GENERATING GPU KERNELS FROM TWRWNIW 2 1U/wy
CHAPEL'S FEATURES FOR .
PARALLELISM AND LOCALITY YR L AT e

Engin Kayraklioglu, Andy Stone, David Iten, Sarah Nguyen,
Bradford L. Chamberlain, Michael Ferguson and Michelle Strout
Hewlett Packard Enterprise

SIAM PP22 - Code Generation and Transformation in HPC on Heterogeneous Platforms
February 26, 2022

WHAT IS CHAPEL?

Chapel: A modern parallel programming language

e portable & scalable
e open-source & collaborative

Goals:

e Support general parallel programming
o Make parallel programming at scale far more productive

@

2

CHAPEL BENCHMARKS TEND TO BE CONCISE, CLEAR, AND COMPETITIVE

|
| |
STREAM TRIAD: C + MPI + OPENMP use BlockDist:
inc <] if (la || !'b |
d if (c) HPCC c)i
h> if (b) HE i ; .
P config const m = 1000,
static int ctorSs. 7 fprintf(outFile, "Failed to allocate memory
static double *c; fclose(outFile);
T — alpha = 3.0;
}
s omew const Dom = {1l..m} dmapped ..;
#el
<VectorSize; j++) {
var A, B, C: [Dom] real;
A e o, 0 <01 - 2o 4 4 !
return errCount;
}
int HPCC_Stream(HPCC_Params *params, int doIO) { B = 2 . O ;
params, 3, sizeof(double), 0); wccjreem; ’ C = 1 . O ;
a=H XMAL ze); HPCC_free (b) ;
b = HPCC_XMAL ize); HPCC_free(a);
= ze)
return 0;
i
| |

HPCC RA: MPI KERNEL

GB/s

forall (, r) in zip(Updates, RAStream()) do
T[r & indexMask].xor(r):;

30000
25000
20000
15000
10000

5000

GUPS

onNn A~ O

14
12
10

STREAM Performance (GB/s)

MPI+OpenMP —¢—
= Chapel EP —¢— -~~~ -~~~ ----~--~-~~-=---=-~- ~2
Chapel Global - -+ -

16 32 64 128 256
Locales (x 36 cores / locale)

RA Performance (GUPS)

1 1

16 32 64 128 256
Locales (x 36 cores / locale)

CURRENT FLAGSHIP CHAPEL APPLICATIONS

CHAMPS: 3D Unstructured CFD

Eric Laurendeau, Simon Bourgault-C6té,
Matthieu Parenteau, et al.

Ecole Polytechnique Montréal

ChplUItra: Simulating Ultralight

Dark Matter
Nikhil Padmanabhan, J. Luna Zagorac, ef al.
Yale University / University of Auckland

Arkouda: NumPy at Massive Scale ChOp: Chapel-based Optimization

% ,1, Y X
—] E EE ~ Mike Merrill, Bill Reus, et al. ‘/X'H')(Tiago Carneiro, Nouredine Melab, et al.
ﬁ e BEESEE JS DoD A teses oxe INRIA Lille, France
CrayAl: Distributed Machine Learning ‘ """""""" Your application here?
4 g “ € " e “ O " O Y Hewlett Packard Enterprise ?

GPU PROGRAMMING IN CHAPEL

Overview

o We are developing support for GPU programming in Chapel
e GPUs are very common, yet challenging to program
o GPU support is frequently asked about by users
« it would improve upon Chapel’s “any parallel algorithm on any parallel hardware” theme

Collaborations / External Studies
o early work at UIUC [1][2]
« partnership with AMD [3] [4][5]
« recent work from Georgia Tech and ANU, featured at CHIUW 2019 [6], CHIUW 2020 [7] and CHIUW 2021 [8]
« meanwhile, user applications have run on GPUs via Chapel interoperability features (e.g., ChOp and CHAMPS)

Rough Timeline
« August 2020: Design effort and discussions start
« 1.24 (March 2021): Can use non-user-facing features to generate GPU binaries for Chapel functions and launch them
o 1.25 (September 2021): Can natively franslate order-independent loops into GPU kernels that are automatically launched

— |

https://ieeexplore.ieee.org/document/6267860/;jsessionid=wbcFZyibLkERK4tLMERCP0i0V-a_LuPkj1CDNstj6ofjQMl3Ts_U!-539104042
https://chapel-lang.org/presentations/SC11/05-sidelnik-gpu.pdf
https://github.com/chapel-lang/chapel/blob/master/doc/rst/developer/chips/17.rst
https://github.com/chapel-lang/chapel/blob/master/doc/rst/developer/chips/22.rst
https://github.com/rocmarchive/chapel/tree/chpl-hsa-master
https://chapel-lang.org/CHIUW2019.html
https://chapel-lang.org/CHIUW2020.html
https://chapel-lang.org/CHIUW2021.html

WHAT’S TO COME IN THIS TALK
GPU Codegen from Chapel

User’s loop
forall i in 1..n do arr[i] = i1*mul;
The loop is replaced with:
if executingOnGPUSublocale ()
launch kernel ('kernel', n-1, 512, 1, O,
n, 0, &arr, 32, mul, 0);
else
for (i=1 ; i<=n ; 1i++) {

int *arrData = arr->data;
int *addrToChange =
int newVvVal = i*mul;

*addrToChange =

&arrDatali];

newVal;

—

Generated GPU kernel looks like:

__global

void kernel (int startIdx, int endIdx,
int *arrArg, int mulArg) {

int blockIdxX = _ primitive('gpu blockIdx x')
int blockDimX = _ primitive('gpu blockDim x')

int threadIldxX = primitive ('gpu threadIdx x'

int t0 = blockIdxX * blockDimX;
int t1 = t0 + threadIdxX;
int index = tl + startIdx;

bool chpl is oob = index > endIdx;

if (chpl i1s oob) { return; }
int arrData = arrArg->data;
int *addrToChange = &arrData[index];
int newVal = mylIdx*mulArg;

*addrToChange = newVal;

4

) ;

PARALLELISM AND LOCALITY
AS FIRST-CLASS CONCEPTS

THE LOCALE: CHAPEL'’S KEY FEATURE FOR LOCALITY

e locale: a unit of the target architecture that can run tasks and store variables
e Think “compute node” on a typical HPC system

prompt> ./myChapelProgram --numLocales=4 # or ‘—nl 4’

Core Memory

Locale O Locale 1 Locale 2 Locale 3

Locales array:

User’s program starts running as a single task on locale O

8

PARALLELISM AND LOCALITY INONE SLIDE

Remote task launch Core | Memory
Locale O Locale 1 Locale 2 Locale 3

Q i a Q 227|225 125|224
ZZZ ZZZ o o ZZZ ZZZ ZZZ ZZZ
\—/

Remote task finished

Qvarx= 10;

Takeaway:
on Locales[1] { , ,
_ (1. o . The ‘on’ statement and the “forall’ loop can
var A = [1, 2, 3, 4, o, .7 be used to control locality and parallelism
forall a in A do a += 1;

Note: The ‘forall’ loop can result in

writeln (x); distributed computation by itself, but
that’s out of scope for this talk

& oo

GPU PROGRAMMING
AS FIRST-CLASS CONCEPTS

HIERARCHICAL LOCALES TO REPRESENT GPUS

Locale X

Core | Memory

GPUs represented
as “sublocales”

m—

Locale X

GPU O

GPU 1

Host cores and memory represented as normal

GPUs are just nested sublocales that have
their own processing units and memory

Note: Specifics of the locale model design are an open discussion.

See https://github.com/chapel-lang/chapel/issues/18529

11

https://github.com/chapel-lang/chapel/issues/18529

PARALLELISM AND LOCALITY IN THE CONTEXT OF GPUS

Core [Memory

Locale X Q var x = 10;
L* (5
Execution/allocation l a on here.getGPU (0) {
z
moves to the sublocale i O var A = [1, 2, 3, 4, 5,

}

£ writeln(x);

o forall a in A do a += 1;

12

OUR GOAL AND WHERE WE ARE
Sample Computation: Status in 1.25

The ‘on’ statement moves the

execution to a GPU sublocale

Our Goal:

—» Oon herem {
var A = , 2, 3, 4, 51;
1;

» forall a in A do a +=

}

Dynamic memory is allocated on the device

What works today (1.25.x):

- on nexe. FEECHINEIN
var A = , 2, 3, 4, 5]1;
1;

— forall a in A do a +=

}

The ‘forall’ loop turns into a GPU kernel

—

13

GPU CODEGEN: PART 1
Creating GPU Kernels from Loops

User’s loop

forall 1 in 1..n do arr[i] = i1*mul

(1=1 ;
int *arrData =

for i<=n ; 1i++) {

arr—->data;

int *addrToChange = &aerata[%];

Conceptual

// order-independent loop

The loop’s start and end indices are passed by value

Outer variables are passed depending on their type

Loop body is copied

Variables declared inside remain untouched

int *arrArg, int mulArg) {

int newVal = i*mul;
Cloop *addrToChange =fﬁ%%Val;
}
__global
void kernel (int startIdx, int endIdx,
int index = ...; //calculate and return if >length
int *arrData = arrArg->data;
Generated int *addrToChange = &arrDatal[index];
oL Kermel int newval - indextmularg;
*addrToChange = newVal;

— }

|14

GPU CODEGEN: PART 2
Launching GPU Kernels

Kernel signature
User’s loop

global
.. . _oix —_ —
forall i in 1..n do arr[i] 1*mul void kernel (int startIdx, int length,

, , . int *arrArg, int mulArqg);
for (i=1 ; i<=n ; 1i++) {

int *arrData = arr->data; Function name

int *addrToChange = &arrDatali];

Conceptual Cloop ~ int newVal = i*mul; Loop length and block size are used for dimension calculation
*addrToChange = newVal;

}

Generated Kernel Launch Pass-by-offload arguments have an accompanying copy size

A dynamic check for GPU execution is added

if executingOnGPUSublocale ()

launch kernel ('kernel', n-1, 512, 1, 0, n, 0, &arr, 32, mul, 0);
else
// loop with no change

— .

GPU CODEGEN: PART 3

Translating Loop Indices Into Kernel Indices

Kernel function Primitives correspond to CUDA threadidx,
__global blockidx, blockDim, and gridDim variables
void kernel (int startIdx, int endIdx,

int *arrArg, int mulArg) { They lower to calls to corresponding llvm intrinsics

int blockIdxX = primitive ('gpu blockIdx x'); (e.g, l1lvm.nvvm.read.ptx.sreg.ctaid.x)

")
")

int blockDimX = _ primitive('gpu blockDim x');
int threadIdxX = __ primitive ('gpu threadIdx x');
Index computation
int t0 = blockIdxX * blockDimX;
int t1 = t0 + threadIdxX; Currently we are only targeting 1-dimensional kernels

int index = tl + startIdx;

Check that index is in bounds

bool chpl is oob = index > endIdx;

if (chpl is oob) { return; } Can occur if length is not evenly divisible by block size

// copied loop body Loop body is copied

—

GPU CODEGEN
Putting the Pieces Together
User’s loop

forall i in 1..n do arr[i] = i1*mul;

The loop is replaced with:

if executingOnGPUSublocale ()
launch kernel (“kernel”, n-1,

32,

512, 1, O,

n, 0, &arr, mul, O0);

else
(1=1 ;
int *arrData =

for i<=n ; 1i++) {

arr—->data;
int *addrToChange =
int newVal = i*mul;

*addrToChange =

&arrDatali];

newVal;

—

Generated GPU kernel looks like:

__global
void kernel (int startIdx, int endIdx,

int *arrArg, int mulArg) {

")
")

int blockIdxX = _ primitive('gpu blockIdx x
int blockDimX = _ primitive ('gpu blockDim x
int threadIdxX = _ primitive('gpu threadIdx x'
int t0 = blockIdxX * blockDimX;

int t1l = t0 + threadIdxX;

int index = tl + startldx;

bool chpl is oob =
if

index > endIdx;
(chpl is oob) { return; }
int arrData = arrArg->data;
int *addrToChange = &arrData[index];
int newVal = mylIdx*mulArg;

*addrToChange = newVal;

4

) ;

17

GPU PROGRAMMING IN CHAPEL
A Very Early Performance Study

Stream

—— forall-based
—&— foreach-based
-%- C+CUDA

32 64 128 256 512
Number of Elements (M)

Throughput
(GB/s)

At smaller vector sizes At larger vector sizes
throughput is low efficiency reaches 96%

—

Observations

e Can perform comparably to hand-written code
e Gets close to 100% efficiency with large datasets
e ‘foreach’ is slightly faster than ‘forall’

Potential Sources of Overhead

e Unified memory vs. device memory
e Dynamic allocations per kernel launch

Future Work for Performance

e Understand the performance with small vectors
 Profile the remaining costs

e Study other benchmarks

|18

GPU PROGRAMMING IN CHAPEL

Summary
e Chapel’s language constructs for parallelism and locality suit GPU programming well
e The most recent Chapel release has a prototype feature for native GPU programming
e We:

« have taken big steps in the recent releases

« obtained very promising results both in ferms of productivity and performance

Future Work

e A new locale model design

 Portability improvements

 Ability to create distributed arrays on GPUs

e Support more of the language features for GPU operations

— .

CHAPEL RESOURCES

Chapel homepage: hitps://chapel-lang.org

Social Media:
o Twitter: @ChapelLanguage

e Facebook: @ChapelLanguage
e YouTube: http://www.youtube.com/c/ChapelParallelProgramminglLangquage

Community Discussion / Support:

e Discourse: https://chapel.discourse.group/

o Gitter: https://gitter.im/chapel-lang/chapel

o Stack Overflow: hitps://stackoverflow.com/questions/tagged/chapel
o GitHub Issues: https://github.com/chapel-lang/chapel/issues

GPU Technote:
o See https://chapel-lang.org/docs/master/technotes/gpu.html

—

HIGEEGCE

What is Chapel?
What's New?

Upcoming Events
Job Opportunities

How Can | Learn Chapel?
Contributing to Chapel

Download Chapel
Try Chapel Online

Documentation
Release Notes

Performance
Powered by Chapel

User Resources
Developer Resources

Social Media / Blog Posts
Press

Presentations
Papers / Publications

CHIuw
CHUG

Contributors / Credits

chapel_info@cray.com

O - A
vyEHD

The Chapel Parallel Programming Language

What is Chapel?

Chapel is a programming language designed for productive parallel computing at scale.
Why Chapel? Because it simplifies parallel programming through elegant support for:

« distributed arrays that can leverage thousands of nodes' memories and cores

« a global namespace supporting direct access to local or remote variables

« data parallelism to trivially use the cores of a laptop, cluster, or supercomputer
« task parallelism to create concurrency within a node or across the system

Chapel Characteristics

« productive: code tends to be similarly readable/writable as Python
« scalable: runs on laptops, clusters, the cloud, and HPC systems

« fast: performance competes with or beats C/C++ & MPI & OpenMP
« portable: compiles and runs in virtually any *nix environment

* open-source: hosted on GitHub, permissively licensed

New to Chapel?

As an introduction to Chapel, you may want to...

« watch an overview talk or browse its slides

read a blog-length or chapter-length introduction to Chapel
learn about projects powered by Chapel

check out performance highlights like these:

PRK Stencil Performance (Glop's) NPB-FT Performance (Gop's)

Giop/'s
) §
Viiill
\ |
\
Gopis
st
\
1

Locales (x 36 cores / locale) Locales (x 36 cores / locale)

* browse sample programs or learn how to write distributed programs like this one:

use CyclicDist;
config const n = 100;

// use the Cyclic distribution Llibrary
// use --n=<val> when executing to override this default

forall i in {1..n} dmapped Cyclic(startIdx=1) do
writeln("Hello from iteration ", i, " of ", n,

" running on node ", here.id);

|20

https://chapel-lang.org/
https://twitter.com/ChapelLanguage
https://www.facebook.com/ChapelLanguage/
http://www.youtube.com/c/ChapelParallelProgrammingLanguage
https://chapel.discourse.group/
https://gitter.im/chapel-lang/chapel
https://stackoverflow.com/questions/tagged/chapel
https://github.com/chapel-lang/chapel/issues
https://chapel-lang.org/docs/master/technotes/gpu.html

THANK YOU

engin@hpe.com
linkedin.com/in/engink

chapel-lang.org

