
Brad Chamberlain, Chapel Team: Cray Inc.

University of Bergen: April 12, 2013

2

Intel MIC

Sources: http://download.intel.com/pressroom/images/Aubrey_Isle_die.jpg, http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/,

http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/, http://tilera.com/sites/default/files/productbriefs/Tile-Gx%203036%20SB012-01.pdf

Nvidia Echelon Tilera Tile-Gx

AMD Trinity

http://download.intel.com/pressroom/images/Aubrey_Isle_die.jpg
http://download.intel.com/pressroom/images/Aubrey_Isle_die.jpg
http://download.intel.com/pressroom/images/Aubrey_Isle_die.jpg
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://tilera.com/sites/default/files/productbriefs/Tile-Gx 3036 SB012-01.pdf
http://tilera.com/sites/default/files/productbriefs/Tile-Gx 3036 SB012-01.pdf
http://tilera.com/sites/default/files/productbriefs/Tile-Gx 3036 SB012-01.pdf
http://tilera.com/sites/default/files/productbriefs/Tile-Gx 3036 SB012-01.pdf
http://tilera.com/sites/default/files/productbriefs/Tile-Gx 3036 SB012-01.pdf
http://tilera.com/sites/default/files/productbriefs/Tile-Gx 3036 SB012-01.pdf
http://tilera.com/sites/default/files/productbriefs/Tile-Gx 3036 SB012-01.pdf

 Increased hierarchy and/or sensitivity to locality

 Potentially heterogeneous processor/memory types

3

⇒ Next-gen programmers will have a lot more to
think about at the node level than in the past

performance: (naturally)

portability: specifically, to/between next-generation architectures

programmability features: because you know you want them

general parallelism:
data parallelism: to take advantage of SIMD HW units; for simplicity

task parallelism: for asynchronous computations; data-driven algorithms

varying granularities/nestings: for algorithmic and architectural generality

locality control: to tune for locality/affinity across the machine
(inter- and intra-node)

resilience-/energy-aware features: to deal with emerging issues at
system scale

user extensibility: to be ready for next-generation unknowns

4

Fortran C/C++ MPI OpenMP UPC

performance

portability (to next-gen)

programmability

data parallelism

task parallelism

parallel nesting/granularities

locality control

resilience

energy-awareness

user-extensibility

5

Fortran C/C++ MPI OpenMP UPC

performance ✓ ✓ ✓ ✓ ~

portability (to next-gen)

programmability

data parallelism

task parallelism

parallel nesting/granularities

locality control

resilience

energy-awareness

user-extensibility

6

Fortran C/C++ MPI OpenMP UPC

performance ✓ ✓ ✓ ✓ ~

portability (to next-gen) ✓ ✓

programmability

data parallelism

task parallelism

parallel nesting/granularities

locality control

resilience

energy-awareness

user-extensibility

7

Fortran C/C++ MPI OpenMP UPC

performance ✓ ✓ ✓ ✓ ~

portability (to next-gen) ✓ ✓ ~ ~ ~

programmability X X X ~ X

data parallelism ~ X X ~ ~

task parallelism X X X ~ X

parallel nesting/granularities X X X ~ X

locality control X X ~ X ~

resilience X X ~ X X

energy-awareness X X X X X

user-extensibility X X X X X

8

performance ~

portability (to next-gen) ~*

programmability ✓

data parallelism ✓

task parallelism ✓

parallel nesting/granularities ✓

locality control ~*

resilience X

energy-awareness X

user-extensibility ✓

9

* (The work in this talk strives to address these items)

Motivation

Chapel Background

 Hierarchical Locales in Chapel

 Approach, Status, and Summary

10

 An emerging parallel programming language

 Design and development led by Cray Inc.
 in collaboration with academia, labs, industry

 Initiated under the DARPA HPCS program

 Overall goal: Improve programmer productivity
 Improve the programmability of parallel computers

 Match or beat the performance of current programming models

 Support better portability than current programming models

 Improve the robustness of parallel codes

 A work-in-progress

11

 Being developed as open source at SourceForge

 Licensed as BSD software

 Target Architectures:
 Cray architectures

 multicore desktops and laptops

 commodity clusters

 systems from other vendors

 in-progress: CPU+accelerator hybrids, manycore, …

12

 Multiresolution Language Design Philosophy

 User-Defined Parallel Iterators, Layouts, and Distributions

 Distinct Concepts for Parallelism and Locality

 Multithreaded Execution Model

 Unification of Data- and Task-Parallelism

 Productive Base Language Features

 type inference, iterators, tuples, ranges

 Portable Design, Open-Source Implementation

 Yet, able to take advantage of HW-specific capabilities

 Helped revitalize Community Interest in Parallel Languages

 Multiresolution Language Design Philosophy

 User-Defined Parallel Iterators, Layouts, and Distributions

 Distinct Concepts for Parallelism and Locality

 Multithreaded Execution Model

 Unification of Data- and Task-Parallelism

 Productive Base Language Features

 type inference, iterators, tuples, ranges

 Portable Design, Open-Source Implementation

 Yet, able to take advantage of HW-specific capabilities

 Helped revitalize Community Interest in Parallel Languages

15

MPI

OpenMP

Pthreads

Target Machine

Low-Level
Implementation

Concepts

“Why is everything so tedious/difficult?”

“Why don’t my programs port trivially?”
“Why don’t I have more control?”

ZPL

HPF

Target Machine

High-Level
Abstractions

Multiresolution Design: Support multiple tiers of features

 higher levels for programmability, productivity

 lower levels for greater degrees of control

 build the higher-level concepts in terms of the lower
 examples: array distributions and layouts; forall loop implementations

 permit the user to intermix layers arbitrarily

Domain Maps

Data Parallelism

Task Parallelism

Base Language

Target Machine

Locality Control

Chapel language concepts

16

Consider:
 Most HPC languages couple parallelism and locality

 e.g., I can’t create parallelism in MPI/UPC without also introducing locality

 Or, they don’t support a concept for locality at all
 e.g., OpenMP (though it’s working on improving this)

Yet these are distinct, important things!
(and, getting more important with time)

 parallelism: “Please execute these at the same time”

 locality: “Do this here rather than there”

For this reason, Chapel supports distinct concepts
 parallelism: tasks

 locality: locales

17

Definition:
 Abstract unit of target architecture

 Supports reasoning about locality

 Capable of running tasks and storing variables
 i.e., has processors and memory

Typically: A compute node (multi-core processor or SMP node)

18

 Specify # of locales when running Chapel programs

 Chapel provides built-in locale variables

19

% a.out --numLocales=8

config const numLocales: int = …;

const Locales: [0..#numLocales] locale = …;

L0 L1 L2 L3 L4 L5 L6 L7 Locales:

% a.out –nl 8

 Locale methods support queries about target system:

 On-clauses support placement of computations:

20

proc locale.physicalMemory(…) { … }

proc locale.numCores { … }

proc locale.id { … }

proc locale.name { … }

writeln(“on locale 0”);

on Locales[1] do

 writeln(“now on locale 1”);

writeln(“on locale 0 again”);

cobegin {

 on A[i,j] do

 bigComputation(A);

 on node.left do

 search(node.left);

}

Concept:
 Today, Chapel supports a 1D array of locales

 users can reshape/slice to suit their computation’s needs

21

locale

locale

locale

locale

Concept:
 Today, Chapel supports a 1D array of locales

 users can reshape/slice to suit their computation’s needs

 Apart from locale queries, no further visibility into locale
 no mechanism to refer to specific NUMA domains, processors, memories, …

 assumption: compiler, runtime, OS, HW can handle intra-locale concerns

22

locale

locale

locale

locale

Concept:
 Support locales within locales to describe architectural

sub-structures within a node

 As with traditional locales, on-clauses and domain maps
should be used to map tasks and variables to a sub-locale’s
memory and processors

 Locale structure is defined as Chapel code
 permits implementation policies to be specified in-language

 introduces a new Chapel role: architectural modeler

 23

locale

locale

locale

locale

sub-locale A

sub-locale B

sub-locale A

sub-locale B

sub-locale A

sub-locale B

sub-locale A

sub-locale B

C C D E C C D E C C D E C C D E

class locale: AbstractLocale {

 const xt = 6, yt = xTiles;

 const sublocGrid: [0..#xt, 0..#yt] tiledLoc = …;

 const allSublocs: [0..#xt*yt] tiledLoc = …;

 …memory interface…

 …tasking interface…

}

class tiledLoc: AbstractLocale {

 …memory interface…

 …tasking interface…

}

24
Tilera Tile-Gx

class locale: AbstractLocale {

 const numCPUs = 2, numGPUs = 2;

 const cpus: [0..#numCPUs] cpuLoc = …;

 const gpus: [0..#numGPUs] gpuLoc = …;

 …memory interface…

 …tasking interface…

}

class cpuLoc: AbstractLocale { … }

class gpuLoc: AbstractLocale {

 …sublocales for different

 memory types, thread blocks…?

 …memory, tasking interfaces…

}
25

26

Memory Interface:
proc AbstractLocale.malloc(size_t size) { … }

proc AbstractLocale.realloc(size_t size) { … }

proc AbstractLocale.free(size_t size) { … }

…

Tasking Interface:
proc AbstractLocale.taskBegin(…) { … }

proc AbstractLocale.tasksCobegin(…) { … }

…

In practice, we expect the guts of these to be implemented via
calls out to external C routines

Memory Policy Questions:
 If a sublocale is out of memory, what happens?

 out-of-memory error?

 allocate elsewhere? sibling? parent? somewhere else? (on-node v. off?)

 What happens on locales with no memory?
 illegal? allocate on sublocale? somewhere else?

Tasking Policy Questions:
 Can a task that’s placed on a specific sublocale migrate?

 to where? sibling? parent? somewhere else?

 What happens on locales with no processors?
 illegal? allocate on sublocale? parent locale?

 using what heuristic? sublocale[0]? round-robin? dynamic load balance?

Goal: Any of these policies should be possible
27

28

Q: What happens to tasks on locales with no processors?

e.g., a sublocale representing a memory resource

locale

CPU
sublocale

GPU sublocale

C C D E

on “Texture Memory” do begin foo()

29

Q: What happens to tasks on locales with no processors?

e.g., a sublocale representing a memory resource

A1: Throw an error?

proc TextureMemLocale.taskBegin(…) {

 halt(“You can’t run tasks on texture memory!”);

}

Downside: potential user inconvenience:

on Locales[2].gpuLoc.texMem do var X: [1..n, 1..n] int;

on X[i,j] do begin refine(X);

30

Q: What happens to tasks on locales with no processors?

e.g., a sublocale representing a memory resource

A2: Defer to parent?

proc TextureMemLocale.taskBegin(…) {

 parentLocale.taskBegin(…);

}

31

Q: What happens to tasks on locales with no processors?

e.g., a sublocale representing a memory resource

A3: Or perhaps just run directly near memory?

proc TextureMemLocale.taskBegin(…) {

 extern proc chpl_task_create_GPU_Task(…);

 chpl_task_create_GPU_Task(…);

}

32

Q: What happens to tasks on locales with no (direct) processors?

e.g., a locale that serves as a container for other sublocales

on “multicore NUMA Node” do begin foo()

33

Q: What happens to tasks on locales with no (direct) processors?

e.g., a locale that serves as a container for other sublocales

A1: Run on a fixed or arbitrary sublocale?

proc NUMANode.taskBegin(…) {

 numaDomain[0].taskBegin(…);

}

34

Q: What happens to tasks on locales with no (direct) processors?

e.g., a locale that serves as a container for other sublocales

A2: Schedule round-robin?

proc NUMANode.taskBegin(…) {

 const subloc = (nextSubLoc.fetchAdd(1))%numSubLocs;

 numaDomain[subloc].taskBegin(…);

}

class NUMANode {

 …

 var nextSubLoc: atomic int;

 …

}

35

Q: What happens to tasks on locales with no (direct) processors?

e.g., a locale that serves as a container for other sublocales

A3: Dynamically Load Balance?

proc NUMANode.taskBegin(…) {

 numaDomain[getBestSubLoc()].taskBegin(…);

}

proc NUMANode.getBestSubLoc() {

 const (numTasks, subloc)

 = minloc reduce (numaDomain.numTasks(),

 0..#numSubLocs);

 return subloc;

}

Related work:
 Sequoia (Aiken et al., Stanford)

 Hierarchical Place Trees (Sarkar et al., Rice)

Differences:
 Hierarchy only impacts locality, not semantics as in Sequoia

 analogous to PGAS languages vs. distributed memory

 No restrictions as to what HW must live in what node
 i.e., no “processors must live in leaf nodes” requirement

 Does not impose a strict abstract tree structure
 e.g., const sublocGrid: [0..#xt, 0..#yt] tiledLoc = …;

 User-specifiable concept
 convenience of specifying within Chapel

 mapping policies can be defined in-language

36

Motivation

Chapel Background

Hierarchical Locales in Chapel

Approach, Status, and Summary

37

As of Chapel, version 1.6:
 Locales are defined using Chapel code, but a single

definition is used for all target platforms
 see: modules/internal/ChapelLocale.chpl

 Task/Memory/Comm. interfaces are baked into compiler
 can switch between multiple implementations via env. vars.

 but each executable only supports one implementation

38

Plan for this work:
 Support multiple Locale definitions, selected by env. var.

 e.g., CHPL_LOCALE_MODEL (defaults based on CHPL_TARGET_PLATFORM)

 store locale models in subdirectories based on CHPL_LOCALE_MODEL:
 modules/locales/multiNUMA/ChapelLocale.chpl

 modules/locales/CPUGPU/ChapelLocale.chpl

 –M $CHPL_HOME/modules/standard/$CHPL_LOCALE_MODEL added to search path

 Compiler can remain ignorant of runtime interfaces
 one binary can support multiple tasking/memory models

 interfaces need no longer be identical across implementations

39

Locale ID/wide pointer representation: Simple integer
ID no longer suffices

Representation of ‘here’: Global integer in generated C
code no longer suffices

 ‘here’ must become task-private since different tasks will
have different sublocales at a given time

Communication Generation: A function of two locale
types, not one

(and they may not be known at compile-time)

40

Portability: Chapel code that refers to sub-locales can
cause problems on systems with different model

Mitigation Strategies
 Well-designed domain maps should buffer many typical

users from these challenges

 We anticipate identifying a few broad classes of locales that
characterize broad swaths of machines “well enough”

 More advanced runtime designs and compiler work could
help guard most task-parallel users from this level of detail

 Not a Chapel-specific challenge, fortunately

Code Generation: Dealing with targets for which C is
not the language of choice (e.g., CUDA)

41

Platform: multicore nodes with several NUMA domains

Approach:
 two-level locale structure

 outer: Complete node

 inner: NUMA domain

 (exposing cores/memories seems like overkill for now)

 Qthreads shepherd per NUMA domain for tasking

Why? Simple initial exercise with practical impact

Initial Goal: Support NUMA-aware STREAM Triad

42

Platform: Tilera tiled processor

Approach:
 2-to-3 level locale structure

 outer: Tiled processor

 inner: OS instance (can be configured at various granularities)

 potential for creating a sublocale per tile as well

Why? More interesting example w/ user interest
 reconfigurability, 2D layout particularly interesting

Initial Goal: Run Chapel codes using various Tilera
configurations
 ideally, with single Chapel locale definition file

43

Platform: Cluster of CPU+GPU Nodes

Approach:
 3-to-4 level locale structure

 outer: Network

 next: Compute Node

 next: CPU vs. GPU

 inner (potentially): distinct processor cores/memories (?)

Why? Look at #1 on the top-500
 provide a unified alternative to MPI+X

Initial Goal:
 Run some traditional CPU+GPU codes on one node

 Port some CPU+GPU cluster codes to Chapel

44

locale

CPU
sublocale

GPU sublocale

C C D E

Proof-of-Concept draft up and running:

 Two-level locale types defined as Chapel code

 Representing locale ID as a pair of 32-bit ints for now

 Draft memory and tasking interfaces implemented

 Sublocale-aware tasks being created
 NUMA node locales make use of Qthreads shepherds

 Tilera locales use OS hooks

 Initial performance improvements demonstrated
 Yet further tuning work is required

Working on Creating a trunk-ready version

45

 Get code into trunk

 Make sure performance for traditional architectures
isn’t impacted

 Port and study sample application codes

46

Represent physical machine as a hierarchical locale and
represent user’s locales as a slice of that hierarchy

 for topology-aware programming

 for jobs with dynamically-changing resource requirements
 due to changing job needs

 or failing HW

Combine with containment domains (Erez, UT Austin)
 the two concepts seem well-matched for each other

47

Next-generation nodes will likely present challenges

Chapel is better placed than current HPC languages
 Hierarchical locales should help with intra-node concerns

Hierarchical Locales have some attractive properties

 Defined in Chapel, potentially by users

 Support policy decisions

 Relaxes hard-coding of interfaces in compiler

Specification and implementation effort is underway

 Yet more work remains

48

49

Chapel project page: http://chapel.cray.com
 overview, papers, presentations, language spec, …

Chapel SourceForge page: https://sourceforge.net/projects/chapel/

 release downloads, public mailing lists, code repository, …

Blog Series:

 Myths About Scalable Programming Languages:
 https://www.ieeetcsc.org/activities/blog/

Mailing Lists:
 chapel_info@cray.com: contact the team

 chapel-users@lists.sourceforge.net: user-oriented discussion list

50

http://chapel.cray.com/
https://sourceforge.net/projects/chapel/
https://www.ieeetcsc.org/activities/blog/
https://www.ieeetcsc.org/activities/blog/

http://sourceforge.net/projects/chapel/ http://chapel.cray.com chapel_info@cray.com

http://sourceforge.net/projects/chapel/
http://chapel.cray.com/
mailto:chapel-info@cray.com

