WY

Hewlett Packard
Enterprise

MAKING PARALLEL PROGRAMMING AND GPUS
MORE ACCESSIBLE WITH CHAPEL

Engin Kayraklioglu
May 31st, 2024

engin@hpe.com
linkedin.com/in/engink

mailto:engin@hpe.com
http://www.linkedin.com/in/engink

ITISHARD TO AVOID GPUS IN HPC
TOP500 Systems with GPUs Over Time

1 — — 0
e e —— 41/0 of top 10 have GPUs
P 7 2 0,
e e —— 0 in the last 3 years
] = = e
With GPUs g E;:_E%;%E ZZ—E_:_—: 0
— 3 mes =—— = ==] 27%
Without GPUs é - E?;;ff == _| 0 of top 100 have GPUs
e (B 5 2 0,
BEE =i =0 —5 == 0 in the last 3 yeacs

|
H

500

150 -

13X more systems w/GPUs

Systems
w/ GPUs
=
o
o

http://www.top500.org/

GPUS ARE EASY TO FIND... BUT DIFFICULT TO PROGRAM
GPU Programming No distributed memory
support here

|

Shared Distributed From Portable Solutions
Memor Memor Vendors (directives) (C++ templates)
Potential Users Y y HPC Experts
e OpenAcc & X % 1(([3?7 S
p &(\l ‘_ﬂ L|_|_| U‘_’” m
Wl w W w

OpenMP *

All are effective, powerful, essential and tested technologies!

e ... but programming for multiple nodes with GPUs appears to require at least 2 programming models
o all of the models rely on C/C++/Fortran, which are different than the languages being taught these days

e as a result, using GPUs in HPC has a high barrier of entry

Chapel is an alternative for productive
distributed/shared memory GPU programming in a vendor-neutral way.

—

WHAT IS CHAPEL?

Chapel: A modern parallel programming language ~\
» portable & scalable
e open-source & collaborative —y,
Goals:

chapel-lang.org

e Support general parallel programming
o Make parallel programming at scale far more productive

http://chapel-lang.org/

WHAT IS CHAPEL?

Chapel works everywhere

e you can develop on your laptop and have the code scale on a supercomputer

e GPUs can be targeted in a vendor-neutral way

e runs on Linux laptops/clusters, Cray systems, MacOS, WSL, AWS, Raspberry Pi
» shown to scale on Cray networks (Slingshot, Aries), InfiniBand, RDMA-Ethernet

Chapel makes distributed/shared memory parallel programming easy
o data-parallel, locality-aware loops,

e ability to move execution and allocation to remote nodes,

e distributed arrays and bulk array operations

o different types of parallelism can be expressed with the same language features

—

WHAT IS CHAPEL?

Chapel works everywhere

e GPUs can be targeted in a vendor-neutral way

Chapel makes distributed/shared memory parallel programming easy
o data-parallel, locality-aware loops,

e ability to move execution and allocation to remote nodes,

e distributed arrays and bulk array operations

o different types of parallelism can be expressed with the same language features

—

APPLICATIONS OF CHAPEL

CHAMPS: 3D Unstructured CFD
Laurendeau, Bourgault-Coté, Parenteau, Plante, et al.
Ecole Polytechnique Montréal

Lattice-Symmetries: a Quantum Many-Body Toolbox Desk dot chpl: Utilities for Environmental Eng.
Tom Westerhout
Radboud University

Chapel-based Hydrological Model Calibration
Marjan Asgari et al.
University of Guelph

—

Chapel Server

Python3 Client ma
S Socket

Code Modules E I

Distributed

Object Store |8
Platform

7 | Acithmetic

Arkouda: Interactive Data Science at Massive Scale

Mike Merrill, Bill Reus, et al.
U.S. DoD

Low-pass filter with LOWESS (intrinsically parallel)

100

80 - .

60

40 + o

RH (%) at Lake Mead

20

0
2010 2011 2012 2013 2014 2015
date.

Nelson Luis Dias
The Federal University of Parana, Brazil

FEATURES ENSEMBLES
EXPLORATIONuPARAMETEMAHONALE

CrayAl HyperParameter Optimization (HPO)
Ben Albrecht et al.
Cray Inc. / HPE

Active GPU efforts

ChOp: Chapel-based Optimization
T. Carneiro, G. Helbecque, N. Melab, et al.
INRIA, IMEC, et al.

RapidQ: Mapping Coral Biodiversity
Rebecca Green, Helen Fox, Scott Bachman, et al.
The Coral Reef Alliance

CHGL: Chapel Hypergraph Library
Louis Jenkins, Cliff Joslyn, Jesun Firoz, et al.
PNNL

(images provided by their respective teams and used with permission)

ChplUltra: Simulating Ultralight Dark Matter
Nikhil Padmanabhan, J. Luna Zagorac, et al.
Yale University et al.

ChapQG: Layered Quasigeostrophic CFD
lan Grooms and Scott Bachman
University of Colorado, Boulder et al.

?

Your Application Here?

CORAL REEF SPECTRAL BIODIVERSITY

1. Read in a (M x N) raster image of habitat data M

A
v

2. Create a (P x P) mask to find all points within a 1
given radius.

3. Convolve this mask over the entire domain and
perform a weighted reduce at each location.

P

ryo
A

Algorithmic complexity: O (MNP3)
Typically:

-M,N > 10,000

- P~ 400

»

&

CORAL REEF SPECTRAL BIODIVERSITY

proc convolve (InputArr, OutputArr) { //3Dlinput, 2D Output
for ... {
tonOfMath () ;

}
}

proc main () {
var InputArr: ...;
var OutputArr: ...;

convolve (InputArr, OutputArr);

}

CORAL REEF SPECTRAL BIODIVERSITY

proc convolve (InputArr, OutputArr) { //3DInput, 2D Output

foreach ... { Ui g . q . e GPU .
tonOfMath () ; sing a different loop flavor to enable execution.

}
}

proc main() { Multi-node, multi-GPU, multi-thread parallelism

var InputArr: are expressed using the same language constructs.

var OutputArr:

.
LA 4

coforall loc in Locales do on loc { // use all nodes in parallel...
coforall gpu in here.gpus do on gpu { //using GPUs on this node in parallel...
coforall task in 0. .#numWorkers { // using numWorkers on this GPU in parallel.
var MyInputArr = InputArr[...];
var MyOutputArr: ...;

High-level, intuitive array operations

convolve (MyInputArr, MyOutputArr) work across nodes and/or devices

OutputArr[...] = MyOutputArr;
BB

—

10

CORAL REEF SPECTRAL BIODIVERSITY

Runs on Frontier!
proc convolve (InputArr, OutputArr) { //3Ding

foreach { e 5x improvement going from 2 to 64 nodes
tonOfMath () ; e (from 16 to 512 GPUs)
J o Straightforward code changes:
} | o from sequential Chapel code
proc rlnamt(; { « to GPU-enabled one
var In r: ...; . : :
PULAT o to multi-node, multi-GPU, multi-thread
var OutputArr: ...;
Multilocale Coral Image Analysis B
coforall loc in Locales do on loc { //u AT pretlia —
coforall gpu in here.gpus do on gpu { /u §3 %
coforall task in O..#numWorkers { //using pe (%27
1
var MyInputArr = InputArr[...]; ; ¢ Speedup over 2 nodes .
var MyOutputArr: ...; S umber of Nodes o4
convolve (MyInputArr, OutputArr); (x8 GPUs)
OutputArr[...] = MyOutputArr;

e Scalability improvements coming soon!
b}

—

11

WHAT WE WILL DISCUSS TODAY

e Native GPU programming in Chapel using simple snippets
e Two stories from the community analyzing performance

What we will not discuss today:
o Comprehensive list of Chapel features
- (important ones will be covered)
« How GPU support is implemented
- (happy to go over some backup slides, if there's interest)

e Everything you can do with GPUs using Chapel

— (there's only so much time ©)

12

GPU PROGRAMMING
IN CHAPEL

13

LOCALES IN CHAPEL

e In Chapel, a locale refers to a compute resource with...
e processors, so it can run ftasks

e memory, so it can store variables
e For now, think of each compute node as being a locale

Compute
Node O

_mm

Compute
Node 1

Compute
Node 2

b

B

. Memory

Processor Core

Compute
Node 3

14

KEY BUILT-IN TYPES AND VARIABLES RELATED TO LOCALES

locale:
Locales:
here

A type that represents system resources on which the program can run
An array of 1ocale values
The 1ocale on which the current task is executing

Locale O

Locale 1

Locale 2

B

Locale 3

el

J

/ |
here Locales
Processor Core
. Memory

15

KEY CONCERNS FOR SCALABLE PARALLEL COMPUTING

1. parallelism: Which tasks should run simultaneously?
2. locality: Where should tasks run? Where should data be allocated?

Locale O

oo
o

aﬁﬁ

Locale 1

o

o
T

Locale 2

o

o
ooﬁ\ |

Locale 3

oo
dho

- Memory

Processor Core

16

PARALLELISM AND LOCALITY

CPU Core . Memory
Locale O | Locale 1
a
& o2

oo

N

Execution/allocation

moves to Locale 1

var A: [1..2,
o

var B: [1.
R = 2;
A = B;

}

o2eete,

Q writeln (A) ;

1.

on Locales|[1]
.2,

2]

{

1.

real;

2]

real;

17

PARALLELISM AND LOCALITY

forall b in B do

var B:
R = 2;
A = B;

Can be expressed
in different ways

forall i in B.domain do
B[1i] = 2;

var A: [1..

— writeln () ;

on Locales][1]

[1..2,

2]

1.

2]

real;

real;

18

PARALLELISM AND LOCALITY

CPU Core . Memory
avar A: [1..2, 1..2] real;
Locale O | Locale 1
aa’ aa a for 1 in Locales do on 1 {
OO oo O var B: [1..2, 1..2] real;
Q R = 2;
o A = B;

}

— £ writeln () ;

PARALLELISM AND LOCALITY

CPU Core . Memory

avar A: [1..2, 1..2] real;

Locale O I Locale 1

4%
L°4h°

OO
oo

coforall 1 in Locales do on 1 {
var B: [1..2, 1..2] real;

B = 2;

A = B;

}

o2eete,

The coforall loop creates

a parallel task per iteration

: Q writeln (2) ;

KEY CONCERNS FOR SCALABLE PARALLEL COMPUTING

1. parallelism: Which tasks should run simultaneously?
2. locality: Where should tasks run? Where should data be allocated?
« complicating matters, compute nodes now often have GPUs with their own processors and memory

Locale O

_mm

Locale 1

b

Locale 2

B

. Memory

Locale 3

Processor Core

21

KEY CONCERNS FOR SCALABLE PARALLEL COMPUTING

1. parallelism: Which tasks should run simultaneously?
2. locality: Where should tasks run? Where should data be allocated?

« complicating matters, compute nodes now often have GPUs with their own processors and memory
« we represent these as sub-locales in Chapel

Locale O

GPUO GPU1

GPU 2 GPU3

Locale 1

GPUO GPU1

GPU 2 GPU3

GPU Core
CPU Core

. Memory

Locale 2

GPUO GPU1

Locale 3

GPUO

GPU1

22

PARALLELISM AND LOCALITY IN THE CONTEXT OF GPUS

CPU Core

Locale 0

GPUO

o
o

oo

GPU 1

B
—

GPU Core

. Memory

O

We'll work with a single GPU in this step
const nProcs = 1,

nRows = nProcs,

nCols = 5; Number of rows and columns in the array

var A: [l..nRows, 1..nCols] real;

2D array of real values

on here.gpus[0] {

var B: [1l..nRows, 1..nCols] real;
ERE
A = B;

}

writeln (A) ;

PARALLELISM AND LOCALITY IN THE CONTEXT OF GPUS

CPU Core GPU Core . Memory

const nProcs = here.gpus.size,

nRows = nProcs,
nCols = 5; Now, we'll use all the local GPUs

Locale O var A: [1l..nRows, 1..nCols] real;

. . 1 1 . .

Each iteration of 'coforall' will run in parallel

]
Iterating GPUs and 1.. in lockstep manner
(1

coforall (gpu, gRow) in zip (here.gpus, ..)

{
'on' now targets the yielded GPU on gpu { Per-GPU array is now 1D
[1..nCols] real;

GPUO var B:
c} B = 2;
oo
QQ,' A[gROW, ..] = B;
forall) Assigning B to only a single
cofora
J row of A

GPU 1
oo
oo

writeln (A) ;

PARALLELISM AND LOCALITY IN THE CONTEXT OF GPUS

CPU Core

Locale 0

GPUO

oo

GPU Core

GPU 1

oo

oo

coforall

. Memory

o

const nProcs = here.gpus.size,

nRows = nProcs,
nCols = 5;
var A: [l..nRows, 1..nCols] real;

}

coforall (gpu,

gRow) 1in zip (here.gpus,

on gpu do setRowToTwo (gRow) ;

}

writeln (A) ;

Small refactor to put the

application logic in a function

proc setRowToTwo (row) {

}

var B:
B = 2¢
Alrow,

[1.

.nCols]

real;

1.

-)

{

25

PARALLELISM AND LOCALITY IN THE CONTEXT OF GPUS

CPU Core

Locale 0

GPUO

oo

GPU Core

. Memory

GPU 1

oo

oo

coforall

O

const nProcs = here.gpus.size,
nRows = nProcs,
nCols = 5;

var A: [l..nRows, 1..nCols] real;

coforall (gpu, gRow) in zip (here.gpus, 1..

on gpu do setRowToTwo (gRow) ;
}

Body of this function will

always be the same

writeln (A) ;

proc setRowToTwo (row) { /*bodyomitted”/ }

26

PARALLELISM AND LOCALITY IN THE CONTEXT OF GPUS

CPU Core GPU Core . Memory

const nProcs = here.gpus.size,

nRows = Locales.size*nProcs,
outer coforall ls = 5-
. nCols = 5; Now, we also use all locales
[1 1
Locale O E Locale 1 var A: [l..nRows, 1..nCols] real;
i coforall (loc, cRow) in zip(Locales, 1.. by nProcs) {
i on loc {
I Iterate locales and starting row of each
i locale in a lockstep manner
GPU 0 i GPU 0 coforall (gpu, gRow)N\in zip (here.gpus, cRow..) {
: o on gpu do setRowToTwoNgRow) ;
oo : |0 }
3K y I
";ner } For each locales' GPUs, we now start
GPU 1 coforall GPU 1 } the offset at cRow instead of 1
udhod o a writeln (A);
e 2R e Bk

proc setRowToTwo (row) { /*bodyomitted”/ }

PARALLELISM AND LOCALITY IN THE CONTEXT OF GPUS

+1 for the CPU per locale
CPU Core GPU Core . Memory

const nProcs = here.gpus.size+tl,

nRows = Locales.size*nProcs,
outer coforall
nCols = 5;
[T | |
Locale O ! Locale 1 var A: [l..nRows, 1..nCols] real;
a v Q coforall (loc, cRow) in zip(Locales, 1.. by nProcs) {
begi on loc
O <o ?gm a beqi { The 2 statements in
| cobegin { 'cobegin’ will run in parallel
i Q 1 setRowToTwo (cRow) ;
GPU O i GPU O coforall (gpu, gRow) in zip (here.gpus, cRow+l..) {
| £# 2 on gpu do setRowToTwo (gRow) ;
oo : oo
inner }
forall }
GPU 1 oo GPU 1

}

ol hd writeln (A) ;
e AR

proc setRowToTwo (row) { /*bodyomitted”/ }

oo
oo

DIFFERENT TYPES OF PARALLELISM EXPRESSED CONCISELY

const nProcs = here.gpus.size+l
L : ’ GPU programming in Chapel doesn't require learning new concepts
nRows = Locales.size*nProcs, h R £ e
nCols = 5; eon y. specific concept in the language
is 'gpus' array on 'locale' type
var A: [1l..nRows, 1..nCols] real;
coforall (loc, cRow) in zip(Locales, 1.. by nProcs) do on loc {

cobegin {
setRowToTwo (cRow) ;

coforall (gpu, gRow) in zip (here.gpus, cRow+l..) do on gpu ({
setRowToTwo (gRow) ;

}

} Full code in a single slide that will use
} v" all nodes
writeln (A); v" all CPU cores
proc setRowToTwo (row) { v all GPU cores
var B: [1l..nCols] real;
B = 2; Made possible by Chapel's
Alrow, ..] = B; parallelism and locality constructs

}

—1

29

STORIES FROM THE
CHAPEL COMMUNITY

350

CHAPEL PERFORMANCE ON DIFFERENT GPU AND CPUS

e Comparing Chapel's performance

.against OpenMP, Kokkos, CUDA and HIP Performance Portability of the Chapel Language on

: Heterogeneous Architectures
..on different GPU and CPUs &
..U SI n g Ba be | ST rea m’ m I n I B U D E an d Tea Leaf Oak Rid:Ing]k\lla?:[oirlztahloIiSZoratoly Austral)i(aisrj\ig?zsyeglngiversity Au.vtraliihlr\rfii)::jilz/iniversity
Oak Ridge, Tennessee, USA Canberra, Australia Canberra, Australia

Australian National University
Canberra, Australia

e Rece nﬂy presen‘l’ed at ORCID: 0000-0002-3588-9896
» Heterogeneity in Computing Workshop (HCW)
Abstract—A performance-portable application can run on a other heterogeneous programming models that allow single-

1 1 1 variety of different hardware platforms, achieving an acceptable gource programminge for diverse hardware platforms.
° I n ConJ u nCTIO n WITh I P D PS level of performance without requiring significant rewriting We siekg to ansv%er the question: how pwell does Chapel
for each platform. Several performance-portable programming)

models are now suitable for high-performance scientific appli- support the development of performance-portable application
|cation development, including OpenMP and Kokkos. Chapel is codes compared to more widely-used programming models

Paper is available at milthorpe.org/wp-content/uploads/2024/03/Milthorpe HCW2024.pdf

31

https://milthorpe.org/wp-content/uploads/2024/03/Milthorpe_HCW2024.pdf

e Proxy for BUDE (a protein docking simulation)
« The computation is very arithmetically intensive and makes significant use of trigonometric functions

70

60

CPUs
P100 BN
V100 | -]
GPUs A100 - '

MI60 | -
MI100 I

N

N s

QQQQ ‘%’8& OB © C&

(b) Architectural efficiency, higher is better

Fig. 2: miniBUDE results for small deck bml

Figure from: "Performance Portability of the Chapel Language on Heterogeneous Architectures". Josh Milthorpe (Oak Ridge National Laboratory, Australian National University), Xianghao
Wang (Australian National University), Ahmad Azizi (Australian National University) Heterogeneity in Computing Workshop (HCW)

—

BABELSTREAM

e Performs stream triad computation computing A = B + a *C for arrays A, B, C and scalar a

80

CPUs
60
40
P100
V100-
GPUs A100- 2
MI60

MI100 1

Q & 'Y" N o
R N
& & S o

(b) Architectural efficiency, higher is better

Fig. 1: BabelStream Triad results for arrays of length 22® FP64 elements

Figure from: "Performance Portability of the Chapel Language on Heterogeneous Architectures". Josh Milthorpe (Oak Ridge National Laboratory, Australian National University), Xianghao
Wang (Australian National University), Ahmad Azizi (Australian National University) Heterogeneity in Computing Workshop (HCW)

— |

TEALEAF

e Tealeaf simulates heat conduction over time

e On this application Chapel performed well on CPUs but not GPUs
« We have some leads for performance issues and still investigating

80

CPUs
60
P100 ! 8.6% 4.3% =
V100 !
A100 1.5% 20
G PU S MI60 2.3%
MI100 4.8%

(b) Application efficiency, higher is better
Fig. 3: Tealeaf results for input tea_bm_5.1in

Figure from: "Performance Portability of the Chapel Language on Heterogeneous Architectures". Josh Milthorpe (Oak Ridge National Laboratory, Australian National University), Xianghao
Wang (Australian National University), Ahmad Azizi (Australian National University). Heterogeneity in Computing Workshop 2024 (HCW)

—

NATIVE GPU PROGRAMMING IN CHAPEL AT SCALE

e Comparing Chapel's native GPU programming
..against interoperability with HIP and CUDA
..on Frontier and Perlmutter
..using N-Queens as proxy for combinatorial optimization

e To be presented at Euro-Par 2024
e 26-30 August
e Madrid, Spain

Investigating Portability in Chapel for Tree-based
Optimization on GPU-powered Clusters

Tiago Carneirol[0000_0002_6145_8352], Engin Kayraklioglu2[0000_0002_4966_3812],

Guillaume Helbecque?»4[0000-0002-8697—3721] 51 Nouredine Melab*

! Interuniversity Microelectronics Centre (IMEC), Belgium

tiago.carneiropessoa@imec.be

2 Hewlett Packard Enterprise, USA

engin@hpe.com
3 University of Luxembourg, Luxembourg
guillaume.helbecque@uni.lu
4 Université de Lille, CNRS, Centrale Lille, Inria, UMR 9189 - CRIStAL - Centre de
Recherche en Informatique Signal et Automatique de Lille, France
nouredine.melab@univ-lille.fr

NATIVE GPU PROGRAMMING IN CHAPEL AT SCALE

|
Linear —|cqu-22 -5 Chpl-22 & IChpI-Zl -®- CUDA-21 +| Linear — | HIP-21 -5~ Chpl-21 +|
120 |- 120 |-
100 | 100 |
o Q.
3 80 > 80
© @
Q 60 I~ Q 60 L
Q. Q.
) %)
40 40
20 | 20 |
48 16 32 64 128 48 16 32 64 128
Number of Nodes Number of Nodes

(a) NVIDIA-based System (b) AMD-based system

Figure from: "Investigating Portability in Chapel for Tree-Based Optimizations on GPU-powered Clusters". Tiago Carneiro, Engin Kayraklioglu, Guillaume Helbecque, Nouredine Melab

Europar 2024
E— | 36

UPCOMING: KEYNOTE AT CHAPELCON 24

A Case for Parallel-First Languages in Post-Serial, Accelerated World

Paul Sathre, Virginia Tech
June 7th, 2024

Parallel processors have finally dominated all scales of computing hardware, from the
personal and portable to the ivory tower datacenters of yore. However, dominant
programming models and pedagogy haven't kept pace, and languish in a post-serial mix
of libraries and language extensions. Further, heterogeneity in the form of GPUs has
dominated the performance landscape of the last decade, penetrating casual user
markets thanks to data science, crypto and Al booms. Unfortunately, GPUs' performance
remains largely constrained to expert users by the lack of more productive and portable
programming abstractions. This talk will probe questions about how to rethink and
democratize parallel programming for the masses. By reflecting on lessons learned from
a decade and a half of accelerated computing, I'll show where Chapel 2.0 fits info the
lineage of GPU computing, can capitalize on GPU momentum, and lead a path forward.

—

ChapelCon 24 is free and fully virtual
chapel-lang.org/ChapelCon24.html

https://chapel-lang.org/ChapelCon24.html

WHERE WE ARE TODAY

GPU Code Volume Evolution

Over ~3 years we have been steadily improving 17500 | e
« NVIDIA, AMD GPUs are supported B tests
e Multiple nodes with multiple GPUs can be used 150001 scripts I
« Parallel tasks can use GPUs concurrently o 12500] T modules I
o compiler
» GPU features can be emulated on CPUs S 10000 ™ runtime _ I I
: TILH
é 7500 - I I I] I
Mature enough to get started, big efforts are still underway - | I N [
« Distributed arrays 2000 [! ik m
e Intel support 2500 1
« Improving language features to support GPU programming

: O OO 0,000 0,0 0,00
e Performance improvements A WS 0O 05 A D Oy AV AP O
_ P N AR R
« Bug fixes Chapel Versions
October March

2020 2024
: | 39

IF YOU WANT TO LEARN MORE ABOUT GPU PROGRAMMING IN CHAPEL

GPU Programming Blog Series: chapel-lang.org/blog/series/gpu-programming-in-chapel/

Chapel's High-Level Support for CPU-GPU Data Transfers and

Multi-GPU Programming
Posted on April 25, 2024.

Introduction to GPU Programming in Chapel

Posted on January 10, 2024.

Tags: GPU Programming | How-To)
Tags: GPU Programming | | How-To

By: Daniel Fedorin . .
‘ By: Engin Kayraklioglu

Technote: hitps://chapel-lang.org/docs/main/technotes/gpu.html

« Anything and everything about our GPU support
- configuration, advanced features, links fo some tests, caveats/limitations

e More of a reference manual than a tutorial
Previous talks

e LinuxCon / Open Source Summit North America 2024 Talk: GPU Programming in Chapel and a Live Demo
- https://youtu.be/5-jLdKduaJE?si=ezaz5mDORvmMTjgRL

o CHIUW '23 Talk: updates from May '22-May 23 period
— https://chapel-lang.org/CHIUW/2023/KayrakliogluSlides.pdf

o LCPC'22 Talk: a lot of details on how the Chapel compiler works to create GPU kernels
— https://chapel-lang.org/presentations/Engin-SIAM-PP22-GPU-static.pdf

—

40

https://chapel-lang.org/blog/series/gpu-programming-in-chapel/
https://chapel-lang.org/docs/main/technotes/gpu.html
https://youtu.be/5-jLdKduaJE?si=ezaz5mDORvmTjgRL
https://chapel-lang.org/CHIUW/2023/KayrakliogluSlides.pdf
https://chapel-lang.org/presentations/Engin-SIAM-PP22-GPU-static.pdf

HPE DEVELOPER MEETUP

Meetup for "Vendor-Neutral GPU Programming in Chapel"
Jul 31, 2024 08:00 AM PDT (-7 UTC)

ﬂ Jade Abraham, Engin Kayraklioglu
L'O
~ speakers will discuss Chapel's GPU support in detail and collaborate with you to determine how

it may help in your particular situation.

HPE developer meetups home page: E i

https://developer.hpe.com/campaign/meetups/ F‘

Registration: E
https://hpe.zoom.us/webinar/reqister/3117139444656/WN 0jVy9LR QHSCGxeqg21ri7A

https://developer.hpe.com/campaign/meetups/
https://hpe.zoom.us/webinar/register/3117139444656/WN_ojVy9LR_QHSCGxeg21rj7A

CHAPELCON '24 (FORMERLY CHIUW, THE CHAPEL IMPLEMENTERS AND USERS WORKSHOP)

Fully virtual, free registration

Schedule Overview

 June 5™: Tutorial Day: Chapel and Arkouda tutorials

 June 6™: Coding Day: Opportunities for coding
« June 7™: Conference Day

Keynote : 3 k

A Case for Parallel-First Languages e
in a Post-Serial, Accelerated World W
Paul Sathre (Virginia Tech)

Registration:

N The Chapel Parallel Programming Language
@APEL
=

ChapelCon '24
The Chapel Event of the Year

June 5-7, 2024
free and online in a virtual format

Home

What is Chapel?
What's New?

Blog

Upcoming Events)
Job Opportunities Register Here

How Can | Learn Chapel?

g:"mt::::ii:;g toChapel ChapelCon 24 welcomes anyone with computing challenges that demand

performance, particularly through parallelism and scalability. Our open-source

https://chapel-lang.org/ChapelCon24.html

(, Chapel Language Blog

About Chapel Website Featured Series Tags Authors All Posts

Introducing ChapelCon '24: The Chapel Event of the Year
Posted on April 1, 2024.

Tags: ChapelCon || CHIUW || Community

By: Engin Kayraklioglu

If you are following Chapel's Discourse or social media, you might have seen that this year we are

https://chapel-lang.org/blog/posts/chapelcon24/

https://chapel-lang.org/ChapelCon24.html
https://chapel-lang.org/blog/posts/chapelcon24/

CHAPEL RESOURCES

Chapel homepage: hitps://chapel-lang.org
e (points to all other resources)

Blog: https://chapel-lang.org/blog/

Social Media:
e Facebook: @ChapelLanguage

LinkedIn: https://www.linkedin.com/company/chapel-programming-lanquage/

e Mastodon: @ChapelProgramminglLanguage
o X/ Twitter: @ChapelLanguage
e YouTube: @ChapelLanguage

Community Discussion / Support:
o Discourse: https://chapel.discourse.group/
o Gitter: https://gitter.im/chapel-lang/chapel
o Stack Overflow: hitps://stackoverflow.com/questions/tagged/chapel
o GitHub Issues: https://github.com/chapel-lang/chapel/issues

—

X

Q CHAPEL
=

Home

What is Chapel?
What's New?

Blog

Upcoming Events
Job Opportunities

How Can | Learn Chapel?

Contributing to Chapel
Community

Download Chapel
Try Chapel Online

Documentation
Release Notes

Performance
Powered by Chapel

Presentations
Papers / Publications
Tutorials

ChapelCon
CHUG

Contributors / Credits

chapel+qs@discoursemail.com

O-Dm@mo
Yy Xernomn

The Chapel Parallel Programming Language

What is Chapel?

Chapel is a programming language designed for productive parallel computing at scale.
Why Chapel? Because it simplifies parallel programming through elegant support for:

« data parallelism to trivially use the cores of a laptop, cluster, or supercomputer

* task parallelism to create concurrency within a node or across the system

« a global namespace supporting direct access to local or remote variables

* GPU programming in a vendor-neutral manner using the same features as above
« distributed arrays that can leverage thousands of nodes' memories and cores

Chapel Characteristics

« productive: code tends to be similarly readable/writable as Python

« scalable: runs on laptops, clusters, the cloud, and HPC systems

« fast: performance competes with or beats conventional HPC programming models
« portable: compiles and runs in virtually any *nix environment

« open-source: hosted on GitHub, permissively licensed

« production-ready: used in real-world applications spanning diverse fields

New to Chapel?

As an introduction to Chapel, you may want to...

* watch an overview talk or browse its slides
* read a chapter-length introduction to Chapel
* learn about projects powered by Chapel

* check out performance highlights like these:

PRK Stencil Performance (Gflop/s) NPB-FT Performance (Gop/s)

Gflopls

16 32 64 128 256 16 32 64 128
Locales (x 36 cores / locale) Locales (x 36 cores / locale)

« read about GPU programming in Chapel, or watch a recent talk about it

* browse sample programs or learn how to write distributed programs like this one:

use CyclicDist;
config const n = 100;

// use the Cyclic distribution library
// use --n=<val> when executing to override this deff

forall i in Cyclic.createDomain(1..n) do
writeln("Hello from iteration ", i, " of ", n, "

running on node ", here.i

What's Hot?

¢ ChapelCon '24 is coming in June (online)—Read about it and register today

* Doing science in Python and needing more speed/scale? Maybe we can help?

43

https://chapel-lang.org/
https://chapel-lang.org/blog/
https://www.facebook.com/ChapelLanguage/
https://www.linkedin.com/company/chapel-programming-language/
https://mastodon.social/@chapelprogramminglanguage
https://twitter.com/ChapelLanguage
https://www.youtube.com/@chapellanguage
https://chapel.discourse.group/
https://gitter.im/chapel-lang/chapel
https://stackoverflow.com/questions/tagged/chapel
https://github.com/chapel-lang/chapel/issues

SUMMARY

e GPUs are becoming more and more common in HPC
« However, programming GPUs is more challenging than programming CPUs
o On multiple nodes, users are typically required to use multiple paradigms

e HPC and GPUs should be more accessible
« from wider range of disciplines,
« with varying levels of expertise, and
« limited time to invest in programming

e Chapel wants to make HPC more accessible
« Existing applications prove that Chapel delivers on the promise
e Its growing support for GPU programming can:

—enable programming GPUs in a productive and vendor-neutral way
—provide an all-inclusive solution for programming in HPC

e The Chapel team at HPE would be excited to collaborate with AMD!

 Please feel free to reach out: engin@hpe.com

—

chapel-lang.org

Lk

mailto:engin@hpe.com
http://chapel-lang.org/

