINISHED_TAG) {

/* we got a done message. Thanks for playing... */
NumberReceiving--;

} else {
MPI_Abort(MPI_COMM_WORLD, -1);

}
MPI_Irecv(&LocalRecvBuffer, localBufferSize, tparams.dtype64,

MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &inreq);
}

} while (have_done && NumberReceiving > 0);

MPI_Test(&outreq, &have_done, MPI_STATUS_IGNORE);
if (have_done) {
outreq = MPI_REQUEST_NULL;
pe = HPCC_GetUpdates(Buckets, LocalSendBuffer, localBufferSize,

&peUpdates);
MPI_Isend(&LocalSendBuffer, peUpdates, tparams.dtype64, (int)pe,

UPDATE_TAG, MPI_COMM_WORLD, &outreq);
pendingUpdates -= peUpdates;

}
}
/* send our done messages */
for (proc_count = 0 ; proc_count < tparams.NumProcs ; ++proc_count) {
if (proc_count == tparams.MyProc) { tparams.finish_req[tparams.MyProc] =

MPI_REQUEST_NULL; continue; }
/* send garbage - who cares, no one will look at it */
MPI_Isend(&Ran, 0, tparams.dtype64, proc_count, FINISHED_TAG,

MPI_COMM_WORLD, tparams.finish_req + proc_count);
}
/* Finish everyone else up... */
while (NumberReceiving > 0) {
MPI_Wait(&inreq, &status);
if (status.MPI_TAG == UPDATE_TAG) {
MPI_Get_count(&status, tparams.dtype64, &recvUpdates);
bufferBase = 0;
for (j=0; j < recvUpdates; j ++) {
inmsg = LocalRecvBuffer[bufferBase+j];
LocalOffset = (inmsg & (tparams.TableSize - 1)) –

tparams.GlobalStartMyProc;
HPCC_Table[LocalOffset] ^= inmsg;

}
} else if (status.MPI_TAG == FINISHED_TAG) {

/* we got a done message. Thanks for playing... */
NumberReceiving--;

} else {
MPI_Abort(MPI_COMM_WORLD, -1);

}
MPI_Irecv(&LocalRecvBuffer, localBufferSize, tparams.dtype64,

MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &inreq);
}

MPI_Waitall(tparams.NumProcs, tparams.finish_req, tparams.finish_statuses);

#include <hpcc.h>
#ifdef _OPENMP
#include <omp.h>
#endif

static int VectorSize;
static double *a, *b, *c;

int HPCC_StarStream(HPCC_Params *params) {
int myRank, commSize;
int rv, errCount;
MPI_Comm comm = MPI_COMM_WORLD;

MPI_Comm_size(comm, &commSize);
MPI_Comm_rank(comm, &myRank);

rv = HPCC_Stream(params, 0 == myRank);
MPI_Reduce(&rv, &errCount, 1, MPI_INT, MPI_SUM, 0, comm);

return errCount;
}

int HPCC_Stream(HPCC_Params *params, int doIO) {
register int j;
double scalar;

VectorSize = HPCC_LocalVectorSize(params, 3, sizeof(double), 0);

a = HPCC_XMALLOC(double, VectorSize);
b = HPCC_XMALLOC(double, VectorSize);
c = HPCC_XMALLOC(double, VectorSize);

if (!a || !b || !c) {
if (c) HPCC_free(c);
if (b) HPCC_free(b);
if (a) HPCC_free(a);
if (doIO) {
fprintf(outFile, "Failed to allocate memory (%d).\n", VectorSize);
fclose(outFile);

}
return 1;

}

#ifdef _OPENMP
#pragma omp parallel for
#endif
for (j=0; j<VectorSize; j++) {
b[j] = 2.0;
c[j] = 1.0;

}
scalar = 3.0;

#ifdef _OPENMP
#pragma omp parallel for
#endif
for (j=0; j<VectorSize; j++)
a[j] = b[j]+scalar*c[j];

HPCC_free(c);
HPCC_free(b);
HPCC_free(a);

return 0;
}

63

STREAM TRIAD: C + MPI + OPENMP

0
5000
10000
15000
20000
25000
30000

16 32 64 128 256

G
B/
s

Locales (x 36 cores / locale)

MPI+OpenMP
Chapel EP

Chapel Global

STREAM Performance (GB/s)

…
forall (_, r) in zip(Updates, RAStream()) do
 T[r & indexMask].xor(r);
…

use BlockDist;

config const n = 1_000_000,
 alpha = 0.01;
const Dom = blockDist.createDomain({1..n});
var A, B, C: [Dom] real;

B = 2.0;
C = 1.0;

A = B + alpha * C;

Applications of Chapel

5(images provided by their respective teams and used with permission)

CHAMPS: 3D Unstructured CFD
Laurendeau, Bourgault-Côté, Parenteau, Plante, et al.

École Polytechnique Montréal

ChplUltra: Simulating Ultralight Dark Matter
Nikhil Padmanabhan, J. Luna Zagorac, et al.

Yale University et al.

Arkouda: Interactive Data Science at Massive Scale
Mike Merrill, Bill Reus, et al.

U.S. DoD

ChOp: Chapel-based Optimization
T. Carneiro, G. Helbecque, N. Melab, et al.

INRIA, IMEC, et al.

Chapel-based Hydrological Model Calibration
Marjan Asgari et al.

University of Guelph

?

Your Application Here?CHGL: Chapel Hypergraph Library
Louis Jenkins, Cliff Joslyn, Jesun Firoz, et al.

PNNL

CrayAI HyperParameter Optimization (HPO)
Ben Albrecht et al.

Cray Inc. / HPE

Lattice-Symmetries: a Quantum Many-Body Toolbox
Tom Westerhout

Radboud University

ChapQG: Layered Quasigeostrophic CFD
Ian Grooms and Scott Bachman

University of Colorado, Boulder et al.

Desk dot chpl: Utilities for Environmental Eng.
Nelson Luis Dias

The Federal University of Paraná, Brazil

RapidQ: Mapping Coral Biodiversity
Rebecca Green, Helen Fox, Scott Bachman, et al.

The Coral Reef Alliance

Active GPU efforts

• Analyzing images for coral reef biodiversity
• Important for prioritizing interventions

• Algorithm implemented productively
• Add up weighted values of all points in a neighborhood,

i.e., convolution over image
• Developed by Scott Bachman, NCAR scientist who is a

visiting scholar on the Chapel team
• Scott started learning Chapel in Sept 2022, started Coral

Reef app in Dec 2022, already had collaborators
presenting results in Feb 2023

• In July with ~5 lines changed, ran on a GPU

• Performance
• Less than 300 lines of Chapel code scales out to 100s of

processors on Cheyenne (NCAR)
• Full maps calculated in seconds, rather than days

6

Use Case: Image Processing for Coral Reef Biodiversity

7

Use Case: Image Processing for Coral Reef Biodiversity

Runs on Frontier!
• At 64 nodes, takes 20 minutes

• As opposed to ~27 days on a laptop

• Straightforward code changes:
• from sequential Chapel code
• to GPU-enabled one
• to multi-node, multi-GPU, multi-thread

Read a recent interview with Scott Bachman
on Chapel Blog

https://chapel-lang.org/blog/posts/7qs-bachman/

Coming up Next: A live demo

• Introduction to the language and parallelism
• Showcase of GPU capabilities
• Inference using ChAI (Chapel AI Library)

Later on: Ways to contribute to the Chapel Universe

• A spectrum of contribution opportunities, technical and social alike

8

What's In Store Today

Live Demo

9

10

Example Codes Are Available

https://github.com/jabraham17/chapel-ai-demo/

https://github.com/jabraham17/chapel-ai-demo/

Contributing to
The Chapel Universe

11

12

Contributing to The Chapel Universe
T

EC
H

N
IC

A
L

SO
CI

A
L

Contribute to the core language

Contribute to tooling

Write your favorite application or library in Chapel

Join the discussion

Follow us on social media

Help expand the Chapel universe!

13

Contributing to The Chapel Universe
T

EC
H

N
IC

A
L

SO
CI

A
L

Contribute to the core language

Contribute to tooling

Write your favorite application or library in Chapel

Join the discussion

Follow us on social media

Help expand the Chapel universe!

14

Contribute to the Standard Modules, Runtime or Compiler

Tip: Use labels to filter open issues; such as

Chapel has had more than 200 contributors so far!

Check out open issues on GitHub

... or the Contributing to Chapel page

https://github.com/chapel-lang/chapel/blob/main/CONTRIBUTORS.md
https://github.com/chapel-lang/chapel/issues
https://chapel-lang.org/contributing.html

15

Contributing to The Chapel Universe
T

EC
H

N
IC

A
L

SO
CI

A
L

Contribute to the core language

Contribute to tooling

Write your favorite application or library in Chapel

Join the discussion

Follow us on social media

Help expand the Chapel universe!

We have accounts on the following platforms:
• LinkedIn: ChapelLanguage
• Mastodon: @ChapelProgrammingLanguage
• X / Twitter: @ChapelLanguage
• Facebook: @ChapelLanguage
• YouTube: @ChapelLanguage
• Reddit: r/Chapel

• There is weekly activity on these accounts:
• Upcoming Chapel events, talks, papers from the community
• New Chapel resources, tutorials, and demos
• Updates from releases, performance studies

• Look out for Chapel news on other platforms
• e.g. Hacker News and Lobsters

• Follow, like, repost, amplify the message!

16

Follow Chapel on Social Media

http://linkedin.com/company/ChapelLanguage
https://mastodon.social/@chapelprogramminglanguage
https://twitter.com/ChapelLanguage
https://www.facebook.com/ChapelLanguage/
https://www.youtube.com/@chapellanguage
https://www.reddit.com/r/chapel/
https://news.ycombinator.com/
https://lobste.rs/

17

Contributing to The Chapel Universe
T

EC
H

N
IC

A
L

SO
CI

A
L

Contribute to the core language

Contribute to tooling

Write your favorite application or library in Chapel

Join the discussion

Follow us on social media

Help expand the Chapel universe!

18

Chapel Makes HPC and Parallel Programming More Accessible

Chapel removes the layers of complexity for code writing, allowing seamless
code development while maintaining computational performance. It is
ideal to develop very large and complex computational models.

With the coral reef program, I was able to speed it up by a
factor of, like 10,000. I would say some of that was
algorithmic... but again, Chapel had the features in the
language that allowed me to do it pretty succinctly.

A lot of the nitty gritty is hidden from you until you need to
know it. ... It feels like the complexity grows as you get more
comfortable -- rather than being hit with everything at once.

Éric Laurendeau, Professor of Mechanical Engineering, Polytechnique Montreal

Scott Bachman, Oceanographer, [C]Worthy

Tess Hayes, Developer, Bytoa

• Do you have applications that can benefit from a parallel-
first language that
• has intuitive, baked-in parallelism and locality features
• can be used on laptops, supercomputers or anything in between
• can run on NVIDIA and AMD GPUs in a vendor-neutral way

• Maybe that application is;
• implemented in Python, MATLAB, R, and

– can benefit from parallelism
– without complicating the code

• implemented in C/C++/Fortran + MPI + XYZ, and is getting
– harder to maintain,
– harder to onboard new developers

• not implemented, yet!

19

Write Your Next Application in Chapel!

See many other ways of trying Chapel
chapel-lang.org/download.html

Try Chapel on GitHub Codespaces

Check out tutorials and demos on YouTube

Check out Chapel Documentation

https://chapel-lang.org/download.html
http://github.com/chapel-lang/chapel-hello-world
https://www.youtube.com/@ChapelLanguage
https://chapel-lang.org/docs/

Browse through projects with "chapel" tag on GitHub: github.com/topics/chapel

20

Get Familiar with Open-Source Projects using Chapel

Arkouda: Interactive Data Analytics at
Supercomputing Scale

A numpy/pandas-like Python library backed by a server
implemented in Chapel

ChAI: Chapel AI Library

Chapel's nascent AI/ML Library

https://github.com/topics/chapel
https://github.com/Bears-R-Us/arkouda
https://github.com/chapel-lang/ChAI

Check out this wishlist of libraries for inspiration: github.com/chapel-lang/chapel/issues/6329

• ... or any other library from any other language

21

Create Your Favorite Library in Chapel

Chapel's package manager, Mason, can help

For example, see
this automatic differentation library

... or this Interval Arithmetic one

https://github.com/chapel-lang/chapel/issues/6329
http://chapel-lang.org/docs/main/tools/mason/mason.html
https://github.com/lucaferranti/ForwardModeAD
https://github.com/lucaferranti/Chimera

22

Contributing to The Chapel Universe
T

EC
H

N
IC

A
L

SO
CI

A
L

Contribute to the core language

Contribute to tooling

Write your favorite application or library in Chapel

Join the discussion

Follow us on social media

Help expand the Chapel universe!

23

Contribute to Chapel Tooling

Chapel Language Server (CLS)

VSCode Extension

Mason: Chapel Package Manager
(written in Chapel!)

Consider helping us improve Chapel's tools, such as:

Chapel Linter (chplcheck)

Python Bindings for the Chapel Compiler
(chapel-py)

... or consider other editor extensions, tools that you find useful.

https://chapel-lang.org/docs/main/tools/chpl-language-server/chpl-language-server.html
https://marketplace.visualstudio.com/items?itemName=chpl-hpe.chapel-vscode
https://chapel-lang.org/docs/main/tools/mason/mason.html
https://chapel-lang.org/docs/main/tools/chplcheck/chplcheck.html
https://chapel-lang.org/docs/main/tools/chapel-py/chapel-py.html

24

Contributing to The Chapel Universe
T

EC
H

N
IC

A
L

SO
CI

A
L

Contribute to the core language

Contribute to tooling

Write your favorite application or library in Chapel

Join the discussion

Follow us on social media

Help expand the Chapel universe!

For more technical discussion and/or support:
• Discourse: https://chapel.discourse.group/
• Gitter: https://gitter.im/chapel-lang/chapel
• Stack Overflow: https://stackoverflow.com/questions/tagged/chapel
• GitHub Issues: https://github.com/chapel-lang/chapel/issues
• Monthly Office Hours / Live Demos: https://chapel-lang.org/events.html

25

Join our Community Channels and Discussions

https://chapel.discourse.group/
https://gitter.im/chapel-lang/chapel
https://stackoverflow.com/questions/tagged/chapel
https://github.com/chapel-lang/chapel/issues
https://chapel-lang.org/events.html

We would love to boost your work...

26

Let Us Know About Your Work Using Chapel

By publishing your article
on Chapel Language Blog

... or by posting your demo
on our YouTube channel

... and other social media platforms.

https://chapel-lang.org/blog/index.html
https://www.youtube.com/playlist?list=PLuqM5RJ2KYFgllPMfP5OiRKsVRPf1UEDs

27

Contributing to The Chapel Universe
T

EC
H

N
IC

A
L

SO
CI

A
L

Contribute to the core language

Contribute to tooling

Write your favorite application or library in Chapel

Join the discussion

Follow us on social media

Help expand the Chapel universe!

• Chapel language is used in industry, academia and government
• The current focus of the Chapel team @HPE is to expand our community further

Help expand the Chapel universe!

This open call by Chapel's Tech Lead
Brad Chamberlain

The ChapelCon '24 Keynote by Paul Sathre on the
importance of Parallel-First Languages

What our users have to say about Chapel
on the 7 Questions for Chapel Users blog series

Check out the following for further inspiration...

https://chapel-lang.org/blog/posts/python-science-collabs/
https://www.youtube.com/watch?v=G0LneLP1-Ko&t=208s&ab_channel=ChapelParallelProgrammingLanguage
https://www.youtube.com/watch?v=G0LneLP1-Ko&t=208s&ab_channel=ChapelParallelProgrammingLanguage
https://chapel-lang.org/blog/series/7-questions-for-chapel-users/

Thanks!

29

