
Brad Chamberlain, Chapel Team, Cray Inc.

UIUC, May 16, 2013

Given: m-element vectors A, B, C

Compute: i 1..m, Ai = Bi + αCi

In pictures, in parallel (distributed memory multicore):

2

A

B

C

α

=

+

·

=

+

·

=

+

·

=

+

·

=

+

·

=

+

·

=

+

·

=

+

·

#include <hpcc.h>

static int VectorSize;

static double *a, *b, *c;

int HPCC_StarStream(HPCC_Params *params) {

 int myRank, commSize;

 int rv, errCount;

 MPI_Comm comm = MPI_COMM_WORLD;

 MPI_Comm_size(comm, &commSize);

 MPI_Comm_rank(comm, &myRank);

 rv = HPCC_Stream(params, 0 == myRank);

 MPI_Reduce(&rv, &errCount, 1, MPI_INT, MPI_SUM,

0, comm);

 return errCount;

}

int HPCC_Stream(HPCC_Params *params, int doIO) {

 register int j;

 double scalar;

 VectorSize = HPCC_LocalVectorSize(params, 3,

sizeof(double), 0);

 a = HPCC_XMALLOC(double, VectorSize);

 b = HPCC_XMALLOC(double, VectorSize);

 c = HPCC_XMALLOC(double, VectorSize);

MPI

 if (!a || !b || !c) {

 if (c) HPCC_free(c);

 if (b) HPCC_free(b);

 if (a) HPCC_free(a);

 if (doIO) {

 fprintf(outFile, "Failed to allocate memory

(%d).\n", VectorSize);

 fclose(outFile);

 }

 return 1;

 }

 for (j=0; j<VectorSize; j++) {

 b[j] = 2.0;

 c[j] = 0.0;

 }

 scalar = 3.0;

 for (j=0; j<VectorSize; j++)

 a[j] = b[j]+scalar*c[j];

 HPCC_free(c);

 HPCC_free(b);

 HPCC_free(a);

 return 0;

}

3

#include <hpcc.h>

#ifdef _OPENMP

#include <omp.h>

#endif

static int VectorSize;

static double *a, *b, *c;

int HPCC_StarStream(HPCC_Params *params) {

 int myRank, commSize;

 int rv, errCount;

 MPI_Comm comm = MPI_COMM_WORLD;

 MPI_Comm_size(comm, &commSize);

 MPI_Comm_rank(comm, &myRank);

 rv = HPCC_Stream(params, 0 == myRank);

 MPI_Reduce(&rv, &errCount, 1, MPI_INT, MPI_SUM,

0, comm);

 return errCount;

}

int HPCC_Stream(HPCC_Params *params, int doIO) {

 register int j;

 double scalar;

 VectorSize = HPCC_LocalVectorSize(params, 3,

sizeof(double), 0);

 a = HPCC_XMALLOC(double, VectorSize);

 b = HPCC_XMALLOC(double, VectorSize);

 c = HPCC_XMALLOC(double, VectorSize);

MPI + OpenMP

 if (!a || !b || !c) {

 if (c) HPCC_free(c);

 if (b) HPCC_free(b);

 if (a) HPCC_free(a);

 if (doIO) {

 fprintf(outFile, "Failed to allocate memory

(%d).\n", VectorSize);

 fclose(outFile);

 }

 return 1;

 }

#ifdef _OPENMP

#pragma omp parallel for

#endif

 for (j=0; j<VectorSize; j++) {

 b[j] = 2.0;

 c[j] = 0.0;

 }

 scalar = 3.0;

#ifdef _OPENMP

#pragma omp parallel for

#endif

 for (j=0; j<VectorSize; j++)

 a[j] = b[j]+scalar*c[j];

 HPCC_free(c);

 HPCC_free(b);

 HPCC_free(a);

 return 0;

}

4

#define N 2000000

int main() {

 float *d_a, *d_b, *d_c;

 float scalar;

 cudaMalloc((void**)&d_a, sizeof(float)*N);

 cudaMalloc((void**)&d_b, sizeof(float)*N);

 cudaMalloc((void**)&d_c, sizeof(float)*N);

 dim3 dimBlock(128);

 dim3 dimGrid(N/dimBlock.x);

 if(N % dimBlock.x != 0) dimGrid.x+=1;

 set_array<<<dimGrid,dimBlock>>>(d_b, .5f, N);

 set_array<<<dimGrid,dimBlock>>>(d_c, .5f, N);

 scalar=3.0f;

 STREAM_Triad<<<dimGrid,dimBlock>>>(d_b, d_c, d_a, scalar, N);

 cudaThreadSynchronize();

 cudaFree(d_a);

 cudaFree(d_b);

 cudaFree(d_c);

}

__global__ void set_array(float *a, float value, int len) {

 int idx = threadIdx.x + blockIdx.x * blockDim.x;

 if (idx < len) a[idx] = value;

}

__global__ void STREAM_Triad(float *a, float *b, float *c,

 float scalar, int len) {

 int idx = threadIdx.x + blockIdx.x * blockDim.x;

 if (idx < len) c[idx] = a[idx]+scalar*b[idx];

}

#include <hpcc.h>

#ifdef _OPENMP

#include <omp.h>

#endif

static int VectorSize;

static double *a, *b, *c;

int HPCC_StarStream(HPCC_Params *params) {

 int myRank, commSize;

 int rv, errCount;

 MPI_Comm comm = MPI_COMM_WORLD;

 MPI_Comm_size(comm, &commSize);

 MPI_Comm_rank(comm, &myRank);

 rv = HPCC_Stream(params, 0 == myRank);

 MPI_Reduce(&rv, &errCount, 1, MPI_INT, MPI_SUM, 0, comm);

 return errCount;

}

int HPCC_Stream(HPCC_Params *params, int doIO) {

 register int j;

 double scalar;

 VectorSize = HPCC_LocalVectorSize(params, 3, sizeof(double), 0);

 a = HPCC_XMALLOC(double, VectorSize);

 b = HPCC_XMALLOC(double, VectorSize);

 c = HPCC_XMALLOC(double, VectorSize);

 if (!a || !b || !c) {

 if (c) HPCC_free(c);

 if (b) HPCC_free(b);

 if (a) HPCC_free(a);

 if (doIO) {

 fprintf(outFile, "Failed to allocate memory (%d).\n", VectorSize);

 fclose(outFile);

 }

 return 1;

 }

#ifdef _OPENMP

#pragma omp parallel for

#endif

 for (j=0; j<VectorSize; j++) {

 b[j] = 2.0;

 c[j] = 0.0;

 }

 scalar = 3.0;

#ifdef _OPENMP

#pragma omp parallel for

#endif

 for (j=0; j<VectorSize; j++)

 a[j] = b[j]+scalar*c[j];

 HPCC_free(c);

 HPCC_free(b);

 HPCC_free(a);

 return 0;

}

CUDA MPI + OpenMP

HPC suffers from too many distinct notations for expressing parallelism and locality

5

HPC has traditionally given users…
…low-level, control-centric programming models

…ones that are closely tied to the underlying hardware

…ones that support only a single type of parallelism

Examples:

benefits: lots of control; decent generality; easy to implement
downsides: lots of user-managed detail; brittle to changes

Type of HW Parallelism Programming Model Unit of Parallelism

Inter-node MPI executable

Intra-node/multicore OpenMP/pthreads iteration/task

Instruction-level vectors/threads pragmas iteration

GPU/accelerator CUDA/OpenCL/OpenAcc SIMD function/task

6

#define N 2000000

int main() {

 float *d_a, *d_b, *d_c;

 float scalar;

 cudaMalloc((void**)&d_a, sizeof(float)*N);

 cudaMalloc((void**)&d_b, sizeof(float)*N);

 cudaMalloc((void**)&d_c, sizeof(float)*N);

 dim3 dimBlock(128);

 dim3 dimGrid(N/dimBlock.x);

 if(N % dimBlock.x != 0) dimGrid.x+=1;

 set_array<<<dimGrid,dimBlock>>>(d_b, .5f, N);

 set_array<<<dimGrid,dimBlock>>>(d_c, .5f, N);

 scalar=3.0f;

 STREAM_Triad<<<dimGrid,dimBlock>>>(d_b, d_c, d_a, scalar, N);

 cudaThreadSynchronize();

 cudaFree(d_a);

 cudaFree(d_b);

 cudaFree(d_c);

}

__global__ void set_array(float *a, float value, int len) {

 int idx = threadIdx.x + blockIdx.x * blockDim.x;

 if (idx < len) a[idx] = value;

}

__global__ void STREAM_Triad(float *a, float *b, float *c,

 float scalar, int len) {

 int idx = threadIdx.x + blockIdx.x * blockDim.x;

 if (idx < len) c[idx] = a[idx]+scalar*b[idx];

}

#include <hpcc.h>

#ifdef _OPENMP

#include <omp.h>

#endif

static int VectorSize;

static double *a, *b, *c;

int HPCC_StarStream(HPCC_Params *params) {

 int myRank, commSize;

 int rv, errCount;

 MPI_Comm comm = MPI_COMM_WORLD;

 MPI_Comm_size(comm, &commSize);

 MPI_Comm_rank(comm, &myRank);

 rv = HPCC_Stream(params, 0 == myRank);

 MPI_Reduce(&rv, &errCount, 1, MPI_INT, MPI_SUM, 0, comm);

 return errCount;

}

int HPCC_Stream(HPCC_Params *params, int doIO) {

 register int j;

 double scalar;

 VectorSize = HPCC_LocalVectorSize(params, 3, sizeof(double), 0);

 a = HPCC_XMALLOC(double, VectorSize);

 b = HPCC_XMALLOC(double, VectorSize);

 c = HPCC_XMALLOC(double, VectorSize);

 if (!a || !b || !c) {

 if (c) HPCC_free(c);

 if (b) HPCC_free(b);

 if (a) HPCC_free(a);

 if (doIO) {

 fprintf(outFile, "Failed to allocate memory (%d).\n", VectorSize);

 fclose(outFile);

 }

 return 1;

 }

#ifdef _OPENMP

#pragma omp parallel for

#endif

 for (j=0; j<VectorSize; j++) {

 b[j] = 2.0;

 c[j] = 0.0;

 }

 scalar = 3.0;

#ifdef _OPENMP

#pragma omp parallel for

#endif

 for (j=0; j<VectorSize; j++)

 a[j] = b[j]+scalar*c[j];

 HPCC_free(c);

 HPCC_free(b);

 HPCC_free(a);

 return 0;

}

CUDA MPI + OpenMP

HPC suffers from too many distinct notations for expressing parallelism and locality

7

#define N 2000000

int main() {

 float *d_a, *d_b, *d_c;

 float scalar;

 cudaMalloc((void**)&d_a, sizeof(float)*N);

 cudaMalloc((void**)&d_b, sizeof(float)*N);

 cudaMalloc((void**)&d_c, sizeof(float)*N);

 dim3 dimBlock(128);

 dim3 dimGrid(N/dimBlock.x);

 if(N % dimBlock.x != 0) dimGrid.x+=1;

 set_array<<<dimGrid,dimBlock>>>(d_b, .5f, N);

 set_array<<<dimGrid,dimBlock>>>(d_c, .5f, N);

 scalar=3.0f;

 STREAM_Triad<<<dimGrid,dimBlock>>>(d_b, d_c, d_a, scalar, N);

 cudaThreadSynchronize();

 cudaFree(d_a);

 cudaFree(d_b);

 cudaFree(d_c);

}

__global__ void set_array(float *a, float value, int len) {

 int idx = threadIdx.x + blockIdx.x * blockDim.x;

 if (idx < len) a[idx] = value;

}

__global__ void STREAM_Triad(float *a, float *b, float *c,

 float scalar, int len) {

 int idx = threadIdx.x + blockIdx.x * blockDim.x;

 if (idx < len) c[idx] = a[idx]+scalar*b[idx];

}

#include <hpcc.h>

#ifdef _OPENMP

#include <omp.h>

#endif

static int VectorSize;

static double *a, *b, *c;

int HPCC_StarStream(HPCC_Params *params) {

 int myRank, commSize;

 int rv, errCount;

 MPI_Comm comm = MPI_COMM_WORLD;

 MPI_Comm_size(comm, &commSize);

 MPI_Comm_rank(comm, &myRank);

 rv = HPCC_Stream(params, 0 == myRank);

 MPI_Reduce(&rv, &errCount, 1, MPI_INT, MPI_SUM, 0, comm);

 return errCount;

}

int HPCC_Stream(HPCC_Params *params, int doIO) {

 register int j;

 double scalar;

 VectorSize = HPCC_LocalVectorSize(params, 3, sizeof(double), 0);

 a = HPCC_XMALLOC(double, VectorSize);

 b = HPCC_XMALLOC(double, VectorSize);

 c = HPCC_XMALLOC(double, VectorSize);

 if (!a || !b || !c) {

 if (c) HPCC_free(c);

 if (b) HPCC_free(b);

 if (a) HPCC_free(a);

 if (doIO) {

 fprintf(outFile, "Failed to allocate memory (%d).\n", VectorSize);

 fclose(outFile);

 }

 return 1;

 }

#ifdef _OPENMP

#pragma omp parallel for

#endif

 for (j=0; j<VectorSize; j++) {

 b[j] = 2.0;

 c[j] = 0.0;

 }

 scalar = 3.0;

#ifdef _OPENMP

#pragma omp parallel for

#endif

 for (j=0; j<VectorSize; j++)

 a[j] = b[j]+scalar*c[j];

 HPCC_free(c);

 HPCC_free(b);

 HPCC_free(a);

 return 0;

}

CUDA MPI + OpenMP

config const m = 1000,

 alpha = 3.0;

const ProblemSpace = {1..m} dmapped …;

var A, B, C: [ProblemSpace] real;

B = 2.0;

C = 3.0;

A = B + alpha * C;

the special

sauce

Chapel

Philosophy: Good language design can tease details of locality and
parallelism away from an algorithm, permitting the compiler, runtime,
applied scientist, and HPC expert to each focus on their strengths.

8

Style of HW Parallelism Programming Model Unit of Parallelism

Inter-node MPI executable

Intra-node/multicore OpenMP/pthreads iteration/task

Instruction-level vectors/threads pragmas iteration

GPU/accelerator CUDA/OpenCL SIMD
function/task

With a unified set of concepts...

...express any parallelism desired in a user’s program
 Styles: data-parallel, task-parallel, concurrency, nested, …

 Levels: model, function, loop, statement, expression

...target all parallelism available in the hardware
 Types: machines, nodes, cores, instructions

9

Style of HW Parallelism Programming Model Unit of Parallelism

Inter-node Chapel executable/task

Intra-node/multicore Chapel iteration/task

Instruction-level vectors/threads Chapel iteration

GPU/accelerator Chapel SIMD
function/task

10

Intel MIC

Sources: http://download.intel.com/pressroom/images/Aubrey_Isle_die.jpg, http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/,

http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/, http://tilera.com/sites/default/files/productbriefs/Tile-Gx%203036%20SB012-01.pdf

Nvidia Echelon Tilera Tile-Gx

AMD Trinity

http://download.intel.com/pressroom/images/Aubrey_Isle_die.jpg
http://download.intel.com/pressroom/images/Aubrey_Isle_die.jpg
http://download.intel.com/pressroom/images/Aubrey_Isle_die.jpg
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://tilera.com/sites/default/files/productbriefs/Tile-Gx 3036 SB012-01.pdf
http://tilera.com/sites/default/files/productbriefs/Tile-Gx 3036 SB012-01.pdf
http://tilera.com/sites/default/files/productbriefs/Tile-Gx 3036 SB012-01.pdf
http://tilera.com/sites/default/files/productbriefs/Tile-Gx 3036 SB012-01.pdf
http://tilera.com/sites/default/files/productbriefs/Tile-Gx 3036 SB012-01.pdf
http://tilera.com/sites/default/files/productbriefs/Tile-Gx 3036 SB012-01.pdf
http://tilera.com/sites/default/files/productbriefs/Tile-Gx 3036 SB012-01.pdf

 Increased hierarchy and/or sensitivity to locality

 Potentially heterogeneous processor/memory types

11

⇒ Next-gen programmers will have a lot more to
think about at the node level than in the past

performance: (naturally)

portability: specifically, to/between next-generation architectures

programmability features: because you know you want them

general parallelism:
data parallelism: to take advantage of SIMD HW units; for simplicity

task parallelism: for asynchronous computations; data-driven algorithms

varying granularities/nestings: for algorithmic and architectural generality

locality control: to tune for locality/affinity across the machine
(inter- and intra-node)

resilience-/energy-aware features: to deal with emerging issues at
system scale

user extensibility: to be ready for next-generation unknowns

12

Fortran C/C++ MPI OpenMP UPC

performance

portability (to next-gen)

programmability

data parallelism

task parallelism

parallel nesting/granularities

locality control

resilience

energy-awareness

user-extensibility

13

Fortran C/C++ MPI OpenMP UPC

performance ✓ ✓ ✓ ✓ ~

portability (to next-gen)

programmability

data parallelism

task parallelism

parallel nesting/granularities

locality control

resilience

energy-awareness

user-extensibility

14

Fortran C/C++ MPI OpenMP UPC

performance ✓ ✓ ✓ ✓ ~

portability (to next-gen) ✓ ✓

programmability

data parallelism

task parallelism

parallel nesting/granularities

locality control

resilience

energy-awareness

user-extensibility

15

Fortran C/C++ MPI OpenMP UPC

performance ✓ ✓ ✓ ✓ ~

portability (to next-gen) ✓ ✓ ~ ~ ~

programmability X X X ~ X

data parallelism ~ X X ~ ~

task parallelism X X X ~ X

parallel nesting/granularities X X X ~ X

locality control X X ~ X ~

resilience X X ~ X X

energy-awareness X X X X X

user-extensibility X X X X X

16

performance ~

portability (to next-gen) ~*

programmability ✓

data parallelism ✓

task parallelism ✓

parallel nesting/granularities ✓

locality control ~*

resilience X

energy-awareness X

user-extensibility ✓

17

* (The work in this talk is designed to address these items)

Motivation

Chapel Background

 Hierarchical Locales in Chapel

 Challenges, Status, and Summary

18

 An emerging parallel programming language

 Design and development led by Cray Inc.
 in collaboration with academia, labs, industry

 Initiated under the DARPA HPCS program

 Overall goal: Improve programmer productivity
 Improve the programmability of parallel computers

 Match or beat the performance of current programming models

 Support better portability than current programming models

 Improve the robustness of parallel codes

 A work-in-progress

19

 Being developed as open source at SourceForge

 Licensed as BSD software

 Target Architectures:
 Cray architectures

 multicore desktops and laptops

 commodity clusters

 systems from other vendors

 in-progress: CPU+accelerator hybrids, manycore, …

20

 Multiresolution Language Design Philosophy

 User-Defined Parallel Iterators, Layouts, and Distributions

 Distinct Concepts for Parallelism and Locality

 Multithreaded Execution Model

 Unification of Data- and Task-Parallelism

 Productive Base Language Features

 type inference, iterators, tuples, ranges

 Portable Design, Open-Source Implementation

 Yet, able to take advantage of HW-specific capabilities

 Helped revitalize Community Interest in Parallel Languages

 Multiresolution Language Design Philosophy

 User-Defined Parallel Iterators, Layouts, and Distributions

 Distinct Concepts for Parallelism and Locality

 Multithreaded Execution Model

 Unification of Data- and Task-Parallelism

 Productive Base Language Features

 type inference, iterators, tuples, ranges

 Portable Design, Open-Source Implementation

 Yet, able to take advantage of HW-specific capabilities

 Helped revitalize Community Interest in Parallel Languages

23

MPI

OpenMP

Pthreads

Target Machine

Low-Level
Implementation

Concepts

“Why is everything so tedious/difficult?”

“Why don’t my programs port trivially?”
“Why don’t I have more control?”

ZPL

HPF

Target Machine

High-Level
Abstractions

Multiresolution Design: Support multiple tiers of features

 higher levels for programmability, productivity

 lower levels for greater degrees of control

 build the higher-level concepts in terms of the lower
 examples: array distributions and layouts; forall loop implementations

 permit the user to intermix layers arbitrarily

Domain Maps

Data Parallelism

Task Parallelism

Base Language

Target Machine

Locality Control

Chapel language concepts

24

Q1: How are arrays laid out in memory?
 Are regular arrays laid out in row- or column-major order? Or…?

 How are sparse arrays stored? (COO, CSR, CSC, block-structured, …?)

Q2: How are arrays stored by the locales?
 Completely local to one locale? Or distributed?

 If distributed… In a blocked manner? cyclically? block-cyclically?
recursively bisected? dynamically rebalanced? …?

dynamically

…?

…?

25

Q1: How are arrays laid out in memory?
 Are regular arrays laid out in row- or column-major order? Or…?

 How are sparse arrays stored? (COO, CSR, CSC, block-structured, …?)

Q2: How are arrays stored by the locales?
 Completely local to one locale? Or distributed?

 If distributed… In a blocked manner? cyclically? block-cyclically?
recursively bisected? dynamically rebalanced? …?

…?

…? A: Chapel’s domain maps are designed to give the

user full control over such decisions

26

Domain maps are “recipes” that instruct the compiler
how to map the global view of a computation…

=

+

α •

Locale 0

=

+

α •

=

+

α •

=

+

α •

Locale 1 Locale 2

 …to the target locales’ memory and processors:

A = B + alpha * C;

27

1. Chapel provides a library of standard domain maps
 to support common array implementations effortlessly

2. Advanced users can write their own domain maps in Chapel
 to cope with shortcomings in our standard library

3. Chapel’s standard domain maps are written using the same
end-user framework
 to avoid a performance cliff between “built-in” and user-defined cases

Domain Maps

Data Parallelism

Task Parallelism

Base Language

Locality Control

28

#define N 2000000

int main() {

 float *d_a, *d_b, *d_c;

 float scalar;

 cudaMalloc((void**)&d_a, sizeof(float)*N);

 cudaMalloc((void**)&d_b, sizeof(float)*N);

 cudaMalloc((void**)&d_c, sizeof(float)*N);

 dim3 dimBlock(128);

 dim3 dimGrid(N/dimBlock.x);

 if(N % dimBlock.x != 0) dimGrid.x+=1;

 set_array<<<dimGrid,dimBlock>>>(d_b, .5f, N);

 set_array<<<dimGrid,dimBlock>>>(d_c, .5f, N);

 scalar=3.0f;

 STREAM_Triad<<<dimGrid,dimBlock>>>(d_b, d_c, d_a, scalar, N);

 cudaThreadSynchronize();

 cudaFree(d_a);

 cudaFree(d_b);

 cudaFree(d_c);

}

__global__ void set_array(float *a, float value, int len) {

 int idx = threadIdx.x + blockIdx.x * blockDim.x;

 if (idx < len) a[idx] = value;

}

__global__ void STREAM_Triad(float *a, float *b, float *c,

 float scalar, int len) {

 int idx = threadIdx.x + blockIdx.x * blockDim.x;

 if (idx < len) c[idx] = a[idx]+scalar*b[idx];

}

#include <hpcc.h>

#ifdef _OPENMP

#include <omp.h>

#endif

static int VectorSize;

static double *a, *b, *c;

int HPCC_StarStream(HPCC_Params *params) {

 int myRank, commSize;

 int rv, errCount;

 MPI_Comm comm = MPI_COMM_WORLD;

 MPI_Comm_size(comm, &commSize);

 MPI_Comm_rank(comm, &myRank);

 rv = HPCC_Stream(params, 0 == myRank);

 MPI_Reduce(&rv, &errCount, 1, MPI_INT, MPI_SUM, 0, comm);

 return errCount;

}

int HPCC_Stream(HPCC_Params *params, int doIO) {

 register int j;

 double scalar;

 VectorSize = HPCC_LocalVectorSize(params, 3, sizeof(double), 0);

 a = HPCC_XMALLOC(double, VectorSize);

 b = HPCC_XMALLOC(double, VectorSize);

 c = HPCC_XMALLOC(double, VectorSize);

 if (!a || !b || !c) {

 if (c) HPCC_free(c);

 if (b) HPCC_free(b);

 if (a) HPCC_free(a);

 if (doIO) {

 fprintf(outFile, "Failed to allocate memory (%d).\n", VectorSize);

 fclose(outFile);

 }

 return 1;

 }

#ifdef _OPENMP

#pragma omp parallel for

#endif

 for (j=0; j<VectorSize; j++) {

 b[j] = 2.0;

 c[j] = 0.0;

 }

 scalar = 3.0;

#ifdef _OPENMP

#pragma omp parallel for

#endif

 for (j=0; j<VectorSize; j++)

 a[j] = b[j]+scalar*c[j];

 HPCC_free(c);

 HPCC_free(b);

 HPCC_free(a);

 return 0;

}

CUDA MPI + OpenMP

config const m = 1000,

 alpha = 3.0;

const ProblemSpace = {1..m} dmapped …;

var A, B, C: [ProblemSpace] real;

B = 2.0;

C = 3.0;

A = B + alpha * C;

the special

sauce

Chapel

Philosophy: Good language design can tease details of locality and
parallelism away from an algorithm, permitting the compiler, runtime,
applied scientist, and HPC expert to each focus on their strengths.

29

HotPAR’10: User-Defined Distributions and Layouts in Chapel:
Philosophy and Framework
Chamberlain, Deitz, Iten, Choi; June 2010

CUG 2011: Authoring User-Defined Domain Maps in Chapel
Chamberlain, Choi, Deitz, Iten, Litvinov; May 2011

Chapel release:

 Technical notes detailing domain map interface for programmers:

 $CHPL_HOME/doc/technotes/README.dsi

 Current domain maps:

 $CHPL_HOME/modules/dists/*.chpl

layouts/*.chpl

internal/Default*.chpl

30

Q1: How are parallel loops implemented?
forall i in B.domain do B[i] = i/10.0;

forall c in C do c = 3.0;

 How many tasks? Where do they execute?

 How is the iteration space divided between the tasks?

A B C

Q2: How are parallel zippered loops implemented?
forall (a,b,c) in zip(A,B,C) do

 a = b + alpha * c;

 Particularly given that the iterands might have incompatible
distributions, memory layouts, and parallelization strategies

31

Q1: How are parallel loops implemented?
forall i in B.domain do B[i] = i/10.0;

forall c in C do c = 3.0;

 How many tasks? Where do they execute?

 How is the iteration space divided between the tasks?

Q2: How are parallel zippered loops implemented?
forall (a,b,c) in zip(A,B,C) do

 a = b + alpha * c;

 Particularly given that the iterands might have incompatible
distributions, memory layouts, and parallelization strategies

A: Chapel’s leader-follower iterators are designed to
give users full control over such decisions

32

PGAS 2011: User-Defined Parallel Zippered Iterators in Chapel,
Chamberlain, Choi, Deitz, Navarro; October 2011

Chapel release:

 Primer example introducing leader-follower iterators:

 examples/primers/leaderfollower.chpl

 Library of dynamic leader-follower range iterators:

 AdvancedIters chapter of language specification

33

 Chapel avoids locking crucial implementation
decisions into the language specification
 local and distributed array implementations

 parallel loop implementations

 Instead, these can be…
…specified in the language by an advanced user

…swapped in and out with minimal code changes

 The result separates the roles of domain scientist,
parallel programmer, and implementation cleanly

34

 Multiresolution Language Design Philosophy

 User-Defined Parallel Iterators, Layouts, and Distributions

 Distinct Concepts for Parallelism and Locality

 Multithreaded Execution Model

 Unification of Data- and Task-Parallelism

 Productive Base Language Features

 type inference, iterators, tuples, ranges

 Portable Design, Open-Source Implementation

 Yet, able to take advantage of HW-specific capabilities

 Helped revitalize Community Interest in Parallel Languages

Consider:
 Most HPC languages couple parallelism and locality

 e.g., I can’t create parallelism in MPI/UPC without also introducing locality

 Or, they don’t support a concept for locality at all
 e.g., OpenMP (though it’s working on improving this)

Yet these are distinct, important things!
(and, getting more important with time)

 parallelism: “Please execute these at the same time”

 locality: “Do this here rather than there”

For this reason, Chapel supports distinct concepts
 parallelism: tasks

 locality: locales

36

37

cobegin { // creates a task per child statement

 producer(1);

 producer(2);

 consumer(1);

} // logical join of the three tasks here

Definition:
 Abstract unit of target architecture

 Supports reasoning about locality

 Capable of running tasks and storing variables
 i.e., has processors and memory

Typically: A compute node (multi-core processor or SMP node)

38

 Specify # of locales when running Chapel programs

 Chapel provides built-in locale variables

39

% a.out --numLocales=8

config const numLocales: int = …;

const Locales: [0..#numLocales] locale = …;

L0 L1 L2 L3 L4 L5 L6 L7 Locales:

% a.out –nl 8

 Locale methods support queries about target system:

 On-clauses support placement of computations:

40

proc locale.physicalMemory(…) { … }

proc locale.numCores { … }

proc locale.id { … }

proc locale.name { … }

writeln(“on locale 0”);

on Locales[1] do

 writeln(“now on locale 1”);

writeln(“on locale 0 again”);

cobegin {

 on A[i,j] do

 bigComputation(A);

 on node.left do

 search(node.left);

}

Concept:
 Today, Chapel supports a 1D array of locales

 users can reshape/slice to suit their computation’s needs

41

locale

locale

locale

locale

Concept:
 Today, Chapel supports a 1D array of locales

 users can reshape/slice to suit their computation’s needs

 Apart from queries, no further visibility into locales
 no mechanism to refer to specific NUMA domains, processors, memories, …

 assumption: compiler, runtime, OS, HW can handle intra-locale concerns

 Supports horizontal (inter-node) locality well
 but not vertical (intra-node)

42

locale

locale

locale

locale

Motivation

Chapel Background

Hierarchical Locales in Chapel

 Challenges, Status, and Summary

43

Concept:
 Support locales within locales to describe architectural

sub-structures within a node

 As with traditional locales, on-clauses and domain maps
will be used to map tasks and variables to a sub-locale’s
memory and processors

 Locale structure is defined using Chapel code
 permits architectural descriptions to be specified in-language

 introduces a new Chapel role: architectural modeler

 44

locale

locale

locale

locale

sub-locale A

sub-locale B

sub-locale A

sub-locale B

sub-locale A

sub-locale B

sub-locale A

sub-locale B

C C D E C C D E C C D E C C D E

class locale: AbstractLocale {

 const xt = 6, yt = xTiles;

 const sublocGrid: [0..#xt, 0..#yt] tiledLoc = …;

 …memory interface…

 …tasking interface…

}

class tiledLoc: AbstractLocale {

 …memory interface…

 …tasking interface…

}

45
Tilera Tile-Gx

class locale: AbstractLocale {

 const numCPUs = 2, numGPUs = 2;

 const cpus: [0..#numCPUs] cpuLoc = …;

 const gpus: [0..#numGPUs] gpuLoc = …;

 …memory interface…

 …tasking interface…

}

class cpuLoc: AbstractLocale { … }

class gpuLoc: AbstractLocale {

 …sublocales for different

 memory types, thread blocks…?

 …memory, tasking interfaces…

}
46

47

Memory Interface:
proc AbstractLocale.malloc(size_t size) { … }

proc AbstractLocale.realloc(size_t size) { … }

proc AbstractLocale.free(size_t size) { … }

…

Tasking Interface:
proc AbstractLocale.taskBegin(…) { … }

proc AbstractLocale.tasksCobegin(…) { … }

proc AbstractLocale.tasksCoforall(…) { … }

…

In practice, we expect the guts of these to be implemented via
calls out to external C routines

Memory Policy Questions:
 If a sublocale is out of memory, what happens?

 out-of-memory error?

 allocate elsewhere? sibling? parent? somewhere else? (on-node v. off?)

 What happens on locales with no memory?
 illegal? allocate on sublocale? somewhere else?

Tasking Policy Questions:
 Can a task that’s placed on a specific sublocale migrate?

 to where? sibling? parent? somewhere else?

 What happens on locales with no processors?
 illegal? allocate on sublocale? parent locale?

 using what heuristic? sublocale[0]? round-robin? dynamic load balance?

Goal: Any of these policies should be possible
48

49

Q: What happens to tasks on locales with no (direct) processors?

e.g., a locale that serves as a container for other sublocales

on “multicore NUMA Node” do begin foo()

50

Q: What happens to tasks on locales with no (direct) processors?

e.g., a locale that serves as a container for other sublocales

A1: Run on a fixed or arbitrary sublocale?

proc NUMANode.taskBegin(…) {

 numaDomain[0].taskBegin(…);

}

51

Q: What happens to tasks on locales with no (direct) processors?

e.g., a locale that serves as a container for other sublocales

A2: Schedule round-robin?

proc NUMANode.taskBegin(…) {

 const subloc = (nextSubLoc.fetchAdd(1))%numSubLocs;

 numaDomain[subloc].taskBegin(…);

}

class NUMANode {

 …

 var nextSubLoc: atomic int;

 …

}

52

Q: What happens to tasks on locales with no (direct) processors?

e.g., a locale that serves as a container for other sublocales

A3: Dynamically Load Balance?

proc NUMANode.taskBegin(…) {

 numaDomain[getBestSubLoc()].taskBegin(…);

}

proc NUMANode.getBestSubLoc() {

 const (numTasks, subloc)

 = minloc reduce (numaDomain.numTasks(),

 0..#numSubLocs);

 return subloc;

}

53

Q: What happens to tasks on locales with no processors?

e.g., a sublocale representing a memory resource

locale

CPU
sublocale

GPU sublocale

C C D E

on “Texture Memory” do begin foo()

54

Q: What happens to tasks on locales with no processors?

e.g., a sublocale representing a memory resource

A1: Throw an error?

proc TextureMemLocale.taskBegin(…) {

 halt(“You can’t run tasks on texture memory!”);

}

Downside: potential user inconvenience:

on Locales[2].gpuLoc.texMem do var X: [1..n, 1..n] int;

on X[i,j] do begin refine(X);

55

Q: What happens to tasks on locales with no processors?

e.g., a sublocale representing a memory resource

A2: Defer to parent?

proc TextureMemLocale.taskBegin(…) {

 parentLocale.taskBegin(…);

}

56

Q: What happens to tasks on locales with no processors?

e.g., a sublocale representing a memory resource

A3: Or perhaps just run directly near memory?

proc TextureMemLocale.taskBegin(…) {

 extern proc chpl_task_create_GPU_Task(…);

 chpl_task_create_GPU_Task(…);

}

Related work:
 Sequoia (Aiken et al., Stanford)

 Hierarchical Place Trees (Sarkar et al., Rice)

Differences:
 Hierarchy only impacts locality, not semantics as in Sequoia

 analogous to PGAS languages vs. distributed memory

 No restrictions as to what HW must live in what node
 e.g., no “processors must live in leaf nodes” requirement

 Does not impose a strict abstract tree structure
 e.g., const sublocGrid: [0..#xt, 0..#yt] tiledLoc = …;

 User-specifiable concept
 convenience of specifying within Chapel

 mapping policies can be defined in-language

57

Motivation

Chapel Background

Hierarchical Locales in Chapel

Challenges, Status, and Summary

58

Locale ID/wide pointer representation: Simple integer
ID no longer suffices

Representation of ‘here’: Global integer in generated C
code no longer suffices

 ‘here’ must become task-private since different tasks will
have different sublocales at a given time

Communication Generation: A function of two locale
types, not one

(and they may not be known at compile-time)

59

Portability: Chapel code that refers to sub-locales can
cause problems on systems with a different model

Mitigation Strategies
 Well-designed domain maps should buffer many typical

users from these challenges

 We anticipate identifying a few broad classes of locales that
characterize broad swaths of machines “well enough”

 More advanced runtime designs and compiler work could
help guard most task-parallel users from this level of detail

 Not a Chapel-specific challenge, fortunately

Code Generation: Dealing with targets for which C is
not the language of choice (e.g., CUDA)

60

Platform: multicore nodes with several NUMA domains

Approach:
 two-level locale structure

 outer: Complete node

 inner: NUMA domain

 (exposing cores/memories seems like overkill for now)

 Qthreads shepherd per NUMA domain for tasking

Why? Simple initial exercise with practical impact

Initial Goal: Support NUMA-aware STREAM Triad

61

Platform: Tilera tiled processor

Approach:
 2-to-3 level locale structure

 outer: Tiled processor

 inner: OS instance (can be configured at various granularities)

 potential for creating a sublocale per tile as well

Why? More interesting example w/ user interest
 reconfigurability, 2D layout particularly interesting

Initial Goal: Run Chapel codes using various Tilera
configurations
 ideally, with single Chapel locale definition file

62

Platform: Cluster of CPU+GPU Nodes

Approach:
 3-to-4 level locale structure

 outer: Network

 next: Compute Node

 next: CPU vs. GPU

 inner (potentially): distinct processor cores/memories (?)

Why? Look at #1 on the top-500
 provide a unified alternative to MPI+X

Initial Goal:
 Run some traditional CPU+GPU codes on one node

 Port some CPU+GPU cluster codes to Chapel

63

locale

CPU
sublocale

GPU sublocale

C C D E

 Proof-of-Concept draft up and running

 Working on merging concept into trunk

 Next Steps:
 Get code into trunk

 Ensure performance for traditional architectures isn’t
unduly effected

 Port and study sample application codes

64

Represent physical machine as a hierarchical locale and
represent user’s locales as a slice of that hierarchy

 for topology-aware programming

 for jobs with dynamically-changing resource requirements
 due to changing job needs

 or failing HW

Combine with containment domains (Erez, UT Austin)
 the two concepts seem well-matched for each other

65

Next-generation nodes will likely present challenges

Chapel is better placed than current HPC languages
 Hierarchical locales should help with intra-node concerns

Hierarchical Locales have some attractive properties

 Defined in Chapel, potentially by users

 Support policy decisions

 Relaxes hard-coding of interfaces in compiler

Specification and implementation effort is underway

 Yet more work remains

66

67

In a nutshell:
 Most features work at a functional level

 Many performance optimizations remain
 particularly for distributed memory (multi-locale) execution

This is a good time to:
 Try out the language and compiler

 Use Chapel for non-performance-critical projects

 Give us feedback to improve Chapel

 Use Chapel for parallel programming education

68

 In teaching parallel programming, I like to cover:
 data parallelism

 task parallelism

 concurrency

 synchronization

 locality/affinity

 deadlock, livelock, and other pitfalls

 performance tuning

 …

 I don’t think there’s been a good language out there…
 for teaching all of these things

 for teaching some of these things well at all

 until now: We believe Chapel can potentially play a crucial role here

69

http://chapel.cray.com/education.html
http://cs.washington.edu/education/courses/csep524/13wi/
http://cs.washington.edu/education/courses/csep524/13wi/
http://cs.washington.edu/education/courses/csep524/13wi/

 Ramp up staffing

 Fill gaps in the language design
 exception handling, task teams, interoperability, RAII, OOP, …

 Address heterogeneous compute nodes
 hierarchical locales to support GPUs, Intel MIC

 User-driven performance improvements
 Scalar idioms, communication optimizations, memory leaks

 Work on transitioning governance to external entity
 e.g., “The Chapel Foundation”

70

Chapel project page: http://chapel.cray.com
 overview, papers, presentations, language spec, …

Chapel SourceForge page: https://sourceforge.net/projects/chapel/

 release downloads, public mailing lists, code repository, …

Chapel Background:

 A Brief Overview of Chapel (chapter pre-print)

 The State of the Chapel Union (CUG 2013)

 [Ten] Myths About Scalable Programming Languages:
 https://www.ieeetcsc.org/activities/blog/

Mailing Lists:
chapel_info@cray.com: contact the team
chapel-users, chapel-education, chapel-developers: SourceForge discussion lists

71

http://chapel.cray.com/
https://sourceforge.net/projects/chapel/
http://chapel.cray.com/papers/BriefOverviewChapel.pdf
http://chapel.cray.com/papers/ChapelCUG13.pdf
https://www.ieeetcsc.org/activities/blog/
https://www.ieeetcsc.org/activities/blog/

http://sourceforge.net/projects/chapel/ http://chapel.cray.com chapel_info@cray.com

http://sourceforge.net/projects/chapel/
http://chapel.cray.com/
mailto:chapel-info@cray.com

