
Brad Chamberlain, Chapel Team: Cray Inc.

University of Bergen: April 12, 2013

2

Intel MIC

Sources: http://download.intel.com/pressroom/images/Aubrey_Isle_die.jpg, http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/,

http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/, http://tilera.com/sites/default/files/productbriefs/Tile-Gx%203036%20SB012-01.pdf

Nvidia Echelon Tilera Tile-Gx

AMD Trinity

http://download.intel.com/pressroom/images/Aubrey_Isle_die.jpg
http://download.intel.com/pressroom/images/Aubrey_Isle_die.jpg
http://download.intel.com/pressroom/images/Aubrey_Isle_die.jpg
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://tilera.com/sites/default/files/productbriefs/Tile-Gx 3036 SB012-01.pdf
http://tilera.com/sites/default/files/productbriefs/Tile-Gx 3036 SB012-01.pdf
http://tilera.com/sites/default/files/productbriefs/Tile-Gx 3036 SB012-01.pdf
http://tilera.com/sites/default/files/productbriefs/Tile-Gx 3036 SB012-01.pdf
http://tilera.com/sites/default/files/productbriefs/Tile-Gx 3036 SB012-01.pdf
http://tilera.com/sites/default/files/productbriefs/Tile-Gx 3036 SB012-01.pdf
http://tilera.com/sites/default/files/productbriefs/Tile-Gx 3036 SB012-01.pdf

 Increased hierarchy and/or sensitivity to locality

 Potentially heterogeneous processor/memory types

3

⇒ Next-gen programmers will have a lot more to
think about at the node level than in the past

performance: (naturally)

portability: specifically, to/between next-generation architectures

programmability features: because you know you want them

general parallelism:
data parallelism: to take advantage of SIMD HW units; for simplicity

task parallelism: for asynchronous computations; data-driven algorithms

varying granularities/nestings: for algorithmic and architectural generality

locality control: to tune for locality/affinity across the machine
(inter- and intra-node)

resilience-/energy-aware features: to deal with emerging issues at
system scale

user extensibility: to be ready for next-generation unknowns

4

Fortran C/C++ MPI OpenMP UPC

performance

portability (to next-gen)

programmability

data parallelism

task parallelism

parallel nesting/granularities

locality control

resilience

energy-awareness

user-extensibility

5

Fortran C/C++ MPI OpenMP UPC

performance ✓ ✓ ✓ ✓ ~

portability (to next-gen)

programmability

data parallelism

task parallelism

parallel nesting/granularities

locality control

resilience

energy-awareness

user-extensibility

6

Fortran C/C++ MPI OpenMP UPC

performance ✓ ✓ ✓ ✓ ~

portability (to next-gen) ✓ ✓

programmability

data parallelism

task parallelism

parallel nesting/granularities

locality control

resilience

energy-awareness

user-extensibility

7

Fortran C/C++ MPI OpenMP UPC

performance ✓ ✓ ✓ ✓ ~

portability (to next-gen) ✓ ✓ ~ ~ ~

programmability X X X ~ X

data parallelism ~ X X ~ ~

task parallelism X X X ~ X

parallel nesting/granularities X X X ~ X

locality control X X ~ X ~

resilience X X ~ X X

energy-awareness X X X X X

user-extensibility X X X X X

8

performance ~

portability (to next-gen) ~*

programmability ✓

data parallelism ✓

task parallelism ✓

parallel nesting/granularities ✓

locality control ~*

resilience X

energy-awareness X

user-extensibility ✓

9

* (The work in this talk strives to address these items)

Motivation

Chapel Background

 Hierarchical Locales in Chapel

 Approach, Status, and Summary

10

 An emerging parallel programming language

 Design and development led by Cray Inc.
 in collaboration with academia, labs, industry

 Initiated under the DARPA HPCS program

 Overall goal: Improve programmer productivity
 Improve the programmability of parallel computers

 Match or beat the performance of current programming models

 Support better portability than current programming models

 Improve the robustness of parallel codes

 A work-in-progress

11

 Being developed as open source at SourceForge

 Licensed as BSD software

 Target Architectures:
 Cray architectures

 multicore desktops and laptops

 commodity clusters

 systems from other vendors

 in-progress: CPU+accelerator hybrids, manycore, …

12

 Multiresolution Language Design Philosophy

 User-Defined Parallel Iterators, Layouts, and Distributions

 Distinct Concepts for Parallelism and Locality

 Multithreaded Execution Model

 Unification of Data- and Task-Parallelism

 Productive Base Language Features

 type inference, iterators, tuples, ranges

 Portable Design, Open-Source Implementation

 Yet, able to take advantage of HW-specific capabilities

 Helped revitalize Community Interest in Parallel Languages

 Multiresolution Language Design Philosophy

 User-Defined Parallel Iterators, Layouts, and Distributions

 Distinct Concepts for Parallelism and Locality

 Multithreaded Execution Model

 Unification of Data- and Task-Parallelism

 Productive Base Language Features

 type inference, iterators, tuples, ranges

 Portable Design, Open-Source Implementation

 Yet, able to take advantage of HW-specific capabilities

 Helped revitalize Community Interest in Parallel Languages

15

MPI

OpenMP

Pthreads

Target Machine

Low-Level
Implementation

Concepts

“Why is everything so tedious/difficult?”

“Why don’t my programs port trivially?”
“Why don’t I have more control?”

ZPL

HPF

Target Machine

High-Level
Abstractions

Multiresolution Design: Support multiple tiers of features

 higher levels for programmability, productivity

 lower levels for greater degrees of control

 build the higher-level concepts in terms of the lower
 examples: array distributions and layouts; forall loop implementations

 permit the user to intermix layers arbitrarily

Domain Maps

Data Parallelism

Task Parallelism

Base Language

Target Machine

Locality Control

Chapel language concepts

16

Consider:
 Most HPC languages couple parallelism and locality

 e.g., I can’t create parallelism in MPI/UPC without also introducing locality

 Or, they don’t support a concept for locality at all
 e.g., OpenMP (though it’s working on improving this)

Yet these are distinct, important things!
(and, getting more important with time)

 parallelism: “Please execute these at the same time”

 locality: “Do this here rather than there”

For this reason, Chapel supports distinct concepts
 parallelism: tasks

 locality: locales

17

Definition:
 Abstract unit of target architecture

 Supports reasoning about locality

 Capable of running tasks and storing variables
 i.e., has processors and memory

Typically: A compute node (multi-core processor or SMP node)

18

 Specify # of locales when running Chapel programs

 Chapel provides built-in locale variables

19

% a.out --numLocales=8

config const numLocales: int = …;

const Locales: [0..#numLocales] locale = …;

L0 L1 L2 L3 L4 L5 L6 L7 Locales:

% a.out –nl 8

 Locale methods support queries about target system:

 On-clauses support placement of computations:

20

proc locale.physicalMemory(…) { … }

proc locale.numCores { … }

proc locale.id { … }

proc locale.name { … }

writeln(“on locale 0”);

on Locales[1] do

 writeln(“now on locale 1”);

writeln(“on locale 0 again”);

cobegin {

 on A[i,j] do

 bigComputation(A);

 on node.left do

 search(node.left);

}

Concept:
 Today, Chapel supports a 1D array of locales

 users can reshape/slice to suit their computation’s needs

21

locale

locale

locale

locale

Concept:
 Today, Chapel supports a 1D array of locales

 users can reshape/slice to suit their computation’s needs

 Apart from locale queries, no further visibility into locale
 no mechanism to refer to specific NUMA domains, processors, memories, …

 assumption: compiler, runtime, OS, HW can handle intra-locale concerns

22

locale

locale

locale

locale

Concept:
 Support locales within locales to describe architectural

sub-structures within a node

 As with traditional locales, on-clauses and domain maps
should be used to map tasks and variables to a sub-locale’s
memory and processors

 Locale structure is defined as Chapel code
 permits implementation policies to be specified in-language

 introduces a new Chapel role: architectural modeler

 23

locale

locale

locale

locale

sub-locale A

sub-locale B

sub-locale A

sub-locale B

sub-locale A

sub-locale B

sub-locale A

sub-locale B

C C D E C C D E C C D E C C D E

class locale: AbstractLocale {

 const xt = 6, yt = xTiles;

 const sublocGrid: [0..#xt, 0..#yt] tiledLoc = …;

 const allSublocs: [0..#xt*yt] tiledLoc = …;

 …memory interface…

 …tasking interface…

}

class tiledLoc: AbstractLocale {

 …memory interface…

 …tasking interface…

}

24
Tilera Tile-Gx

class locale: AbstractLocale {

 const numCPUs = 2, numGPUs = 2;

 const cpus: [0..#numCPUs] cpuLoc = …;

 const gpus: [0..#numGPUs] gpuLoc = …;

 …memory interface…

 …tasking interface…

}

class cpuLoc: AbstractLocale { … }

class gpuLoc: AbstractLocale {

 …sublocales for different

 memory types, thread blocks…?

 …memory, tasking interfaces…

}
25

26

Memory Interface:
proc AbstractLocale.malloc(size_t size) { … }

proc AbstractLocale.realloc(size_t size) { … }

proc AbstractLocale.free(size_t size) { … }

…

Tasking Interface:
proc AbstractLocale.taskBegin(…) { … }

proc AbstractLocale.tasksCobegin(…) { … }

…

In practice, we expect the guts of these to be implemented via
calls out to external C routines

Memory Policy Questions:
 If a sublocale is out of memory, what happens?

 out-of-memory error?

 allocate elsewhere? sibling? parent? somewhere else? (on-node v. off?)

 What happens on locales with no memory?
 illegal? allocate on sublocale? somewhere else?

Tasking Policy Questions:
 Can a task that’s placed on a specific sublocale migrate?

 to where? sibling? parent? somewhere else?

 What happens on locales with no processors?
 illegal? allocate on sublocale? parent locale?

 using what heuristic? sublocale[0]? round-robin? dynamic load balance?

Goal: Any of these policies should be possible
27

28

Q: What happens to tasks on locales with no processors?

e.g., a sublocale representing a memory resource

locale

CPU
sublocale

GPU sublocale

C C D E

on “Texture Memory” do begin foo()

29

Q: What happens to tasks on locales with no processors?

e.g., a sublocale representing a memory resource

A1: Throw an error?

proc TextureMemLocale.taskBegin(…) {

 halt(“You can’t run tasks on texture memory!”);

}

Downside: potential user inconvenience:

on Locales[2].gpuLoc.texMem do var X: [1..n, 1..n] int;

on X[i,j] do begin refine(X);

30

Q: What happens to tasks on locales with no processors?

e.g., a sublocale representing a memory resource

A2: Defer to parent?

proc TextureMemLocale.taskBegin(…) {

 parentLocale.taskBegin(…);

}

31

Q: What happens to tasks on locales with no processors?

e.g., a sublocale representing a memory resource

A3: Or perhaps just run directly near memory?

proc TextureMemLocale.taskBegin(…) {

 extern proc chpl_task_create_GPU_Task(…);

 chpl_task_create_GPU_Task(…);

}

32

Q: What happens to tasks on locales with no (direct) processors?

e.g., a locale that serves as a container for other sublocales

on “multicore NUMA Node” do begin foo()

33

Q: What happens to tasks on locales with no (direct) processors?

e.g., a locale that serves as a container for other sublocales

A1: Run on a fixed or arbitrary sublocale?

proc NUMANode.taskBegin(…) {

 numaDomain[0].taskBegin(…);

}

34

Q: What happens to tasks on locales with no (direct) processors?

e.g., a locale that serves as a container for other sublocales

A2: Schedule round-robin?

proc NUMANode.taskBegin(…) {

 const subloc = (nextSubLoc.fetchAdd(1))%numSubLocs;

 numaDomain[subloc].taskBegin(…);

}

class NUMANode {

 …

 var nextSubLoc: atomic int;

 …

}

35

Q: What happens to tasks on locales with no (direct) processors?

e.g., a locale that serves as a container for other sublocales

A3: Dynamically Load Balance?

proc NUMANode.taskBegin(…) {

 numaDomain[getBestSubLoc()].taskBegin(…);

}

proc NUMANode.getBestSubLoc() {

 const (numTasks, subloc)

 = minloc reduce (numaDomain.numTasks(),

 0..#numSubLocs);

 return subloc;

}

Related work:
 Sequoia (Aiken et al., Stanford)

 Hierarchical Place Trees (Sarkar et al., Rice)

Differences:
 Hierarchy only impacts locality, not semantics as in Sequoia

 analogous to PGAS languages vs. distributed memory

 No restrictions as to what HW must live in what node
 i.e., no “processors must live in leaf nodes” requirement

 Does not impose a strict abstract tree structure
 e.g., const sublocGrid: [0..#xt, 0..#yt] tiledLoc = …;

 User-specifiable concept
 convenience of specifying within Chapel

 mapping policies can be defined in-language

36

Motivation

Chapel Background

Hierarchical Locales in Chapel

Approach, Status, and Summary

37

As of Chapel, version 1.6:
 Locales are defined using Chapel code, but a single

definition is used for all target platforms
 see: modules/internal/ChapelLocale.chpl

 Task/Memory/Comm. interfaces are baked into compiler
 can switch between multiple implementations via env. vars.

 but each executable only supports one implementation

38

Plan for this work:
 Support multiple Locale definitions, selected by env. var.

 e.g., CHPL_LOCALE_MODEL (defaults based on CHPL_TARGET_PLATFORM)

 store locale models in subdirectories based on CHPL_LOCALE_MODEL:
 modules/locales/multiNUMA/ChapelLocale.chpl

 modules/locales/CPUGPU/ChapelLocale.chpl

 –M $CHPL_HOME/modules/standard/$CHPL_LOCALE_MODEL added to search path

 Compiler can remain ignorant of runtime interfaces
 one binary can support multiple tasking/memory models

 interfaces need no longer be identical across implementations

39

Locale ID/wide pointer representation: Simple integer
ID no longer suffices

Representation of ‘here’: Global integer in generated C
code no longer suffices

 ‘here’ must become task-private since different tasks will
have different sublocales at a given time

Communication Generation: A function of two locale
types, not one

(and they may not be known at compile-time)

40

Portability: Chapel code that refers to sub-locales can
cause problems on systems with different model

Mitigation Strategies
 Well-designed domain maps should buffer many typical

users from these challenges

 We anticipate identifying a few broad classes of locales that
characterize broad swaths of machines “well enough”

 More advanced runtime designs and compiler work could
help guard most task-parallel users from this level of detail

 Not a Chapel-specific challenge, fortunately

Code Generation: Dealing with targets for which C is
not the language of choice (e.g., CUDA)

41

Platform: multicore nodes with several NUMA domains

Approach:
 two-level locale structure

 outer: Complete node

 inner: NUMA domain

 (exposing cores/memories seems like overkill for now)

 Qthreads shepherd per NUMA domain for tasking

Why? Simple initial exercise with practical impact

Initial Goal: Support NUMA-aware STREAM Triad

42

Platform: Tilera tiled processor

Approach:
 2-to-3 level locale structure

 outer: Tiled processor

 inner: OS instance (can be configured at various granularities)

 potential for creating a sublocale per tile as well

Why? More interesting example w/ user interest
 reconfigurability, 2D layout particularly interesting

Initial Goal: Run Chapel codes using various Tilera
configurations
 ideally, with single Chapel locale definition file

43

Platform: Cluster of CPU+GPU Nodes

Approach:
 3-to-4 level locale structure

 outer: Network

 next: Compute Node

 next: CPU vs. GPU

 inner (potentially): distinct processor cores/memories (?)

Why? Look at #1 on the top-500
 provide a unified alternative to MPI+X

Initial Goal:
 Run some traditional CPU+GPU codes on one node

 Port some CPU+GPU cluster codes to Chapel

44

locale

CPU
sublocale

GPU sublocale

C C D E

Proof-of-Concept draft up and running:

 Two-level locale types defined as Chapel code

 Representing locale ID as a pair of 32-bit ints for now

 Draft memory and tasking interfaces implemented

 Sublocale-aware tasks being created
 NUMA node locales make use of Qthreads shepherds

 Tilera locales use OS hooks

 Initial performance improvements demonstrated
 Yet further tuning work is required

Working on Creating a trunk-ready version

45

 Get code into trunk

 Make sure performance for traditional architectures
isn’t impacted

 Port and study sample application codes

46

Represent physical machine as a hierarchical locale and
represent user’s locales as a slice of that hierarchy

 for topology-aware programming

 for jobs with dynamically-changing resource requirements
 due to changing job needs

 or failing HW

Combine with containment domains (Erez, UT Austin)
 the two concepts seem well-matched for each other

47

Next-generation nodes will likely present challenges

Chapel is better placed than current HPC languages
 Hierarchical locales should help with intra-node concerns

Hierarchical Locales have some attractive properties

 Defined in Chapel, potentially by users

 Support policy decisions

 Relaxes hard-coding of interfaces in compiler

Specification and implementation effort is underway

 Yet more work remains

48

49

Chapel project page: http://chapel.cray.com
 overview, papers, presentations, language spec, …

Chapel SourceForge page: https://sourceforge.net/projects/chapel/

 release downloads, public mailing lists, code repository, …

Blog Series:

 Myths About Scalable Programming Languages:
 https://www.ieeetcsc.org/activities/blog/

Mailing Lists:
 chapel_info@cray.com: contact the team

 chapel-users@lists.sourceforge.net: user-oriented discussion list

50

http://chapel.cray.com/
https://sourceforge.net/projects/chapel/
https://www.ieeetcsc.org/activities/blog/
https://www.ieeetcsc.org/activities/blog/

http://sourceforge.net/projects/chapel/ http://chapel.cray.com chapel_info@cray.com

http://sourceforge.net/projects/chapel/
http://chapel.cray.com/
mailto:chapel-info@cray.com

