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Hierarchical Locales:
Exposing Node-Level Locality in Chapel

Brad Chamberlain, Chapel Team, Cray Inc.
UIUC, May 16, 2013
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STREAM Triad: a trivial parallel computation
Given: m-element vectors A, B, C
Compute: Vi € 1.m, A, =B, + a-C,

In pictures, in parallel (distributed memory multicore):
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STREAM Triad: MPI

#include <hpcc.h>

static int VectorSize;
statie coulsle &, g, “Ep

int HPCC StarStream (HPCC Params *params) {
int myRank, commSize;
int rv, errCount;
MPI Comm comm = MPI COMM WORLD;

MPI Comm size( comm, &commSize );

MPI Comm rank( comm, &myRank );

rv = HPCC Stream( params, 0 == myRank);

MPI Reduce( &rv, &errCount, 1, MPI INT, MPI SUM,
0, comm );

return errCount;

}

int HPCC Stream(HPCC Params *params,
register int j;
double scalar;

VectorSize = HPCC LocalVectorSize ( params,
sizeof (double), 0 );

a = HPCC XMALLOC ( double, VectorSize );
HPCC XMALLOC ( double, VectorSize );
¢ = HPCC XMALLOC ( double, VectorSize );

o
I

@z;:a

int doIO)

3,

{
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if (la || 'b || l'c) {

if (c) HPCC free(c);
if (b) HPCC free(b);
if (a) HPCC free(a)
if (doIO) {

fprintf ( outFile, "Failed to allocate memory
(%d) .\n", VectorSize );

fclose( outFile );

’

’

}

return 1;

for (j=0; j<VectorSize; j++) {
b[j]l = 2.0;
NS0, 05

}

scalar = 3.0;

for (j=0; j<VectorSize; j++)
alj] = b[jl+tscalar*c[]];

EPCC ftree (@) ¢
HRCECl freei(b) ;
EIPCIC free (@) ¢

return 0;



STREAM Triad: MPI+OpenMP

#include <hpcc.h>
#ifdef OPENMP
#include <omp.h>
#endif

static int VectorSize;
statie coulsle &, g, “Ep
int HPCC StarStream (HPCC Params *params) {
int myRank, commSize;
int rv, errCount;

MPI Comm comm = MPI COMM WORLD;

&commSize ) ;
&myRank ) ;

MPI Comm size( comm,
MPI Comm rank( comm,

rv = HPCC Stream( params,
MPI Reduce( &rv, &errCount, 1,
0, comm );

0 == myRank) ;
MPI INT, MPI SUM,

return errCount;

}

int HPCC Stream(HPCC Params *params,
register int j;
double scalar;

int doIO) {

VectorSize = HPCC LocalVectorSize( params, 3,
sizeof (double), 0 );

a = HPCC XMALLOC ( double, VectorSize );
b = HPCC XMALLOC ( double, VectorSize );
¢ = HPCC XMALLOC ( double, VectorSize );

@z;:a

[ ]
| -

’

if (ta || 'b || 'c) |
if (c) HPCC free(c)
if (b) HPCC free(b);
if (a) HPCC free(a)
if (doIO) {
fprintf ( outFile,
(%d) . \n"r
fclose (
}

return 1;

’

VectorSize );
outFile );

}

#ifdef OPENMP
#pragma omp parallel for
#endif

for (j=0; j<VectorSize; j++)
b[j] = 2.0;
IS =005

}

scalar = 3.0;

#ifdef OPENMP
#pragma omp parallel for
fendif
for (3=0;
26—

j<VectorSize; j++)
b[jl+scalar*c[]];

EPCC ftree (@) ¢
HRCECl freei(b) ;
EIPCIC free (@) ¢

return 0;
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"Failed to allocate memory

{



STREAM Triad: MPI1+OpenMP vs. CUDA

I [ ] I [ ]
#include <hpcc.h> III'IIII II;II II;II IIII'III
#ifdef OPENMP
= e ettt il 1rg
#include <omp.h>

static int VectorSize; — — — —
static double *a, *b, *c; . I . I . I .
] [ ] (]

int HPCC_StarStream (HPCC_Params *params) ({

int myRank, commSize;

int rv, errCount;

MPI Comm comm = MPI_COMM WORLD;

MPI Comm_ size( comm, &commSize );

MPI Comm_ rank( comm, &myRank );

rv = HPCC_Stream( params, 0 == myRank);

MPI Reduce( &rv, &errCount, 1, MPI INT, MPI SUM, 0, comm );
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#define N 2000000 lll:ll ||:|| ||:|| II:III
int main() { #
float *d a, *d b, *d c; a'rs:ra!a

float scalar;

sizeof (float) *N) ;
sizeof (float) *N)
sizeof (float) *N)

cudaMalloc ((void**) &d a,
cudaMalloc ((void**) &d b,
cudaMalloc ((void**) &d c,

~e

~e

HPC suffers from too many distinct notations for expressing parallelism and locality

register 1nt Jj;
double scalar;

VectorSize = HPCC_LocalVectorSize( params, 3, sizeof (double), 0 );

a HPCC_XMALLOC ( double, VectorSize

= ;
b = HPCC_XMALLOC( double, VectorSize );
c = HPCC_XMALLOC( double, VectorSize );
if (la || !'B || !e) {

if (c) HPCC_free(c):

if (b) HPCC_free(b);

if (a) HPCC_free(a);

if (doIO) {
fprintf( outFile, "Failed to allocate memory
fclose( outFile );

}

return 1;

}

#ifdef _OPENMP
#pragma omp parallel for

#endif
for (j=0; j<VectorSize; j++) {
b[j] = 2.0;
c[jl = 0.0;

}
scalar = 3.0;

#ifdef _OPENMP
#pragma omp parallel for
#endif
o (30
aljl

BICC EeEE (@) F
HPCC_free (b) ;
[HECCIRERESI(ANE?

return 0;

}

@z;:a

(%d) .\n", VectorSize

)i

__global

.5f,
.5f,

N) ;
N) ;

set array<<<dimGrid,dimBlock>>>(d b,
set array<<<dimGrid,dimBlock>>>(d c,

scalar=3.0f;
STREAM Triad<<<dimGrid,dimBlock>>>(d b, d c,
cudaThreadSynchronize () ;

d a, scalanr, S SNi)¥

cudaFree(d a);

cudaFree(d b);

cudaFree(d c);

void set array(float *a, float value, int len) {
int idx = threadIdx.x + blockIdx.x * blockDim.x;

if (idx < len) a[idx] = value;

__global  void STREAM Triad( float *a, float *b, float *c,
float scalar, int len) {
int idx = threadIdx.x + blockIdx.x * blockDim.x;

if (idx < len) cl[idx] = a[idx]+scalar*b[idx];



Why so many programming models?

HPC has traditionally given users...
...low-level, control-centric programming models
...ones that are closely tied to the underlying hardware
...ones that support only a single type of parallelism

Examples:
Type of HW Parallelism Programming Model Unit of Parallelism
Inter-node MPI executable
Intra-node/multicore OpenMP/pthreads iteration/task
Instruction-level vectors/threads  pragmas iteration
GPU/accelerator CUDA/OpenCL/OpenAcc  SIMD function/task

benefits: lots of control; decent generality; easy to implement
downsides: lots of user-managed detail; brittle to changes



STREAM Triad: MPI1+OpenMP vs. CUDA

I [ ] I [ ]
#include <hpcc.h> III'IIII II;II II;II IIII'III
#ifdef OPENMP
= e ettt il 1rg
#include <omp.h>

static int VectorSize; — — — —
static double *a, *b, *c; . I . I . I .
] [ ] (]

int HPCC_StarStream (HPCC_Params *params) ({

int myRank, commSize;

int rv, errCount;

MPI Comm comm = MPI_COMM WORLD;

MPI Comm_ size( comm, &commSize );

MPI Comm_ rank( comm, &myRank );

rv = HPCC_Stream( params, 0 == myRank);

MPI Reduce( &rv, &errCount, 1, MPI INT, MPI SUM, 0, comm );
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#define N 2000000 lll:ll ||:|| ||:|| II:III
int main() { #
float *d a, *d b, *d c; a'rs:ra!a

float scalar;

sizeof (float) *N) ;
sizeof (float) *N)
sizeof (float) *N)

cudaMalloc ((void**) &d a,
cudaMalloc ((void**) &d b,
cudaMalloc ((void**) &d c,

~e

~e

HPC suffers from too many distinct notations for expressing parallelism and locality

register 1nt Jj;
double scalar;

VectorSize = HPCC_LocalVectorSize( params, 3, sizeof (double), 0 );

a HPCC_XMALLOC ( double, VectorSize

= ;
b = HPCC_XMALLOC( double, VectorSize );
c = HPCC_XMALLOC( double, VectorSize );
if (la || !'B || !e) {

if (c) HPCC_free(c):

if (b) HPCC_free(b);

if (a) HPCC_free(a);

if (doIO) {
fprintf( outFile, "Failed to allocate memory
fclose( outFile );

}

return 1;

}

#ifdef _OPENMP
#pragma omp parallel for

#endif
for (j=0; j<VectorSize; j++) {
b[j] = 2.0;
c[jl = 0.0;

}
scalar = 3.0;

#ifdef _OPENMP
#pragma omp parallel for
#endif
o (30
aljl

BICC EeEE (@) F
HPCC_free (b) ;
[HECCIRERESI(ANE?

return 0;

}

@z;:a

(%d) .\n", VectorSize

)i

__global

.5f,
.5f,

N) ;
N) ;

set array<<<dimGrid,dimBlock>>>(d b,
set array<<<dimGrid,dimBlock>>>(d c,

scalar=3.0f;
STREAM Triad<<<dimGrid,dimBlock>>>(d b, d c,
cudaThreadSynchronize () ;

d a, scalanr, S SNi)¥

cudaFree(d a);

cudaFree(d b);

cudaFree(d c);

void set array(float *a, float value, int len) {
int idx = threadIdx.x + blockIdx.x * blockDim.x;

if (idx < len) a[idx] = value;

__global  void STREAM Triad( float *a, float *b, float *c,
float scalar, int len) {
int idx = threadIdx.x + blockIdx.x * blockDim.x;

if (idx < len) cl[idx] = a[idx]+scalar*b[idx];



STREAM Triad: Chapel
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1000,
3.0;

config const m =
alpha =

const ProblemSpace =

{l..m} dmapped ..; '

' the special

MPL Red o sauce
o var A, B, C: [ProblemSpace] real;
T B =2.0;
alvec N)
nl - C = 3.0,’ N)
i | A =B + alpha * C,' ¢, d a, scalar, N);
LR — —~——
| | | | | | | | |
OO | | | | O | | D
OO || e | | e || et
OO I D || O T I IO | | CE I I (| GT ST ITITIT I m (| 0
o o | srei1 e @ || @81 @181 @ |

=it

B Philosophy: Good language design can tease details of locality and

| parallelism away from an algorithm, permitting the compiler, runtime,

applied scientist, and HPC expert to each focus on their strengths.
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A Chapel Goal: General Parallel Programming

With a unified set of concepts...

...express any parallelism desired in a user’s program
o Styles: data-parallel, task-parallel, concurrency, nested, ...
e Levels: model, function, loop, statement, expression

...target all parallelism available in the hardware
e Types: machines, nodes, cores, instructions

Style of HW Parallelism Programming Model Unit of Parallelism
Inter-node Chapel executable/task
Intra-node/multicore Chapel iteration/task
Instruction-level vectors/threads  Chapel iteration
GPU/accelerator Chapel SIMD
function/task




Prototypical Next-Gen Processor Technologies
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2 UART, 2 USB DDR3 Controller
JTAG, P’C, SPI —

PCle 2.0 - 8 Lanes

PCle 2.0 - 4 Lanes
PCle 2.0 - 4 Lanes

Flexible 1/0 DDR3 Controller

Nvidia Echelon Tilera Tile-Gx

<es: http://download.intel.com/pressroom/images/Aubrey_lIsle_die.jpa, http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
:/linsidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/,

http://tilera.com/sites/default/files/productbriefs/Tile-Gx%203036%20SB012-01.pdf
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General Characteristics of These Architectures

* Increased hierarchy and/or sensitivity to locality

* Potentially heterogeneous processor/memory types

= Next-gen programmers will have a lot more to
think about at the node level than in the past

CHAREL

B
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Next-Gen Programming Model Wishlist

performance: (naturally)
portability: specifically, to/between next-generation architectures
programmability features: because you know you want them

general parallelism:
data parallelism: to take advantage of SIMD HW units; for simplicity
task parallelism: for asynchronous computations; data-driven algorithms
varying granularities/nestings: for algorithmic and architectural generality

locality control: to tune for locality/affinity across the machine
(inter- and intra-node)

resilience-/energy-aware features: to deal with emerging issues at
system scale

user extensibility: to be ready for next-generation unknowns
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Next-Gen Scorecard for HPC Programming Models

Fortran C/C++ MPI OpenMP UPC

performance

portability (to next-gen)

programmability

data parallelism

task parallelism

parallel nesting/granularities

locality control

resilience

energy-awareness

user-extensibility
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Next-Gen Scorecard for HPC Programming Models

Fortran C/C++ MPI OpenMP UPC
performance v v v v ~

portability (to next-gen)

programmability

data parallelism

task parallelism

parallel nesting/granularities

locality control

resilience

energy-awareness

user-extensibility




Next-Gen Scorecard for HPC Programming Models
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Fortran C/C++ MPI OpenMP UPC
performance v v v v ~
portability (to next-gen) v v

programmability

data parallelism

task parallelism

parallel nesting/granularities

locality control

resilience

energy-awareness

user-extensibility
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Next-Gen Scorecard for HPC Programming Models

Fortran C/C++ MPI OpenMP UPC
performance v v v v ~

~ ~ ~

portability (to next-gen) v

programmability X ~ X

4

data parallelism

task parallelism

x| X

parallel nesting/granularities

4

locality control

resilience

energy-awareness

X [ X | X | X | X ]| X

X [ X | X[ X |X|[X|X|X|\
X | X | X | X

X | X | X

user-extensibility




Chapel: Well-Positioned for Next-Gen

A PEL

EEEEEEEEEEEEEEEEEEEEEEE

performance

*

portability (to next-gen)

programmability

data parallelism

task parallelism

NSNS S

parallel nesting/granularities

*

locality control

resilience X

energy-awareness X

user-extensibility v

* (The work in this talk is designed to address these items)
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v Motivation
» Chapel Background
e Hierarchical Locales in Chapel

e Challenges, Status, and Summary
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* An emerging parallel programming language

e Design and development led by Cray Inc.
e in collaboration with academia, labs, industry

e |nitiated under the DARPA HPCS program

e Overall goal: Improve programmer productivity
e Improve the programmability of parallel computers
e Match or beat the performance of current programming models
e Support better portability than current programming models
e Improve the robustness of parallel codes

e A work-in-progress
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Chapel's Implementation

e Being developed as open source at SourceForge
e Licensed as BSD software

e Target Architectures:
e Cray architectures
e multicore desktops and laptops
e commodity clusters
e systems from other vendors
* in-progress: CPU+accelerator hybrids, manycore, ...



Chapel’s Greatest Hits under HPCS

Multiresolution Language Design Philosophy
User-Defined Parallel Iterators, Layouts, and Distributions
Distinct Concepts for Parallelism and Locality
Multithreaded Execution Model

Unification of Data- and Task-Parallelism

Productive Base Language Features
e type inference, iterators, tuples, ranges

Portable Design, Open-Source Implementation
* Yet, able to take advantage of HW-specific capabilities

Helped revitalize Community Interest in Parallel Languages
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Chapel’s Greatest Hits under HPCS

> Multiresolution Language Design Philosophy

User-Defined Parallel Iterators, Layouts, and Distributions
Distinct Concepts for Parallelism and Locality
Multithreaded Execution Model

Unification of Data- and Task-Parallelism

Productive Base Language Features
e type inference, iterators, tuples, ranges

Portable Design, Open-Source Implementation
e Yet, able to take advantage of HW-specific capabilities

Helped revitalize Community Interest in Parallel Languages
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Multiresolution Design: Motivation

Kl — High-Level
I/ Abstractions

Implementation OpenMP
Concepts

Target Machine Target Machine

“‘Why is everything so tedious/difficult?”

Low-Level

“‘Why don'’t | have more control?”
“‘Why don’t my programs port trivially?”
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Multiresolution Design

Multiresolution Design: Support multiple tiers of features
higher levels for programmability, productivity
lower levels for greater degrees of control

Chapel language concepts

C o

Domain Maps

Base Language
Locality Control

Target Machine

build the higher-level concepts in terms of the lower

e examples: array distributions and layouts; forall loop implementations

permit the user to intermix layers arbitrarily
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Data Parallelism Implementation Qs

Q1: How are arrays laid out in memory?

Are regular arrays laid out in row- or column-major order? Or...?

o e > = |77 |~» mall | I | Imdl | Ima
P IS ESIEIIEIIES 2
. s o LT {5 = ad | Ed | Ed B2 “. s
— |I> A P4 < S <y <>

How are sparse arrays stored? (COO, CSR, CSC, block-structured, ...?)

Q2: How are arrays stored by the locales?

Completely local to one locale? Or distributed?

If distributed... In a blocked manner? cyclically? block-cyclically?
recursively bisected? dynamically rebalanced? ...?

e EEL
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Data Parallelism Implementation Qs

Q1: How are arrays laid out in memory?
Are regular arrays laid out in row- or column-major order? Or...?

——t= > -z |7 |77 |=» nd | iInd | Imall | s
] e i NS4S 1113113 S
R s e i o = ¥ l> mdl | md | Ed | s =
w1 [ | £ | | S ESIESIEIIES

How are sparse arrays stored? (COO, CSR, CSC, block-structured, ...?)

Q2: How are arrays stored by the locales?

Completely local to one locale? Or distributed?

If distributed... In a blocked manner? cyclically? block-cyclically?
recursively bisected? dynamically rebalanced? ...?

Chapel's domain maps are designed to give the
user full control over such decisions
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Domain Maps

Domain maps are “recipes” that instruct the compiler
how to map the global view of a computation...

(LTI I T I +
o TTTTTTTTIIITTITITI I I T I I T]

A =B + alpha * C;

...to the target locales” memory and processors:
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Chapel’s Domain Map Philosophy

1. Chapel provides a library of standard domain maps
* to support common array implementations effortlessly

2. Advanced users can write their own domain maps in Chapel
e to cope with shortcomings in our standard library

s Domain Maps )

Base Language

Locality Control

3. Chapel’s standard domain maps are written using the same
end-user framework
* to avoid a performance cliff between “built-in” and user-defined cases



STREAM Triad: Chapel
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1000,
3.0;

config const m =
alpha =

const ProblemSpace =

{l..m} dmapped ..; '

' the special

MPL Red o sauce
o var A, B, C: [ProblemSpace] real;
T B =2.0;
alvec N)
nl - C = 3.0,’ N)
i | A =B + alpha * C,' ¢, d a, scalar, N);
LR — —~——
| | | | | | | | |
OO | | | | O | | D
OO || e | | e || et
OO I D || O T I IO | | CE I I (| GT ST ITITIT I m (| 0
o o | srei1 e @ || @81 @181 @ |

=it

B Philosophy: Good language design can tease details of locality and

| parallelism away from an algorithm, permitting the compiler, runtime,

applied scientist, and HPC expert to each focus on their strengths.
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For More Information on Domain Maps

HotPAR’10: User-Defined Distributions and Layouts in Chapel:
Philosophy and Framework
Chamberlain, Deitz, Iten, Choi; June 2010

CUG 2011: Authoring User-Defined Domain Maps in Chapel
Chamberlain, Choi, Deitz, Iten, Litvinov; May 2011

Chapel release:
e Technical notes detailing domain map interface for programmers:
SCHPL_HOME/doc/technotes/README.dsi
e Current domain maps:
SCHPL_HOME/modules/dists/*.chpl
layouts/*.chpl
internal/Default*.chpl
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More Data Parallelism Implementation Qs

Q1: How are parallel loops implemented?
forall 1 in B.domain do B[i] = 1i/10.0;
forall ¢ in C do ¢ = 3.0; 1
How many tasks? Where do they execute?

How is the iteration space divided between the tasks?

Q2: How are parallel zippered loops implemented?
forall (a,b,c) in zip(A,B,C) do
a = b + alpha * c;

Particularly given that the iterands might have incompatible
distributions, memory layouts, and parallelization strategies
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More Data Parallelism Implementation Qs

Q1: How are parallel loops implemented?
forall i in B.domain do B[i] = 1/10.0;
forall ¢ in C do ¢ = 3.0; 1
How many tasks? Where do they execute?
How is the iteration space divided between the tasks?

Q2: How are parallel zippered loops implemented?
forall (a,b,c) in zip(A,B,C) do
a = b + alpha * c¢;

Particularly given that the iterands might have incompatible
distributions, memory layouts, and parallelization strategies

Chapel’s leader-follower iterators are designed to

give users full control over such decisions
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For More Information on Leader-Follower Iterators

PGAS 2011: User-Defined Parallel Zippered Iterators in Chapel,
Chamberlain, Choi, Deitz, Navarro; October 2011

Chapel release:
e Primer example introducing leader-follower iterators:
o examples/primers/leaderfollower.chpl

e Library of dynamic leader-follower range iterators:

e Advancediters chapter of language specification
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Multiresolution Programming: Summary

e Chapel avoids locking crucial implementation
decisions into the language specification
* |ocal and distributed array implementations
e parallel loop implementations

e |[nstead, these can be...

...specified in the language by an advanced user
...swapped in and out with minimal code changes

e The result separates the roles of domain scientist,
parallel programmer, and implementation cleanly



_ B
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Chapel’s Greatest Hits under HPCS | —

e Multiresolution Language Design Philosophy

e User-Defined Parallel Iterators, Layouts, and Distributions
> Distinct Concepts for Parallelism and Locality

e Multithreaded Execution Model

¢ Unification of Data- and Task-Parallelism

e Productive Base Language Features
e type inference, iterators, tuples, ranges

e Portable Design, Open-Source Implementation
e Yet, able to take advantage of HW-specific capabilities

- @ Helped revitalize Community Interest in Parallel Languages
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Distinct Concepts for Parallelism and Locality

Consider:

* Most HPC languages couple parallelism and locality
e e.g., | can’t create parallelism in MPI/UPC without also introducing locality

e Or, they don’t support a concept for locality at all
e e.g., OpenMP (though it’s working on improving this)

Yet these are distinct, important things!
(and, getting more important with time)
e parallelism: “Please execute these at the same time”
e |ocality: “Do this here rather than there”

For this reason, Chapel supports distinct concepts
e parallelism: tasks
* |ocality: locales
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Task Parallelism Example: Cobegin Statements

cobegin { // creates a task per child statement )
producer (1) ;
producer (2) ;
consumer (1) ;

} // logical join of the three tasks here
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The Locale Type

Definition:
e Abstract unit of target architecture
e Supports reasoning about locality

e Capable of running tasks and storing variables
e j.e., has processors and memory

Typically: A compute node (multi-core processor or SMP node)
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Defining Locales

e Specify # of locales when running Chapel programs

$ a.out ——numLocales=8] $ a.out —nl 8]

e Chapel provides built-in locale variables

config const numlLocales: int = ..;
const Locales: [0..#numLocales] locale = ..;
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Locale Operations

e Locale methods support queries about target system:

proc locale.physicalMemory(..) { .. }\
proc locale.numCores { .. }

proc locale.id { .. }

proc locale.name { .. }

e On-clauses support placement of computations:

writeln (Y“on locale 07); "\ | cobegin { I
on A[1,]] do
on Locales[1l] do bigComputation (A) ;

writeln (“now on locale 1”);
on node.left do

writeln (“on locale 0 again”); search (node.left);
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Locales Today

Concept:

Today, Chapel supports a 1D array of locales
e users can reshape/slice to suit their computation’s needs

locale locale locale locale




Locales Today

Concept:

Today, Chapel supports a 1D array of locales
e users can reshape/slice to suit their computation’s needs
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locale

locale

locale

locale

Apart from queries, no further visibility into locales

* no mechanism to refer to specific NUMA domains, processors, memoaories, ...

e assumption: compiler, runtime, OS, HW can handle intra-locale concerns

Supports horizontal (inter-node) locality well
e but not vertical (intra-node)
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Current Work: Hierarchical Locales

Concept:

Support locales within locales to describe architectural
sub-structures within a node

sub-locale A sub-locale A sub-locale A sub-locale A
C||C||ID||E C||C||ID||E C||C||ID||E C||C||ID||E
sub-locale B sub-locale B sub-locale B sub-locale B
locale locale locale locale

As with traditional locales, on-clauses and domain maps
will be used to map tasks and variables to a sub-locale’s
memory and processors

Locale structure is defined using Chapel code

e permits architectural descriptions to be specified in-language
e introduces a new Chapel role: architectural modeler
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Sublocales: Tiled Processor Example

class locale: AbstractLocale {
const xt = 6, yt = xTiles;
const sublocGrid: [0..#xt, O0..#yt] tiledLoc = ..;
..memory interface..

..tasking interface..

class tiledlLoc: AbstractlLocale {

0 2 UART, 2 USB DDR3 Controller
..memory interface.. masges |
..tasking interface.. o IHEREE
}
Flexible 1/0 DDR3 Controller L ol
oo Tilera Tile-Gx

CHAREL

B



Sublocales: Hybrid Processor Example

class locale: AbstractLocale {
const numCPUs = 2, numGPUs = 2;
const cpus: [0..#numCPUs] cpuloc
const gpus: [0..#numGPUs] gpuloc
..memory interface..

..tasking interface..

class cpuloc: AbstractLocale { .. }

class gpuloc: AbstractLocale {
..sublocales for different
oy types, threadublocks... ?

..memory, tasking interfaces..

CRANY
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Cray XK6

L0 PROCESSOR
48-Port YARC-2 ROUTER
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Sample tasking/memory interface

Memory Interface:

proc AbstractlLocale.malloc(size t size) { .. }
proc AbstractLocale.realloc(size t size) { .. }

proc AbstractlLocale.free(size t size) { .. }

Tasking Interface:

proc AbstractLocale.taskBegin(..) { .. }
proc AbstractlLocale.tasksCobegin(..) { .. }
proc AbstractlLocale.tasksCoforall(..) { .. }

In practice, we expect the guts of these to be implemented via
calls out to external C routines
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Policy Questions

Memory Policy Questions:
* If a sublocale is out of memory, what happens?

e out-of-memory error?
e allocate elsewhere? sibling? parent? somewhere else? (on-node v. off?)

* What happens on locales with no memory?

e illegal? allocate on sublocale? somewhere else?

Tasking Policy Questions:
e Can a task that’s placed on a specific sublocale migrate?
e to where? sibling? parent? somewhere else?

* What happens on locales with no processors?

e illegal? allocate on sublocale? parent locale?
e using what heuristic? sublocale[0]? round-robin? dynamic load balance?

Goal: Any of these policies should be possible



Tasking Policy Example
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Q: What happens to tasks on locales with no (direct) processors?

e.g., a locale that serves as a container for other sublocales

/ on “multicore NUMA Node” do begin foo()
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Tasking Policy Example

Q: What happens to tasks on locales with no (direct) processors?

e.g., a locale that serves as a container for other sublocales

Al: Run on a fixed or arbitrary sublocale?

proc NUMANode.taskBegin(..) {

numaDomain [0] .taskBegin(...) ;
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Tasking Policy Example

Q: What happens to tasks on locales with no (direct) processors?

e.g., a locale that serves as a container for other sublocales

A2: Schedule round-robin?

proc NUMANode.taskBegin(..) {
const subloc = (nextSubloc.fetchAdd (1)) snumSublLocs;
numaDomain [subloc] .taskBegin(...) ;

class NUMANode {

var nextSubloc: atomic int;
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Tasking Policy Example

Q: What happens to tasks on locales with no (direct) processors?

e.g., a locale that serves as a container for other sublocales

A3: Dynamically Load Balance?

proc NUMANode.taskBegin(..) {

numaDomain [getBestSubLoc () ] .taskBegin(...);

proc NUMANode.getBestSubLoc () {
const (numTasks, subloc)
= minloc reduce (numaDomain.numTasks{(),

0..#numSubLocs) ;

return subloc;
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Another Tasking Policy Example

Q: What happens to tasks on locales with no processors?

e.g., a sublocale representing a memory resource

CPU
—— / on “Texture Memory” do begin foo()
clic|ID||E

GPU sublocale
locale
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Another Tasking Policy Example

Q: What happens to tasks on locales with no processors?

e.g., a sublocale representing a memory resource

Al: Throw an error?

proc TextureMemlLocale.taskBegin (..) {

halt (“You can’t run tasks on texture memory!”);

Downside: potential user inconvenience:

on Locales[2] .gpulLoc.texMem do var X: [l..n, 1..n] int;

on X[i,]j] do begin refine (X);
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Another Tasking Policy Example

Q: What happens to tasks on locales with no processors?

e.g., a sublocale representing a memory resource

A2: Defer to parent?

proc TextureMemlLocale.taskBegin (..) {

parentlLocale.taskBegin(..);



CRANY

THE SUPERCOMPUTER COMPANY

Another Tasking Policy Example

Q: What happens to tasks on locales with no processors?

e.g., a sublocale representing a memory resource

A3: Or perhaps just run directly near memory?

proc TextureMemlLocale.taskBegin (..) {
extern proc chpl task create GPU Task(..);

chpl task create GPU Task(..);



CRANY

THE SUPERCOMPUTER COMPANY

Contrasts with Related Work

Related work:
e Sequoia (Aiken et al., Stanford)
* Hierarchical Place Trees (Sarkar et al., Rice)

Differences:
e Hierarchy only impacts locality, not semantics as in Sequoia
e analogous to PGAS languages vs. distributed memory
* No restrictions as to what HW must live in what node
® e.g., no “processors must live in leaf nodes” requirement
* Does not impose a strict abstract tree structure
® e.g8.,,const sublocGrid: [0..#xt, 0..#yt] tiledLoc = ..;

» User-specifiable concept
e convenience of specifying within Chapel
* mapping policies can be defined in-language
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Hierarchical Locales: Implementation Challenges

Locale ID/wide pointer representation: Simple integer
ID no longer suffices

Representation of ‘here’: Global integer in generated C

code no longer suffices

* ‘here’ must become task-private since different tasks will
have different sublocales at a given time

Communication Generation: A function of two locale

types, not one
(and they may not be known at compile-time)



Hierarchical Locales: Design Challenges

Portability: Chapel code that refers to sub-locales can
cause problems on systems with a different model

Mitigation Strategies

e Well-designed domain maps should buffer many typical
users from these challenges

e We anticipate identifying a few broad classes of locales that
characterize broad swaths of machines “well enough”

* More advanced runtime designs and compiler work could
help guard most task-parallel users from this level of detail

* Not a Chapel-specific challenge, fortunately

Code Generation: Dealing with targets for which C is

not the language of choice (e.g., CUDA)
@:;‘-“.’.



Target 1: NUMA Nodes et

Platform: multicore nodes with several NUMA domains

Approach:

two-level locale structure
e outer: Complete node

e inner: NUMA domain

e (exposing cores/memories seems like overkill for now)

Qthreads shepherd per NUMA domain for tasking
Why? Simple initial exercise with practical impact
Initial Goal: Support NUMA-aware STREAM Triad
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Target 2: Tilera

Platform: Tilera tiled processor

Approach:

e 2-to-3 level locale structure
e outer: Tiled processor

e inner: OS instance (can be configured at various granularities)
e potential for creating a sublocale per tile as well

Why? More interesting example w/ user interest
e reconfigurability, 2D layout particularly interesting
Initial Goal: Run Chapel codes using various Tilera

configurations
* ideally, with single Chapel locale definition file



Target 3: Clusters of CPU-GPU Compute Nodes

HHHHHHHHHHHHHHHHHHHHHHH

CPU
Platform: Cluster of CPU+GPU Nodes sublocale
C||C||ID||E
ApproaCh: GPU sublocale
local
e 3-to-4 level locale structure ocale

e outer: Network

e next: Compute Node

e next: CPU vs. GPU

* inner (potentially): distinct processor cores/memories (?)

Why? Look at #1 on the top-500

e provide a unified alternative to MPI+X

Initial Goal:
e Run some traditional CPU+GPU codes on one node
* Port some CPU+GPU cluster codes to Chapel



Status

e Proof-of-Concept draft up and running

e Working on merging concept into trunk

e Next Steps:
e Get code into trunk

e Ensure performance for traditional architectures isn’t
unduly effected

e Port and study sample application codes
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Longer-term Directions

Represent physical machine as a hierarchical locale and
represent user’s locales as a slice of that hierarchy
e for topology-aware programming

e for jobs with dynamically-changing resource requirements
e due to changing job needs
e or failing HW

Combine with containment domains (Erez, UT Austin)
e the two concepts seem well-matched for each other
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Technical Summary

Next-generation nodes will likely present challenges

Chapel is better placed than current HPC languages
e Hierarchical locales should help with intra-node concerns

Hierarchical Locales have some attractive properties
e Defined in Chapel, potentially by users
e Support policy decisions
e Relaxes hard-coding of interfaces in compiler

Specification and implementation effort is underway

* Yet more work remains



The Chapel Team (Summer 2012)
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Implementation Status -- Version 1.7.0 (apr 2013)

In a nutshell:

e Most features work at a functional level

e Many performance optimizations remain
e particularly for distributed memory (multi-locale) execution

This is a good time to:
e Try out the language and compiler

e Use Chapel for non-performance-critical projects
* Give us feedback to improve Chapel

* Use Chapel for parallel programming education



Chapel and Education

CRANY

THE SUPERCOMPUTER COMPANY

* In teaching parallel programming, | like to cover:

data parallelism

task parallelism

concurrency

synchronization

locality/affinity

deadlock, livelock, and other pitfalls
performance tuning

e | don’t think there’s been a good language out there...

for teaching all of these things
for teaching some of these things well at all
until now: We believe Chapel can potentially play a crucial role here

(see http://chapel.cray.com/education.html for more information and
(= http://cs.washington.edu/education/courses/csep524/13wi/ for my use of Chapel in class)

A PEL
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e Ramp up staffing

e Fill gaps in the language design
e exception handling, task teams, interoperability, RAIl, OOP, ...

e Address heterogeneous compute nodes
e hierarchical locales to support GPUs, Intel MIC

e User-driven performance improvements
e Scalar idioms, communication optimizations, memory leaks

e Work on transitioning governance to external entity
* e.g., “The Chapel Foundation”
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For More Information

Chapel project page: http://chapel.cray.com
* overview, papers, presentations, language spec, ...

ChGpEl SourceForge page: https://sourceforge.net/projects/chapel/
* release downloads, public mailing lists, code repository, ...

Chapel Background:
A Brief Overview of Chapel (chapter pre-print)
The State of the Chapel Union (CUG 2013)
[Ten] Myths About Scalable Programming Languages:

https://www.ieeetcsc.org/activities/blog/

Mailing Lists:

chapel_info@cray.com: contact the team
chapel-users, chapel-education, chapel-developers: SourceForge discussion lists


http://chapel.cray.com/
https://sourceforge.net/projects/chapel/
http://chapel.cray.com/papers/BriefOverviewChapel.pdf
http://chapel.cray.com/papers/ChapelCUG13.pdf
https://www.ieeetcsc.org/activities/blog/
https://www.ieeetcsc.org/activities/blog/
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