EEEEEEEEEEEEEEEEEEEEEEE

Hierarchical Locales:
Exposing Node-Level Locality in Chapel

Brad Chamberlain, Chapel Team, Cray Inc.
UIUC, May 16, 2013

EEEEEEEEEEEEEEEEEEEEEEE

STREAM Triad: a trivial parallel computation
Given: m-element vectors A, B, C
Compute: Vi € 1.m, A, =B, + a-C,

In pictures, in parallel (distributed memory multicore):

ALttt ettt e
= I =1 =1 =1 =1 = — =N B
I I I I
B
+ 1 + 0 + 10 + 0 + 0 + 0 + 1 +
C
]]]]]]]
1 : I-:-I : 1
a HE | B : B : BN
1 I 1

STREAM Triad: MPI

#include <hpcc.h>

static int VectorSize;
statie coulsle &, g, “Ep

int HPCC StarStream (HPCC Params *params) {
int myRank, commSize;
int rv, errCount;
MPI Comm comm = MPI COMM WORLD;

MPI Comm size(comm, &commSize);

MPI Comm rank(comm, &myRank);

rv = HPCC Stream(params, 0 == myRank);

MPI Reduce(&rv, &errCount, 1, MPI INT, MPI SUM,
0, comm);

return errCount;

}

int HPCC Stream(HPCC Params *params,
register int j;
double scalar;

VectorSize = HPCC LocalVectorSize (params,
sizeof (double), 0);

a = HPCC XMALLOC (double, VectorSize);
HPCC XMALLOC (double, VectorSize);
¢ = HPCC XMALLOC (double, VectorSize);

o
I

@z;:a

int doIO)

3,

{

CRANY

THE SUPERCOMPUTER COMPANY

if (la || 'b || l'c) {

if (c) HPCC free(c);
if (b) HPCC free(b);
if (a) HPCC free(a)
if (doIO) {

fprintf (outFile, "Failed to allocate memory
(%d) .\n", VectorSize);

fclose(outFile);

’

’

}

return 1;

for (j=0; j<VectorSize; j++) {
b[j]l = 2.0;
NS0, 05

}

scalar = 3.0;

for (j=0; j<VectorSize; j++)
alj] = b[jl+tscalar*c[]];

EPCC ftree (@) ¢
HRCECl freei(b) ;
EIPCIC free (@) ¢

return 0;

STREAM Triad: MPI+OpenMP

#include <hpcc.h>
#ifdef OPENMP
#include <omp.h>
#endif

static int VectorSize;
statie coulsle &, g, “Ep
int HPCC StarStream (HPCC Params *params) {
int myRank, commSize;
int rv, errCount;

MPI Comm comm = MPI COMM WORLD;

&commSize) ;
&myRank) ;

MPI Comm size(comm,
MPI Comm rank(comm,

rv = HPCC Stream(params,
MPI Reduce(&rv, &errCount, 1,
0, comm);

0 == myRank) ;
MPI INT, MPI SUM,

return errCount;

}

int HPCC Stream(HPCC Params *params,
register int j;
double scalar;

int doIO) {

VectorSize = HPCC LocalVectorSize(params, 3,
sizeof (double), 0);

a = HPCC XMALLOC (double, VectorSize);
b = HPCC XMALLOC (double, VectorSize);
¢ = HPCC XMALLOC (double, VectorSize);

@z;:a

[]
| -

’

if (ta || 'b || 'c) |
if (c) HPCC free(c)
if (b) HPCC free(b);
if (a) HPCC free(a)
if (doIO) {
fprintf (outFile,
(%d) . \n"r
fclose (
}

return 1;

’

VectorSize);
outFile);

}

#ifdef OPENMP
#pragma omp parallel for
#endif

for (j=0; j<VectorSize; j++)
b[j] = 2.0;
IS =005

}

scalar = 3.0;

#ifdef OPENMP
#pragma omp parallel for
fendif
for (3=0;
26—

j<VectorSize; j++)
b[jl+scalar*c[]];

EPCC ftree (@) ¢
HRCECl freei(b) ;
EIPCIC free (@) ¢

return 0;

CRANY

THE SUPERCOMPUTER COMPANY

"Failed to allocate memory

{

STREAM Triad: MPI1+OpenMP vs. CUDA

I [] I []
#include <hpcc.h> III'IIII II;II II;II IIII'III
#ifdef OPENMP
= e ettt il 1rg
#include <omp.h>

static int VectorSize; — — — —
static double *a, *b, *c; . I . I . I .
] [] (]

int HPCC_StarStream (HPCC_Params *params) ({

int myRank, commSize;

int rv, errCount;

MPI Comm comm = MPI_COMM WORLD;

MPI Comm_ size(comm, &commSize);

MPI Comm_ rank(comm, &myRank);

rv = HPCC_Stream(params, 0 == myRank);

MPI Reduce(&rv, &errCount, 1, MPI INT, MPI SUM, 0, comm);

CRANY

THE SUPERCOMPUTER COMPANY

#define N 2000000 lll:ll ||:|| ||:|| II:III
int main() { #
float *d a, *d b, *d c; a'rs:ra!a

float scalar;

sizeof (float) *N) ;
sizeof (float) *N)
sizeof (float) *N)

cudaMalloc ((void**) &d a,
cudaMalloc ((void**) &d b,
cudaMalloc ((void**) &d c,

~e

~e

HPC suffers from too many distinct notations for expressing parallelism and locality

register 1nt Jj;
double scalar;

VectorSize = HPCC_LocalVectorSize(params, 3, sizeof (double), 0);

a HPCC_XMALLOC (double, VectorSize

= ;
b = HPCC_XMALLOC(double, VectorSize);
c = HPCC_XMALLOC(double, VectorSize);
if (la || !'B || !e) {

if (c) HPCC_free(c):

if (b) HPCC_free(b);

if (a) HPCC_free(a);

if (doIO) {
fprintf(outFile, "Failed to allocate memory
fclose(outFile);

}

return 1;

}

#ifdef _OPENMP
#pragma omp parallel for

#endif
for (j=0; j<VectorSize; j++) {
b[j] = 2.0;
c[jl = 0.0;

}
scalar = 3.0;

#ifdef _OPENMP
#pragma omp parallel for
#endif
o (30
aljl

BICC EeEE (@) F
HPCC_free (b) ;
[HECCIRERESI(ANE?

return 0;

}

@z;:a

(%d) .\n", VectorSize

)i

__global

.5f,
.5f,

N) ;
N) ;

set array<<<dimGrid,dimBlock>>>(d b,
set array<<<dimGrid,dimBlock>>>(d c,

scalar=3.0f;
STREAM Triad<<<dimGrid,dimBlock>>>(d b, d c,
cudaThreadSynchronize () ;

d a, scalanr, S SNi)¥

cudaFree(d a);

cudaFree(d b);

cudaFree(d c);

void set array(float *a, float value, int len) {
int idx = threadIdx.x + blockIdx.x * blockDim.x;

if (idx < len) a[idx] = value;

__global void STREAM Triad(float *a, float *b, float *c,
float scalar, int len) {
int idx = threadIdx.x + blockIdx.x * blockDim.x;

if (idx < len) cl[idx] = a[idx]+scalar*b[idx];

Why so many programming models?

HPC has traditionally given users...
...low-level, control-centric programming models
...ones that are closely tied to the underlying hardware
...ones that support only a single type of parallelism

Examples:
Type of HW Parallelism Programming Model Unit of Parallelism
Inter-node MPI executable
Intra-node/multicore OpenMP/pthreads iteration/task
Instruction-level vectors/threads pragmas iteration
GPU/accelerator CUDA/OpenCL/OpenAcc SIMD function/task

benefits: lots of control; decent generality; easy to implement
downsides: lots of user-managed detail; brittle to changes

STREAM Triad: MPI1+OpenMP vs. CUDA

I [] I []
#include <hpcc.h> III'IIII II;II II;II IIII'III
#ifdef OPENMP
= e ettt il 1rg
#include <omp.h>

static int VectorSize; — — — —
static double *a, *b, *c; . I . I . I .
] [] (]

int HPCC_StarStream (HPCC_Params *params) ({

int myRank, commSize;

int rv, errCount;

MPI Comm comm = MPI_COMM WORLD;

MPI Comm_ size(comm, &commSize);

MPI Comm_ rank(comm, &myRank);

rv = HPCC_Stream(params, 0 == myRank);

MPI Reduce(&rv, &errCount, 1, MPI INT, MPI SUM, 0, comm);

CRANY

THE SUPERCOMPUTER COMPANY

#define N 2000000 lll:ll ||:|| ||:|| II:III
int main() { #
float *d a, *d b, *d c; a'rs:ra!a

float scalar;

sizeof (float) *N) ;
sizeof (float) *N)
sizeof (float) *N)

cudaMalloc ((void**) &d a,
cudaMalloc ((void**) &d b,
cudaMalloc ((void**) &d c,

~e

~e

HPC suffers from too many distinct notations for expressing parallelism and locality

register 1nt Jj;
double scalar;

VectorSize = HPCC_LocalVectorSize(params, 3, sizeof (double), 0);

a HPCC_XMALLOC (double, VectorSize

= ;
b = HPCC_XMALLOC(double, VectorSize);
c = HPCC_XMALLOC(double, VectorSize);
if (la || !'B || !e) {

if (c) HPCC_free(c):

if (b) HPCC_free(b);

if (a) HPCC_free(a);

if (doIO) {
fprintf(outFile, "Failed to allocate memory
fclose(outFile);

}

return 1;

}

#ifdef _OPENMP
#pragma omp parallel for

#endif
for (j=0; j<VectorSize; j++) {
b[j] = 2.0;
c[jl = 0.0;

}
scalar = 3.0;

#ifdef _OPENMP
#pragma omp parallel for
#endif
o (30
aljl

BICC EeEE (@) F
HPCC_free (b) ;
[HECCIRERESI(ANE?

return 0;

}

@z;:a

(%d) .\n", VectorSize

)i

__global

.5f,
.5f,

N) ;
N) ;

set array<<<dimGrid,dimBlock>>>(d b,
set array<<<dimGrid,dimBlock>>>(d c,

scalar=3.0f;
STREAM Triad<<<dimGrid,dimBlock>>>(d b, d c,
cudaThreadSynchronize () ;

d a, scalanr, S SNi)¥

cudaFree(d a);

cudaFree(d b);

cudaFree(d c);

void set array(float *a, float value, int len) {
int idx = threadIdx.x + blockIdx.x * blockDim.x;

if (idx < len) a[idx] = value;

__global void STREAM Triad(float *a, float *b, float *c,
float scalar, int len) {
int idx = threadIdx.x + blockIdx.x * blockDim.x;

if (idx < len) cl[idx] = a[idx]+scalar*b[idx];

STREAM Triad: Chapel

CRANY

THE SUPERCOMPUTER COMPANY

1000,
3.0;

config const m =
alpha =

const ProblemSpace =

{l..m} dmapped ..; '

' the special

MPL Red o sauce
o var A, B, C: [ProblemSpace] real;
T B =2.0;
alvec N)
nl - C = 3.0,’ N)
i | A =B + alpha * C,' ¢, d a, scalar, N);
LR — —~——
| | | | | | | | |
OO | | | | O | | D
OO || e | | e || et
OO I D || O T I IO | | CE I I (| GT ST ITITIT I m (| 0
o o | srei1 e @ || @81 @181 @ |

=it

B Philosophy: Good language design can tease details of locality and

| parallelism away from an algorithm, permitting the compiler, runtime,

applied scientist, and HPC expert to each focus on their strengths.

CRANY

THE SUPERCOMPUTER COMPANY

A Chapel Goal: General Parallel Programming

With a unified set of concepts...

...express any parallelism desired in a user’s program
o Styles: data-parallel, task-parallel, concurrency, nested, ...
e Levels: model, function, loop, statement, expression

...target all parallelism available in the hardware
e Types: machines, nodes, cores, instructions

Style of HW Parallelism Programming Model Unit of Parallelism
Inter-node Chapel executable/task
Intra-node/multicore Chapel iteration/task
Instruction-level vectors/threads Chapel iteration
GPU/accelerator Chapel SIMD
function/task

Prototypical Next-Gen Processor Technologies

Myt
t

M?:ﬂnnn-:.

PR AT ey A
W e e 3 y &

2 UART, 2 USB DDR3 Controller
JTAG, P’C, SPI —

PCle 2.0 - 8 Lanes

PCle 2.0 - 4 Lanes
PCle 2.0 - 4 Lanes

Flexible 1/0 DDR3 Controller

Nvidia Echelon Tilera Tile-Gx

<es: http://download.intel.com/pressroom/images/Aubrey_lIsle_die.jpa, http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
:/linsidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/,

http://tilera.com/sites/default/files/productbriefs/Tile-Gx%203036%20SB012-01.pdf

http://download.intel.com/pressroom/images/Aubrey_Isle_die.jpg
http://download.intel.com/pressroom/images/Aubrey_Isle_die.jpg
http://download.intel.com/pressroom/images/Aubrey_Isle_die.jpg
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://tilera.com/sites/default/files/productbriefs/Tile-Gx 3036 SB012-01.pdf
http://tilera.com/sites/default/files/productbriefs/Tile-Gx 3036 SB012-01.pdf
http://tilera.com/sites/default/files/productbriefs/Tile-Gx 3036 SB012-01.pdf
http://tilera.com/sites/default/files/productbriefs/Tile-Gx 3036 SB012-01.pdf
http://tilera.com/sites/default/files/productbriefs/Tile-Gx 3036 SB012-01.pdf
http://tilera.com/sites/default/files/productbriefs/Tile-Gx 3036 SB012-01.pdf
http://tilera.com/sites/default/files/productbriefs/Tile-Gx 3036 SB012-01.pdf

CRANY

THE SUPERCOMPUTER COMPANY

General Characteristics of These Architectures

* Increased hierarchy and/or sensitivity to locality

* Potentially heterogeneous processor/memory types

= Next-gen programmers will have a lot more to
think about at the node level than in the past

CHAREL

B

CRANY

THE SUPERCOMPUTER COMPANY

Next-Gen Programming Model Wishlist

performance: (naturally)
portability: specifically, to/between next-generation architectures
programmability features: because you know you want them

general parallelism:
data parallelism: to take advantage of SIMD HW units; for simplicity
task parallelism: for asynchronous computations; data-driven algorithms
varying granularities/nestings: for algorithmic and architectural generality

locality control: to tune for locality/affinity across the machine
(inter- and intra-node)

resilience-/energy-aware features: to deal with emerging issues at
system scale

user extensibility: to be ready for next-generation unknowns

CRANY

THE SUPERCOMPUTER COMPANY

Next-Gen Scorecard for HPC Programming Models

Fortran C/C++ MPI OpenMP UPC

performance

portability (to next-gen)

programmability

data parallelism

task parallelism

parallel nesting/granularities

locality control

resilience

energy-awareness

user-extensibility

CRANY

THE SUPERCOMPUTER COMPANY

Next-Gen Scorecard for HPC Programming Models

Fortran C/C++ MPI OpenMP UPC
performance v v v v ~

portability (to next-gen)

programmability

data parallelism

task parallelism

parallel nesting/granularities

locality control

resilience

energy-awareness

user-extensibility

Next-Gen Scorecard for HPC Programming Models

CRANY

THE SUPERCOMPUTER COMPANY

Fortran C/C++ MPI OpenMP UPC
performance v v v v ~
portability (to next-gen) v v

programmability

data parallelism

task parallelism

parallel nesting/granularities

locality control

resilience

energy-awareness

user-extensibility

CRANY

THE SUPERCOMPUTER COMPANY

Next-Gen Scorecard for HPC Programming Models

Fortran C/C++ MPI OpenMP UPC
performance v v v v ~

~ ~ ~

portability (to next-gen) v

programmability X ~ X

4

data parallelism

task parallelism

x| X

parallel nesting/granularities

4

locality control

resilience

energy-awareness

X [X | X | X | X]| X

X [X | X[X |X|[X|X|X|\
X | X | X | X

X | X | X

user-extensibility

Chapel: Well-Positioned for Next-Gen

A PEL

EEEEEEEEEEEEEEEEEEEEEEE

performance

*

portability (to next-gen)

programmability

data parallelism

task parallelism

NSNS S

parallel nesting/granularities

*

locality control

resilience X

energy-awareness X

user-extensibility v

* (The work in this talk is designed to address these items)

outte S
Outline —_—

v Motivation
» Chapel Background
e Hierarchical Locales in Chapel

e Challenges, Status, and Summary

CRANY
W h a t i S C h a p e I ? THE SUPERCOMPUTER COMPANY

* An emerging parallel programming language

e Design and development led by Cray Inc.
e in collaboration with academia, labs, industry

e |nitiated under the DARPA HPCS program

e Overall goal: Improve programmer productivity
e Improve the programmability of parallel computers
e Match or beat the performance of current programming models
e Support better portability than current programming models
e Improve the robustness of parallel codes

e A work-in-progress

CRANY

THE SUPERCOMPUTER COMPANY

Chapel's Implementation

e Being developed as open source at SourceForge
e Licensed as BSD software

e Target Architectures:
e Cray architectures
e multicore desktops and laptops
e commodity clusters
e systems from other vendors
* in-progress: CPU+accelerator hybrids, manycore, ...

Chapel’s Greatest Hits under HPCS

Multiresolution Language Design Philosophy
User-Defined Parallel Iterators, Layouts, and Distributions
Distinct Concepts for Parallelism and Locality
Multithreaded Execution Model

Unification of Data- and Task-Parallelism

Productive Base Language Features
e type inference, iterators, tuples, ranges

Portable Design, Open-Source Implementation
* Yet, able to take advantage of HW-specific capabilities

Helped revitalize Community Interest in Parallel Languages

_ B
— e e

Chapel’s Greatest Hits under HPCS

> Multiresolution Language Design Philosophy

User-Defined Parallel Iterators, Layouts, and Distributions
Distinct Concepts for Parallelism and Locality
Multithreaded Execution Model

Unification of Data- and Task-Parallelism

Productive Base Language Features
e type inference, iterators, tuples, ranges

Portable Design, Open-Source Implementation
e Yet, able to take advantage of HW-specific capabilities

Helped revitalize Community Interest in Parallel Languages

CRANY

THE SUPERCOMPUTER COMPANY

Multiresolution Design: Motivation

Kl — High-Level
I/ Abstractions

Implementation OpenMP
Concepts

Target Machine Target Machine

“‘Why is everything so tedious/difficult?”

Low-Level

“‘Why don'’t | have more control?”
“‘Why don’t my programs port trivially?”

CRANY

THE SUPERCOMPUTER COMPANY

Multiresolution Design

Multiresolution Design: Support multiple tiers of features
higher levels for programmability, productivity
lower levels for greater degrees of control

Chapel language concepts

C o

Domain Maps

Base Language
Locality Control

Target Machine

build the higher-level concepts in terms of the lower

e examples: array distributions and layouts; forall loop implementations

permit the user to intermix layers arbitrarily

CRANY

THE SUPERCOMPUTER COMPANY

Data Parallelism Implementation Qs

Q1: How are arrays laid out in memory?

Are regular arrays laid out in row- or column-major order? Or...?

o e > = |77 |~» mall | I | Imdl | Ima
P IS ESIEIIEIIES 2
. s o LT {5 = ad | Ed | Ed B2 “. s
— |I> A P4 < S <y <>

How are sparse arrays stored? (COO, CSR, CSC, block-structured, ...?)

Q2: How are arrays stored by the locales?

Completely local to one locale? Or distributed?

If distributed... In a blocked manner? cyclically? block-cyclically?
recursively bisected? dynamically rebalanced? ...?

e EEL

CRRANY"

THE SUPERCOMPUTER COMPANY

Data Parallelism Implementation Qs

Q1: How are arrays laid out in memory?
Are regular arrays laid out in row- or column-major order? Or...?

——t= > -z |7 |77 |=» nd | iInd | Imall | s
] e i NS4S 1113113 S
R s e i o = ¥ l> mdl | md | Ed | s =
w1 [| £ | | S ESIESIEIIES

How are sparse arrays stored? (COO, CSR, CSC, block-structured, ...?)

Q2: How are arrays stored by the locales?

Completely local to one locale? Or distributed?

If distributed... In a blocked manner? cyclically? block-cyclically?
recursively bisected? dynamically rebalanced? ...?

Chapel's domain maps are designed to give the
user full control over such decisions

CRANY

THE SUPERCOMPUTER COMPANY

Domain Maps

Domain maps are “recipes” that instruct the compiler
how to map the global view of a computation...

(LTI I T I +
o TTTTTTTTIIITTITITI I I T I I T]

A =B + alpha * C;

...to the target locales” memory and processors:

CRANY

THE SUPERCOMPUTER COMPANY

Chapel’s Domain Map Philosophy

1. Chapel provides a library of standard domain maps
* to support common array implementations effortlessly

2. Advanced users can write their own domain maps in Chapel
e to cope with shortcomings in our standard library

s Domain Maps)

Base Language

Locality Control

3. Chapel’s standard domain maps are written using the same
end-user framework
* to avoid a performance cliff between “built-in” and user-defined cases

STREAM Triad: Chapel

CRANY

THE SUPERCOMPUTER COMPANY

1000,
3.0;

config const m =
alpha =

const ProblemSpace =

{l..m} dmapped ..; '

' the special

MPL Red o sauce
o var A, B, C: [ProblemSpace] real;
T B =2.0;
alvec N)
nl - C = 3.0,’ N)
i | A =B + alpha * C,' ¢, d a, scalar, N);
LR — —~——
| | | | | | | | |
OO | | | | O | | D
OO || e | | e || et
OO I D || O T I IO | | CE I I (| GT ST ITITIT I m (| 0
o o | srei1 e @ || @81 @181 @ |

=it

B Philosophy: Good language design can tease details of locality and

| parallelism away from an algorithm, permitting the compiler, runtime,

applied scientist, and HPC expert to each focus on their strengths.

CRANY

THE SUPERCOMPUTER COMPANY

For More Information on Domain Maps

HotPAR’10: User-Defined Distributions and Layouts in Chapel:
Philosophy and Framework
Chamberlain, Deitz, Iten, Choi; June 2010

CUG 2011: Authoring User-Defined Domain Maps in Chapel
Chamberlain, Choi, Deitz, Iten, Litvinov; May 2011

Chapel release:
e Technical notes detailing domain map interface for programmers:
SCHPL_HOME/doc/technotes/README.dsi
e Current domain maps:
SCHPL_HOME/modules/dists/*.chpl
layouts/*.chpl
internal/Default*.chpl

CRANY

THE SUPERCOMPUTER COMPANY

More Data Parallelism Implementation Qs

Q1: How are parallel loops implemented?
forall 1 in B.domain do B[i] = 1i/10.0;
forall ¢ in C do ¢ = 3.0; 1
How many tasks? Where do they execute?

How is the iteration space divided between the tasks?

Q2: How are parallel zippered loops implemented?
forall (a,b,c) in zip(A,B,C) do
a = b + alpha * c;

Particularly given that the iterands might have incompatible
distributions, memory layouts, and parallelization strategies

—— = Seloz oz =2 1 _
....... T _ 3 |2 f«m E4s _4# =4
i e 5 Il lwl—=1"
..... |.> gy d | i
| | | !
A B C

A PEL

More Data Parallelism Implementation Qs

Q1: How are parallel loops implemented?
forall i in B.domain do B[i] = 1/10.0;
forall ¢ in C do ¢ = 3.0; 1
How many tasks? Where do they execute?
How is the iteration space divided between the tasks?

Q2: How are parallel zippered loops implemented?
forall (a,b,c) in zip(A,B,C) do
a = b + alpha * c¢;

Particularly given that the iterands might have incompatible
distributions, memory layouts, and parallelization strategies

Chapel’s leader-follower iterators are designed to

give users full control over such decisions

CRANY

THE SUPERCOMPUTER COMPANY

For More Information on Leader-Follower Iterators

PGAS 2011: User-Defined Parallel Zippered Iterators in Chapel,
Chamberlain, Choi, Deitz, Navarro; October 2011

Chapel release:
e Primer example introducing leader-follower iterators:
o examples/primers/leaderfollower.chpl

e Library of dynamic leader-follower range iterators:

e Advancediters chapter of language specification

CRANY

THE SUPERCOMPUTER COMPANY

Multiresolution Programming: Summary

e Chapel avoids locking crucial implementation
decisions into the language specification
* |ocal and distributed array implementations
e parallel loop implementations

e |[nstead, these can be...

...specified in the language by an advanced user
...swapped in and out with minimal code changes

e The result separates the roles of domain scientist,
parallel programmer, and implementation cleanly

_ B
— e e

Chapel’s Greatest Hits under HPCS | —

e Multiresolution Language Design Philosophy

e User-Defined Parallel Iterators, Layouts, and Distributions
> Distinct Concepts for Parallelism and Locality

e Multithreaded Execution Model

¢ Unification of Data- and Task-Parallelism

e Productive Base Language Features
e type inference, iterators, tuples, ranges

e Portable Design, Open-Source Implementation
e Yet, able to take advantage of HW-specific capabilities

- @ Helped revitalize Community Interest in Parallel Languages

CRANY

THE SUPERCOMPUTER COMPANY

Distinct Concepts for Parallelism and Locality

Consider:

* Most HPC languages couple parallelism and locality
e e.g., | can’t create parallelism in MPI/UPC without also introducing locality

e Or, they don’t support a concept for locality at all
e e.g., OpenMP (though it’s working on improving this)

Yet these are distinct, important things!
(and, getting more important with time)
e parallelism: “Please execute these at the same time”
e |ocality: “Do this here rather than there”

For this reason, Chapel supports distinct concepts
e parallelism: tasks
* |ocality: locales

CRANY

THE SUPERCOMPUTER COMPANY

Task Parallelism Example: Cobegin Statements

cobegin { // creates a task per child statement)
producer (1) ;
producer (2) ;
consumer (1) ;

} // logical join of the three tasks here

CRANY

THE SUPERCOMPUTER COMPANY

The Locale Type

Definition:
e Abstract unit of target architecture
e Supports reasoning about locality

e Capable of running tasks and storing variables
e j.e., has processors and memory

Typically: A compute node (multi-core processor or SMP node)

CRANY

THE SUPERCOMPUTER COMPANY

Defining Locales

e Specify # of locales when running Chapel programs

$ a.out ——numLocales=8] $ a.out —nl 8]

e Chapel provides built-in locale variables

config const numlLocales: int = ..;
const Locales: [0..#numLocales] locale = ..;

CRANY

THE SUPERCOMPUTER COMPANY

Locale Operations

e Locale methods support queries about target system:

proc locale.physicalMemory(..) { .. }\
proc locale.numCores { .. }

proc locale.id { .. }

proc locale.name { .. }

e On-clauses support placement of computations:

writeln (Y“on locale 07); "\ | cobegin { I
on A[1,]] do
on Locales[1l] do bigComputation (A) ;

writeln (“now on locale 1”);
on node.left do

writeln (“on locale 0 again”); search (node.left);

CRANY

THE SUPERCOMPUTER COMPANY

Locales Today

Concept:

Today, Chapel supports a 1D array of locales
e users can reshape/slice to suit their computation’s needs

locale locale locale locale

Locales Today

Concept:

Today, Chapel supports a 1D array of locales
e users can reshape/slice to suit their computation’s needs

CRANY

THE SUPERCOMPUTER COMPANY

locale

locale

locale

locale

Apart from queries, no further visibility into locales

* no mechanism to refer to specific NUMA domains, processors, memoaories, ...

e assumption: compiler, runtime, OS, HW can handle intra-locale concerns

Supports horizontal (inter-node) locality well
e but not vertical (intra-node)

outine &=
Outline “ -

v Motivation
v'Chapel Background
> Hierarchical Locales in Chapel

e Challenges, Status, and Summary

Current Work: Hierarchical Locales

Concept:

Support locales within locales to describe architectural
sub-structures within a node

sub-locale A sub-locale A sub-locale A sub-locale A
C||C||ID||E C||C||ID||E C||C||ID||E C||C||ID||E
sub-locale B sub-locale B sub-locale B sub-locale B
locale locale locale locale

As with traditional locales, on-clauses and domain maps
will be used to map tasks and variables to a sub-locale’s
memory and processors

Locale structure is defined using Chapel code

e permits architectural descriptions to be specified in-language
e introduces a new Chapel role: architectural modeler

CRANY

THE SUPERCOMPUTER COMPANY

Sublocales: Tiled Processor Example

class locale: AbstractLocale {
const xt = 6, yt = xTiles;
const sublocGrid: [0..#xt, O0..#yt] tiledLoc = ..;
..memory interface..

..tasking interface..

class tiledlLoc: AbstractlLocale {

0 2 UART, 2 USB DDR3 Controller
..memory interface.. masges |
..tasking interface.. o IHEREE
}
Flexible 1/0 DDR3 Controller L ol
oo Tilera Tile-Gx

CHAREL

B

Sublocales: Hybrid Processor Example

class locale: AbstractLocale {
const numCPUs = 2, numGPUs = 2;
const cpus: [0..#numCPUs] cpuloc
const gpus: [0..#numGPUs] gpuloc
..memory interface..

..tasking interface..

class cpuloc: AbstractLocale { .. }

class gpuloc: AbstractLocale {
..sublocales for different
oy types, threadublocks... ?

..memory, tasking interfaces..

CRANY

THE SUPERCOMPUTER COMPANY

Cray XK6

L0 PROCESSOR
48-Port YARC-2 ROUTER

CRANY

THE SUPERCOMPUTER COMPANY

Sample tasking/memory interface

Memory Interface:

proc AbstractlLocale.malloc(size t size) { .. }
proc AbstractLocale.realloc(size t size) { .. }

proc AbstractlLocale.free(size t size) { .. }

Tasking Interface:

proc AbstractLocale.taskBegin(..) { .. }
proc AbstractlLocale.tasksCobegin(..) { .. }
proc AbstractlLocale.tasksCoforall(..) { .. }

In practice, we expect the guts of these to be implemented via
calls out to external C routines

CRANY

THE SUPERCOMPUTER COMPANY

Policy Questions

Memory Policy Questions:
* If a sublocale is out of memory, what happens?

e out-of-memory error?
e allocate elsewhere? sibling? parent? somewhere else? (on-node v. off?)

* What happens on locales with no memory?

e illegal? allocate on sublocale? somewhere else?

Tasking Policy Questions:
e Can a task that’s placed on a specific sublocale migrate?
e to where? sibling? parent? somewhere else?

* What happens on locales with no processors?

e illegal? allocate on sublocale? parent locale?
e using what heuristic? sublocale[0]? round-robin? dynamic load balance?

Goal: Any of these policies should be possible

Tasking Policy Example

CRANY

THE SUPERCOMPUTER COMPANY

Q: What happens to tasks on locales with no (direct) processors?

e.g., a locale that serves as a container for other sublocales

/ on “multicore NUMA Node” do begin foo()

CRANY

THE SUPERCOMPUTER COMPANY

Tasking Policy Example

Q: What happens to tasks on locales with no (direct) processors?

e.g., a locale that serves as a container for other sublocales

Al: Run on a fixed or arbitrary sublocale?

proc NUMANode.taskBegin(..) {

numaDomain [0] .taskBegin(...) ;

CRANY

THE SUPERCOMPUTER COMPANY

Tasking Policy Example

Q: What happens to tasks on locales with no (direct) processors?

e.g., a locale that serves as a container for other sublocales

A2: Schedule round-robin?

proc NUMANode.taskBegin(..) {
const subloc = (nextSubloc.fetchAdd (1)) snumSublLocs;
numaDomain [subloc] .taskBegin(...) ;

class NUMANode {

var nextSubloc: atomic int;

CRANY

THE SUPERCOMPUTER COMPANY

Tasking Policy Example

Q: What happens to tasks on locales with no (direct) processors?

e.g., a locale that serves as a container for other sublocales

A3: Dynamically Load Balance?

proc NUMANode.taskBegin(..) {

numaDomain [getBestSubLoc ()] .taskBegin(...);

proc NUMANode.getBestSubLoc () {
const (numTasks, subloc)
= minloc reduce (numaDomain.numTasks{(),

0..#numSubLocs) ;

return subloc;

CRANY

THE SUPERCOMPUTER COMPANY

Another Tasking Policy Example

Q: What happens to tasks on locales with no processors?

e.g., a sublocale representing a memory resource

CPU
—— / on “Texture Memory” do begin foo()
clic|ID||E

GPU sublocale
locale

CRANY

THE SUPERCOMPUTER COMPANY

Another Tasking Policy Example

Q: What happens to tasks on locales with no processors?

e.g., a sublocale representing a memory resource

Al: Throw an error?

proc TextureMemlLocale.taskBegin (..) {

halt (“You can’t run tasks on texture memory!”);

Downside: potential user inconvenience:

on Locales[2] .gpulLoc.texMem do var X: [l..n, 1..n] int;

on X[i,]j] do begin refine (X);

CRANY

THE SUPERCOMPUTER COMPANY

Another Tasking Policy Example

Q: What happens to tasks on locales with no processors?

e.g., a sublocale representing a memory resource

A2: Defer to parent?

proc TextureMemlLocale.taskBegin (..) {

parentlLocale.taskBegin(..);

CRANY

THE SUPERCOMPUTER COMPANY

Another Tasking Policy Example

Q: What happens to tasks on locales with no processors?

e.g., a sublocale representing a memory resource

A3: Or perhaps just run directly near memory?

proc TextureMemlLocale.taskBegin (..) {
extern proc chpl task create GPU Task(..);

chpl task create GPU Task(..);

CRANY

THE SUPERCOMPUTER COMPANY

Contrasts with Related Work

Related work:
e Sequoia (Aiken et al., Stanford)
* Hierarchical Place Trees (Sarkar et al., Rice)

Differences:
e Hierarchy only impacts locality, not semantics as in Sequoia
e analogous to PGAS languages vs. distributed memory
* No restrictions as to what HW must live in what node
® e.g., no “processors must live in leaf nodes” requirement
* Does not impose a strict abstract tree structure
® e.g8.,,const sublocGrid: [0..#xt, 0..#yt] tiledLoc = ..;

» User-specifiable concept
e convenience of specifying within Chapel
* mapping policies can be defined in-language

Outline —

v'Motivation
v'Chapel Background
v'Hierarchical Locales in Chapel

> Challenges, Status, and Summary

CCRRASY

THE SUPERCOMPUTER COMP,

Hierarchical Locales: Implementation Challenges

Locale ID/wide pointer representation: Simple integer
ID no longer suffices

Representation of ‘here’: Global integer in generated C

code no longer suffices

* ‘here’ must become task-private since different tasks will
have different sublocales at a given time

Communication Generation: A function of two locale

types, not one
(and they may not be known at compile-time)

Hierarchical Locales: Design Challenges

Portability: Chapel code that refers to sub-locales can
cause problems on systems with a different model

Mitigation Strategies

e Well-designed domain maps should buffer many typical
users from these challenges

e We anticipate identifying a few broad classes of locales that
characterize broad swaths of machines “well enough”

* More advanced runtime designs and compiler work could
help guard most task-parallel users from this level of detail

* Not a Chapel-specific challenge, fortunately

Code Generation: Dealing with targets for which C is

not the language of choice (e.g., CUDA)
@:;‘-“.’.

Target 1: NUMA Nodes et

Platform: multicore nodes with several NUMA domains

Approach:

two-level locale structure
e outer: Complete node

e inner: NUMA domain

e (exposing cores/memories seems like overkill for now)

Qthreads shepherd per NUMA domain for tasking
Why? Simple initial exercise with practical impact
Initial Goal: Support NUMA-aware STREAM Triad

CRANY

THE SUPERCOMPUTER COMPANY

Target 2: Tilera

Platform: Tilera tiled processor

Approach:

e 2-to-3 level locale structure
e outer: Tiled processor

e inner: OS instance (can be configured at various granularities)
e potential for creating a sublocale per tile as well

Why? More interesting example w/ user interest
e reconfigurability, 2D layout particularly interesting
Initial Goal: Run Chapel codes using various Tilera

configurations
* ideally, with single Chapel locale definition file

Target 3: Clusters of CPU-GPU Compute Nodes

HHHHHHHHHHHHHHHHHHHHHHH

CPU
Platform: Cluster of CPU+GPU Nodes sublocale
C||C||ID||E
ApproaCh: GPU sublocale
local
e 3-to-4 level locale structure ocale

e outer: Network

e next: Compute Node

e next: CPU vs. GPU

* inner (potentially): distinct processor cores/memories (?)

Why? Look at #1 on the top-500

e provide a unified alternative to MPI+X

Initial Goal:
e Run some traditional CPU+GPU codes on one node
* Port some CPU+GPU cluster codes to Chapel

Status

e Proof-of-Concept draft up and running

e Working on merging concept into trunk

e Next Steps:
e Get code into trunk

e Ensure performance for traditional architectures isn’t
unduly effected

e Port and study sample application codes

CRANY

THE SUPERCOMPUTER COMPANY

Longer-term Directions

Represent physical machine as a hierarchical locale and
represent user’s locales as a slice of that hierarchy
e for topology-aware programming

e for jobs with dynamically-changing resource requirements
e due to changing job needs
e or failing HW

Combine with containment domains (Erez, UT Austin)
e the two concepts seem well-matched for each other

THE SUPERCOMPUTER COMPANY

Technical Summary

Next-generation nodes will likely present challenges

Chapel is better placed than current HPC languages
e Hierarchical locales should help with intra-node concerns

Hierarchical Locales have some attractive properties
e Defined in Chapel, potentially by users
e Support policy decisions
e Relaxes hard-coding of interfaces in compiler

Specification and implementation effort is underway

* Yet more work remains

The Chapel Team (Summer 2012)

XN NN

/

/N

. PN/
RS
oo

LATAVAY
/¢

0

oamX X X X X
‘ 7 S S VAVAVA

K

Vi
s

5

X

/
4

%

s

e

5

i

H.4
/YN /

%

2

/

& /\/\/f
A AVAS

CRANY

THE SUPERCOMPUTER COMPANY

/

IAVATATNIET N

S

o
%

9

5

8

-

9

9

X

XXX

/

/ AN
LN)

Implementation Status -- Version 1.7.0 (apr 2013)

In a nutshell:

e Most features work at a functional level

e Many performance optimizations remain
e particularly for distributed memory (multi-locale) execution

This is a good time to:
e Try out the language and compiler

e Use Chapel for non-performance-critical projects
* Give us feedback to improve Chapel

* Use Chapel for parallel programming education

Chapel and Education

CRANY

THE SUPERCOMPUTER COMPANY

* In teaching parallel programming, | like to cover:

data parallelism

task parallelism

concurrency

synchronization

locality/affinity

deadlock, livelock, and other pitfalls
performance tuning

e | don’t think there’s been a good language out there...

for teaching all of these things
for teaching some of these things well at all
until now: We believe Chapel can potentially play a crucial role here

(see http://chapel.cray.com/education.html for more information and
(= http://cs.washington.edu/education/courses/csep524/13wi/ for my use of Chapel in class)

A PEL

http://chapel.cray.com/education.html
http://cs.washington.edu/education/courses/csep524/13wi/
http://cs.washington.edu/education/courses/csep524/13wi/
http://cs.washington.edu/education/courses/csep524/13wi/

CRRANY
C h a p e | . W h a t’ S N ext ? THE SUPERCOMPUTER COMPANY

e Ramp up staffing

e Fill gaps in the language design
e exception handling, task teams, interoperability, RAIl, OOP, ...

e Address heterogeneous compute nodes
e hierarchical locales to support GPUs, Intel MIC

e User-driven performance improvements
e Scalar idioms, communication optimizations, memory leaks

e Work on transitioning governance to external entity
* e.g., “The Chapel Foundation”

CRANY

THE SUPERCOMPUTER COMPANY

For More Information

Chapel project page: http://chapel.cray.com
* overview, papers, presentations, language spec, ...

ChGpEl SourceForge page: https://sourceforge.net/projects/chapel/
* release downloads, public mailing lists, code repository, ...

Chapel Background:
A Brief Overview of Chapel (chapter pre-print)
The State of the Chapel Union (CUG 2013)
[Ten] Myths About Scalable Programming Languages:

https://www.ieeetcsc.org/activities/blog/

Mailing Lists:

chapel_info@cray.com: contact the team
chapel-users, chapel-education, chapel-developers: SourceForge discussion lists

http://chapel.cray.com/
https://sourceforge.net/projects/chapel/
http://chapel.cray.com/papers/BriefOverviewChapel.pdf
http://chapel.cray.com/papers/ChapelCUG13.pdf
https://www.ieeetcsc.org/activities/blog/
https://www.ieeetcsc.org/activities/blog/

=

cRaYY
cCHAaPRPEL
=

=/

CRANY

THE SUPERCOMPUTER COMPANY

ray.com chapel info

http://sourceforge.net/projects/chapel/
http://chapel.cray.com/
mailto:chapel-info@cray.com

