
MAKING PARALLEL PROGRAMMING AND GPUS
MORE ACCESSIBLE WITH CHAPEL

Engin Kayraklioglu
May 31st, 2024

engin@hpe.com
linkedin.com/in/engink

mailto:engin@hpe.com
http://www.linkedin.com/in/engink

2

IT IS HARD TO AVOID GPUS IN HPC

With GPUs

Without GPUs

41%
72%

of top 10 have GPUs

in the last 3 years

27%
52%

of top 100 have GPUs

in the last 3 years

13x more systems w/GPUs

www.top500.org

http://www.top500.org/

• ... but programming for multiple nodes with GPUs appears to require at least 2 programming models
• all of the models rely on C/C++/Fortran, which are different than the languages being taught these days
• as a result, using GPUs in HPC has a high barrier of entry

3

GPUS ARE EASY TO FIND... BUT DIFFICULT TO PROGRAM

OpenMP
Potential Users HPC Experts

MPI
MPI+OpenMP

CUDA

HIP

SYCL

OpenAcc

OpenMP

RAJA

Kokkos

MPI+CUDA

MPI+OpenMP+X

All are effective, powerful, essential and tested technologies!

Shared
Memory

Distributed
Memory

From
Vendors

Portable Solutions
(directives)

GPU Programming No distributed memory
support here

(C++ templates)

Chapel is an alternative for productive
distributed/shared memory GPU programming in a vendor-neutral way.

Chapel: A modern parallel programming language
• portable & scalable
• open-source & collaborative

Goals:
• Support general parallel programming
• Make parallel programming at scale far more productive

WHAT IS CHAPEL?

4

chapel-lang.org

http://chapel-lang.org/

Chapel works everywhere
• you can develop on your laptop and have the code scale on a supercomputer
• GPUs can be targeted in a vendor-neutral way
• runs on Linux laptops/clusters, Cray systems, MacOS, WSL, AWS, Raspberry Pi
• shown to scale on Cray networks (Slingshot, Aries), InfiniBand, RDMA-Ethernet

Chapel makes distributed/shared memory parallel programming easy
• data-parallel, locality-aware loops,
• ability to move execution and allocation to remote nodes,
• distributed arrays and bulk array operations
• different types of parallelism can be expressed with the same language features

5

WHAT IS CHAPEL?

Chapel works everywhere
• you can develop on your laptop and have the code scale on a supercomputer
• GPUs can be targeted in a vendor-neutral way
• runs on Linux laptops/clusters, Cray systems, MacOS, WSL, AWS, Raspberry Pi
• shown to scale on Cray networks (Slingshot, Aries), InfiniBand, RDMA-Ethernet

Chapel makes distributed/shared memory parallel programming easy
• data-parallel, locality-aware loops,
• ability to move execution and allocation to remote nodes,
• distributed arrays and bulk array operations
• different types of parallelism can be expressed with the same language features

6

WHAT IS CHAPEL?

APPLICATIONS OF CHAPEL

7(images provided by their respective teams and used with permission)

CHAMPS: 3D Unstructured CFD
Laurendeau, Bourgault-Côté, Parenteau, Plante, et al.

École Polytechnique Montréal

ChplUltra: Simulating Ultralight Dark Matter
Nikhil Padmanabhan, J. Luna Zagorac, et al.

Yale University et al.

Arkouda: Interactive Data Science at Massive Scale
Mike Merrill, Bill Reus, et al.

U.S. DoD

ChOp: Chapel-based Optimization
T. Carneiro, G. Helbecque, N. Melab, et al.

INRIA, IMEC, et al.

Chapel-based Hydrological Model Calibration
Marjan Asgari et al.

University of Guelph

?

Your Application Here?CHGL: Chapel Hypergraph Library
Louis Jenkins, Cliff Joslyn, Jesun Firoz, et al.

PNNL

CrayAI HyperParameter Optimization (HPO)
Ben Albrecht et al.

Cray Inc. / HPE

Lattice-Symmetries: a Quantum Many-Body Toolbox
Tom Westerhout

Radboud University

ChapQG: Layered Quasigeostrophic CFD
Ian Grooms and Scott Bachman

University of Colorado, Boulder et al.

Desk dot chpl: Utilities for Environmental Eng.
Nelson Luis Dias

The Federal University of Paraná, Brazil

RapidQ: Mapping Coral Biodiversity
Rebecca Green, Helen Fox, Scott Bachman, et al.

The Coral Reef Alliance

Active GPU efforts

8

CORAL REEF SPECTRAL BIODIVERSITY

1. Read in a (M x N) raster image of habitat data M

N

P

P

2. Create a (P x P) mask to find all points within a
given radius.

3. Convolve this mask over the entire domain and
perform a weighted reduce at each location.

Algorithmic complexity: 𝑂 𝑀𝑁𝑃!

Typically:
- M, N > 10,000

- P ~ 400

proc convolve(InputArr, OutputArr) { // 3D Input, 2D Output

 for ... {
 tonOfMath();
 }
}
proc main() {
 var InputArr: ...;
 var OutputArr: ...;

 convolve(InputArr, OutputArr);
}

9

CORAL REEF SPECTRAL BIODIVERSITY

proc convolve(InputArr, OutputArr) { // 3D Input, 2D Output

 foreach ... {
 tonOfMath();
 }
}
proc main() {
 var InputArr: ...;
 var OutputArr: ...;

 coforall loc in Locales do on loc { // use all nodes in parallel...

 coforall gpu in here.gpus do on gpu { // using GPUs on this node in parallel...

 coforall task in 0..#numWorkers { // using numWorkers on this GPU in parallel.

 var MyInputArr = InputArr[...];
 var MyOutputArr: ...;
 convolve(MyInputArr, MyOutputArr);
 OutputArr[...] = MyOutputArr;
}}}}

10

CORAL REEF SPECTRAL BIODIVERSITY

Using a different loop flavor to enable GPU execution.

Multi-node, multi-GPU, multi-thread parallelism
are expressed using the same language constructs.

High-level, intuitive array operations
work across nodes and/or devices

proc convolve(InputArr, OutputArr) { // 3D Input, 2D Output

 foreach ... {
 tonOfMath();
 }
}
proc main() {
 var InputArr: ...;
 var OutputArr: ...;

 coforall loc in Locales do on loc { // use all nodes in parallel...

 coforall gpu in here.gpus do on gpu { // using GPUs on this node in parallel...

 coforall task in 0..#numWorkers { // using parallel tasks on this GPU.

 var MyInputArr = InputArr[...];
 var MyOutputArr: ...;
 convolve(MyInputArr, OutputArr);
 OutputArr[...] = MyOutputArr;
}}}}

11

CORAL REEF SPECTRAL BIODIVERSITY
Runs on Frontier!

• 5x improvement going from 2 to 64 nodes
• (from 16 to 512 GPUs)

• Straightforward code changes:
• from sequential Chapel code
• to GPU-enabled one
• to multi-node, multi-GPU, multi-thread

• Scalability improvements coming soon!

• Native GPU programming in Chapel using simple snippets
• Two stories from the community analyzing performance

What we will not discuss today:
• Comprehensive list of Chapel features

– (important ones will be covered)

• How GPU support is implemented
– (happy to go over some backup slides, if there's interest)

• Everything you can do with GPUs using Chapel
– (there's only so much time J)

12

WHAT WE WILL DISCUSS TODAY

GPU PROGRAMMING
IN CHAPEL

13

• In Chapel, a locale refers to a compute resource with…
• processors, so it can run tasks
• memory, so it can store variables

• For now, think of each compute node as being a locale

14

LOCALES IN CHAPEL

Processor Core

Memory

Compute
Node 0

Compute
Node 1

Compute
Node 2

Compute
Node 3

locale: A type that represents system resources on which the program can run
Locales: An array of locale values
here : The locale on which the current task is executing

KEY BUILT-IN TYPES AND VARIABLES RELATED TO LOCALES

Locale 0 Locale 1 Locale 2 Locale 3

15

Processor Core

Memory

here Locales

1. parallelism: Which tasks should run simultaneously?
2. locality: Where should tasks run? Where should data be allocated?

KEY CONCERNS FOR SCALABLE PARALLEL COMPUTING

Locale 0 Locale 1 Locale 2 Locale 3

16

Processor Core

Memory

17

PARALLELISM AND LOCALITY

Locale 0

Execution/allocation
moves to Locale 1

A

var A: [1..2, 1..2] real;

 on Locales[1] {
 var B: [1..2, 1..2] real;
 B = 2;
 A = B;
 }

writeln(A);

MemoryCPU Core

Locale 1

B

18

PARALLELISM AND LOCALITY

var A: [1..2, 1..2] real;

 on Locales[1] {
 var B: [1..2, 1..2] real;
 B = 2;
 A = B;
 }

writeln(A);

Can be expressed
in different ways

forall b in B do
 b = 2;

forall i in B.domain do
 B[i] = 2;

19

PARALLELISM AND LOCALITY

A

var A: [1..2, 1..2] real;

 for l in Locales do on l {
 var B: [1..2, 1..2] real;
 B = 2;
 A = B;
 }

writeln(A);

MemoryCPU Core

B

B

Locale 0 Locale 1

20

PARALLELISM AND LOCALITY

A

var A: [1..2, 1..2] real;

 coforall l in Locales do on l {
 var B: [1..2, 1..2] real;
 B = 2;
 A = B;
 }

writeln(A);

MemoryCPU Core

B

B

The coforall loop creates
a parallel task per iteration

Locale 0 Locale 1

1. parallelism: Which tasks should run simultaneously?
2. locality: Where should tasks run? Where should data be allocated?

• complicating matters, compute nodes now often have GPUs with their own processors and memory

KEY CONCERNS FOR SCALABLE PARALLEL COMPUTING

21

Locale 0 Locale 1 Locale 2 Locale 3

Processor Core

Memory

1. parallelism: Which tasks should run simultaneously?
2. locality: Where should tasks run? Where should data be allocated?

• complicating matters, compute nodes now often have GPUs with their own processors and memory
• we represent these as sub-locales in Chapel

KEY CONCERNS FOR SCALABLE PARALLEL COMPUTING

Locale 0 Locale 1 Locale 2 Locale 3

22

CPU Core

Memory

GPU Core

const nProcs = 1,
 nRows = nProcs,
 nCols = 5;

var A: [1..nRows, 1..nCols] real;

 on here.gpus[0] {
 var B: [1..nRows, 1..nCols] real;
 B = 2;
 A = B;
 }

writeln(A);

23

PARALLELISM AND LOCALITY IN THE CONTEXT OF GPUS
GPU Core MemoryCPU Core

Locale 0

GPU 0

B:

A:

GPU 1

We'll work with a single GPU in this step

Number of rows and columns in the array

2D array of real values

const nProcs = here.gpus.size,
 nRows = nProcs,
 nCols = 5;

var A: [1..nRows, 1..nCols] real;

 coforall (gpu, gRow) in zip(here.gpus, 1..) {
 on gpu {
 var B: [1..nCols] real;
 B = 2;
 A[gRow, ..] = B;
 }
 }

writeln(A);

24

PARALLELISM AND LOCALITY IN THE CONTEXT OF GPUS
GPU Core MemoryCPU Core

Locale 0

GPU 0

B:

A:

GPU 1

B:

Now, we'll use all the local GPUs

Each iteration of 'coforall' will run in parallel Iterating GPUs and 1.. in lockstep manner

Per-GPU array is now 1D

Assigning B to only a single
row of Acoforall

'on' now targets the yielded GPU

const nProcs = here.gpus.size,
 nRows = nProcs,
 nCols = 5;

var A: [1..nRows, 1..nCols] real;

 coforall (gpu, gRow) in zip(here.gpus, 1..) {
 on gpu do setRowToTwo(gRow);

 }
}
writeln(A);

proc setRowToTwo(row) {
 var B: [1..nCols] real;
 B = 2;
 A[row, ..] = B;
}

25

PARALLELISM AND LOCALITY IN THE CONTEXT OF GPUS
GPU Core MemoryCPU Core

Small refactor to put the
application logic in a function

Locale 0

GPU 0

B:

A:

GPU 1

B:

coforall

const nProcs = here.gpus.size,
 nRows = nProcs,
 nCols = 5;

var A: [1..nRows, 1..nCols] real;

 coforall (gpu, gRow) in zip(here.gpus, 1..) {
 on gpu do setRowToTwo(gRow);
 }

writeln(A);

proc setRowToTwo(row) { /* body omitted */ }

26

PARALLELISM AND LOCALITY IN THE CONTEXT OF GPUS
GPU Core MemoryCPU Core

Locale 0

GPU 0

B:

A:

GPU 1

B:

coforall
Body of this function will

always be the same

const nProcs = here.gpus.size,
 nRows = Locales.size*nProcs,
 nCols = 5;

var A: [1..nRows, 1..nCols] real;

coforall (loc, cRow) in zip(Locales, 1.. by nProcs) {
 on loc {

 coforall (gpu, gRow) in zip(here.gpus, cRow..) {
 on gpu do setRowToTwo(gRow);
 }

 }
}
writeln(A);

proc setRowToTwo(row) { /* body omitted */ }

27

PARALLELISM AND LOCALITY IN THE CONTEXT OF GPUS
GPU Core MemoryCPU Core

Locale 0

GPU 0

B:

outer coforall

inner
coforall

A:

GPU 1

B:

Locale 1

GPU 0

B:

GPU 1

B:

Now, we also use all locales

Iterate locales and starting row of each
locale in a lockstep manner

For each locales' GPUs, we now start
the offset at cRow instead of 1

const nProcs = here.gpus.size+1,
 nRows = Locales.size*nProcs,
 nCols = 5;

var A: [1..nRows, 1..nCols] real;

coforall (loc, cRow) in zip(Locales, 1.. by nProcs) {
 on loc {
 cobegin {
 setRowToTwo(cRow);
 coforall (gpu, gRow) in zip(here.gpus, cRow+1..) {
 on gpu do setRowToTwo(gRow);
 }
 }
 }
}
writeln(A);

proc setRowToTwo(row) { /* body omitted */ }

28

PARALLELISM AND LOCALITY IN THE CONTEXT OF GPUS
GPU Core MemoryCPU Core

Locale 0

GPU 0

B:

outer coforall

inner
coforall

B:

A:

GPU 1

B:

Locale 1

GPU 0

B:

B:

GPU 1

B:

cobegin

+1 for the CPU per locale

The 2 statements in
'cobegin' will run in parallel

2

1

29

DIFFERENT TYPES OF PARALLELISM EXPRESSED CONCISELY
const nProcs = here.gpus.size+1,
 nRows = Locales.size*nProcs,
 nCols = 5;

var A: [1..nRows, 1..nCols] real;

coforall (loc, cRow) in zip(Locales, 1.. by nProcs) do on loc {
 cobegin {
 setRowToTwo(cRow);
 coforall (gpu, gRow) in zip(here.gpus, cRow+1..) do on gpu {
 setRowToTwo(gRow);
 }
 }
}
writeln(A);

proc setRowToTwo(row) {
 var B: [1..nCols] real;
 B = 2;
 A[row, ..] = B;
}

GPU programming in Chapel doesn't require learning new concepts
The only GPU-specific concept in the language

is 'gpus' array on 'locale' type

Full code in a single slide that will use
ü all nodes

ü all CPU cores
ü all GPU cores

Made possible by Chapel's
parallelism and locality constructs

STORIES FROM THE
CHAPEL COMMUNITY

30

• Comparing Chapel's performance
...against OpenMP, Kokkos, CUDA and HIP
...on different GPU and CPUs
...using BabelStream, miniBUDE and TeaLeaf

• Recently presented at
• Heterogeneity in Computing Workshop (HCW)
• In conjunction with IPDPS

31

CHAPEL PERFORMANCE ON DIFFERENT GPU AND CPUS

Paper is available at milthorpe.org/wp-content/uploads/2024/03/Milthorpe_HCW2024.pdf

https://milthorpe.org/wp-content/uploads/2024/03/Milthorpe_HCW2024.pdf

32

MINIBUDE

• Proxy for BUDE (a protein docking simulation)
• The computation is very arithmetically intensive and makes significant use of trigonometric functions

Figure from: "Performance Portability of the Chapel Language on Heterogeneous Architectures". Josh Milthorpe (Oak Ridge National Laboratory, Australian National University), Xianghao
Wang (Australian National University), Ahmad Azizi (Australian National University) Heterogeneity in Computing Workshop (HCW)

CPUs

GPUs

33

BABELSTREAM

• Performs stream triad computation computing A = B + α ∗C for arrays A, B, C and scalar α

Figure from: "Performance Portability of the Chapel Language on Heterogeneous Architectures". Josh Milthorpe (Oak Ridge National Laboratory, Australian National University), Xianghao
Wang (Australian National University), Ahmad Azizi (Australian National University) Heterogeneity in Computing Workshop (HCW)

CPUs

GPUs

34

TEALEAF

• Tealeaf simulates heat conduction over time
• On this application Chapel performed well on CPUs but not GPUs

• We have some leads for performance issues and still investigating

Figure from: "Performance Portability of the Chapel Language on Heterogeneous Architectures". Josh Milthorpe (Oak Ridge National Laboratory, Australian National University), Xianghao
Wang (Australian National University), Ahmad Azizi (Australian National University). Heterogeneity in Computing Workshop 2024 (HCW)

CPUs

GPUs

• Comparing Chapel's native GPU programming
...against interoperability with HIP and CUDA
...on Frontier and Perlmutter
...using N-Queens as proxy for combinatorial optimization

• To be presented at Euro-Par 2024
• 26-30 August
• Madrid, Spain

35

NATIVE GPU PROGRAMMING IN CHAPEL AT SCALE

36

NATIVE GPU PROGRAMMING IN CHAPEL AT SCALE

Figure from: "Investigating Portability in Chapel for Tree-Based Optimizations on GPU-powered Clusters". Tiago Carneiro, Engin Kayraklioglu, Guillaume Helbecque, Nouredine Melab
Europar 2024

<<
<<

<<

A Case for Parallel-First Languages in Post-Serial, Accelerated World
Paul Sathre, Virginia Tech
June 7th, 2024

Parallel processors have finally dominated all scales of computing hardware, from the
personal and portable to the ivory tower datacenters of yore. However, dominant
programming models and pedagogy haven't kept pace, and languish in a post-serial mix
of libraries and language extensions. Further, heterogeneity in the form of GPUs has
dominated the performance landscape of the last decade, penetrating casual user
markets thanks to data science, crypto and AI booms. Unfortunately, GPUs' performance
remains largely constrained to expert users by the lack of more productive and portable
programming abstractions. This talk will probe questions about how to rethink and
democratize parallel programming for the masses. By reflecting on lessons learned from
a decade and a half of accelerated computing, I'll show where Chapel 2.0 fits into the
lineage of GPU computing, can capitalize on GPU momentum, and lead a path forward.

37

UPCOMING: KEYNOTE AT CHAPELCON '24

ChapelCon '24 is free and fully virtual
chapel-lang.org/ChapelCon24.html

https://chapel-lang.org/ChapelCon24.html

SUMMARY

38

Over ~3 years we have been steadily improving
• NVIDIA, AMD GPUs are supported
• Multiple nodes with multiple GPUs can be used
• Parallel tasks can use GPUs concurrently
• GPU features can be emulated on CPUs

Mature enough to get started, big efforts are still underway
• Distributed arrays
• Intel support
• Improving language features to support GPU programming
• Performance improvements
• Bug fixes

39

WHERE WE ARE TODAY

March

2024
October

2020

GPU Programming Blog Series: chapel-lang.org/blog/series/gpu-programming-in-chapel/

Technote: https://chapel-lang.org/docs/main/technotes/gpu.html
• Anything and everything about our GPU support

– configuration, advanced features, links to some tests, caveats/limitations

• More of a reference manual than a tutorial

Previous talks
• LinuxCon / Open Source Summit North America 2024 Talk: GPU Programming in Chapel and a Live Demo

– https://youtu.be/5-jLdKduaJE?si=ezaz5mDORvmTjgRL

• CHIUW '23 Talk: updates from May '22-May '23 period
– https://chapel-lang.org/CHIUW/2023/KayrakliogluSlides.pdf

• LCPC '22 Talk: a lot of details on how the Chapel compiler works to create GPU kernels
– https://chapel-lang.org/presentations/Engin-SIAM-PP22-GPU-static.pdf

40

IF YOU WANT TO LEARN MORE ABOUT GPU PROGRAMMING IN CHAPEL

https://chapel-lang.org/blog/series/gpu-programming-in-chapel/
https://chapel-lang.org/docs/main/technotes/gpu.html
https://youtu.be/5-jLdKduaJE?si=ezaz5mDORvmTjgRL
https://chapel-lang.org/CHIUW/2023/KayrakliogluSlides.pdf
https://chapel-lang.org/presentations/Engin-SIAM-PP22-GPU-static.pdf

41

HPE DEVELOPER MEETUP

Meetup for "Vendor-Neutral GPU Programming in Chapel"
Jul 31, 2024 08:00 AM PDT (-7 UTC)

Jade Abraham, Engin Kayraklioglu

speakers will discuss Chapel's GPU support in detail and collaborate with you to determine how
it may help in your particular situation.

 HPE developer meetups home page:

 https://developer.hpe.com/campaign/meetups/

 Registration:
 https://hpe.zoom.us/webinar/register/3117139444656/WN_ojVy9LR_QHSCGxeg21rj7A

https://developer.hpe.com/campaign/meetups/
https://hpe.zoom.us/webinar/register/3117139444656/WN_ojVy9LR_QHSCGxeg21rj7A

Fully virtual, free registration

Schedule Overview
• June 5th: Tutorial Day: Chapel and Arkouda tutorials
• June 6th: Coding Day: Opportunities for coding
• June 7th: Conference Day

Keynote
A Case for Parallel-First Languages
in a Post-Serial, Accelerated World
Paul Sathre (Virginia Tech)

42

CHAPELCON '24 (FORMERLY CHIUW, THE CHAPEL IMPLEMENTERS AND USERS WORKSHOP)

Registration:

https://chapel-lang.org/ChapelCon24.html

https://chapel-lang.org/blog/posts/chapelcon24/

https://chapel-lang.org/ChapelCon24.html
https://chapel-lang.org/blog/posts/chapelcon24/

Chapel homepage: https://chapel-lang.org
• (points to all other resources)

Blog: https://chapel-lang.org/blog/

Social Media:
• Facebook: @ChapelLanguage
• LinkedIn: https://www.linkedin.com/company/chapel-programming-language/

• Mastodon: @ChapelProgrammingLanguage
• X / Twitter: @ChapelLanguage
• YouTube: @ChapelLanguage

Community Discussion / Support:
• Discourse: https://chapel.discourse.group/
• Gitter: https://gitter.im/chapel-lang/chapel
• Stack Overflow: https://stackoverflow.com/questions/tagged/chapel

• GitHub Issues: https://github.com/chapel-lang/chapel/issues

CHAPEL RESOURCES

43

https://chapel-lang.org/
https://chapel-lang.org/blog/
https://www.facebook.com/ChapelLanguage/
https://www.linkedin.com/company/chapel-programming-language/
https://mastodon.social/@chapelprogramminglanguage
https://twitter.com/ChapelLanguage
https://www.youtube.com/@chapellanguage
https://chapel.discourse.group/
https://gitter.im/chapel-lang/chapel
https://stackoverflow.com/questions/tagged/chapel
https://github.com/chapel-lang/chapel/issues

• GPUs are becoming more and more common in HPC
• However, programming GPUs is more challenging than programming CPUs
• On multiple nodes, users are typically required to use multiple paradigms

• HPC and GPUs should be more accessible
• from wider range of disciplines,
• with varying levels of expertise, and
• limited time to invest in programming

• Chapel wants to make HPC more accessible
• Existing applications prove that Chapel delivers on the promise
• Its growing support for GPU programming can:

– enable programming GPUs in a productive and vendor-neutral way
– provide an all-inclusive solution for programming in HPC

• The Chapel team at HPE would be excited to collaborate with AMD!

• Please feel free to reach out: engin@hpe.com

44

SUMMARY

chapel-lang.org

mailto:engin@hpe.com
http://chapel-lang.org/

