
HPSF Project Proposal:
The Chapel Programming Language

The Chapel Team
HPSF Technical Advisory Council meeting
January 9, 2025

Chapel: A modern parallel programming language
• Portable & scalable
• Open-source & collaborative

Goals:
• Support general parallel programming
• Make parallel programming at scale far more productive

Chapel and Productivity:
Chapel supports code that is as…

…readable and writeable as Python

…while also being as…
…fast as Fortran / C / C++
…scalable as MPI / SHMEM
…portable as C
…GPU-ready as CUDA / HIP / OpenMP / Kokkos / …

2

What is Chapel?

Matches HPSF’s focus on:
• lowering barriers to using HPC
• aiding HPC community growth
• enabling HPC development efforts
• portable software for diverse hardware
• performance and productivity

0
50
100
150
200
250
300
350
400
450
500

128 256 512 576
G
iB
/s

Nodes

HDR-100 IB May 2021, 128 GiB/node

Arkouda Argsort Performance

0
200
400
600
800
1000
1200

128 256 512 896
G
iB
/s

Nodes

Slingshot-11 April 2023, 32 GiB/node
HDR-100 IB May 2021, 128 GiB/node

Arkouda Argsort Performance

HPE Cray EX
• Slingshot-11 network (200 Gb/s)
• 8192 compute nodes
• 256 TiB of 8-byte values
• ~8500 GiB/s (~31 seconds)

HPE Cray EX
• Slingshot-11 network (200 Gb/s)
• 896 compute nodes
• 28 TiB of 8-byte values
• ~1200 GiB/s (~24 seconds)

HPE Apollo
• HDR-100 InfiniBand network (100 Gb/s)
• 576 compute nodes
• 72 TiB of 8-byte values
• ~480 GiB/s (~150 seconds)

Implemented using ~100 lines of Chapel

Performance and Productivity: Arkouda Argsort

3

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

1024 2048 4096 8192
G
iB
/s

Nodes

Slingshot-11 May 2023, 32 GiB/node
Slingshot-11 April 2023, 32 GiB/node
HDR-100 IB May 2021, 128 GiB/node

Arkouda Argsort Performance

be
tt

er

Applications of Chapel

4[images provided by their respective teams and used with permission]

CHAMPS: 3D Unstructured CFD
Laurendeau, Bourgault-Côté, Parenteau, Plante, et al.

École Polytechnique Montréal

ChplUltra: Simulating Ultralight Dark Matter
Nikhil Padmanabhan, J. Luna Zagorac, et al.

Yale University et al.

Arkouda: Interactive Data Science at Massive Scale
Mike Merrill, Bill Reus, et al.

U.S. DoD

ChOp: Chapel-based Optimization
T. Carneiro, G. Helbecque, N. Melab, et al.

INRIA, IMEC, et al.

Chapel-based Hydrological Model Calibration
Marjan Asgari et al.

University of Guelph

Arachne Graph Analytics
Bader, Du, Rodriguez, et al.

New Jersey Institute of Technology

CHGL: Chapel Hypergraph Library
Louis Jenkins, Cliff Joslyn, Jesun Firoz, et al.

PNNL

CrayAI HyperParameter Optimization (HPO)
Ben Albrecht et al.

Cray Inc. / HPE

Lattice-Symmetries: a Quantum Many-Body Toolbox
Tom Westerhout

Radboud University

ChapQG: Layered Quasigeostrophic CFD
Ian Grooms and Scott Bachman

University of Colorado, Boulder et al.

Desk dot chpl: Utilities for Environmental Eng.
Nelson Luis Dias

The Federal University of Paraná, Brazil

RapidQ: Mapping Coral Biodiversity
Rebecca Green, Helen Fox, Scott Bachman, et al.

The Coral Reef Alliance

5

Productivity Across Diverse Application Scales (code and system size)

Computation: Aircraft simulation / CFD
Code size: 100,000+ lines
Systems: Desktops, HPC systems

Computation: Coral reef image analysis
Code size: ~300 lines
Systems: Desktops, HPC systems w/ GPUs

Computation: Atmospheric data analysis
Code size: 5000+ lines
Systems: Desktops w/ GPUs

[read this interview series at: https://chapel-lang.org/blog/series/7-questions-for-chapel-users/]

“Chapel allows me to use the available
CPU and GPU power efficiently without
low-level programming of data
synchronization, managing threads, etc.”

“With the coral reef program, I was able to
speed it up by a factor of 10,000. Some
of that was algorithmic, but Chapel had
the features that allowed me to do it.”

“Chapel worked as intended: the code
maintenance is very much reduced, and
its readability is astonishing. This enables
undergraduate students to contribute,
something almost impossible to think of
when using very complex software.”

https://chapel-lang.org/blog/series/7-questions-for-chapel-users/

In the Browser:
• GitHub Codespaces
• Attempt This Online (ATO)

Laptops/Desktops:
• Linux/UNIX
• Mac OS X
• Windows (leveraging WSL)

HPC Systems:
• Commodity clusters
• HPE/Cray supercomputers, such as:

– Frontier
– Perlmutter
– Piz Daint
– Polaris
– …

• Other vendors’ supercomputers

6

Where Does Chapel Run?

Cloud:
• AWS
• Microsoft Azure (?)

• Google Cloud (?)

CPUs:
• Intel
• AMD
• Arm (M1/M2, Graviton, A64FX, Raspberry Pi, …)

GPUs:
• NVIDIA
• AMD

Networks:
• Slingshot

• Aries/Gemini
• InfiniBand
• AWS EFA
• Ethernet

https://chapel-lang.org/docs/usingchapel/portability.html

https://chapel-lang.org/docs/usingchapel/portability.html

7

Synergies Between Chapel and HPSF’s Goals

Lowering barriers to using HPC • Chapel is helping users write real applications
• Many are writing HPC code for the first time
• others are simply leveraging their desktop multicore CPUs + GPUs

• Others are HPC experts, working more quickly than they otherwise could’ve

Aiding HPC community growth

Enabling HPC development efforts

Portable software for diverse hardware • Chapel currently supports most any HPC, desktop, or cloud system
• Its language design and code architecture support porting to others

Performance and productivity • Chapel performance often matches or beats conventional HPC technologies
• Code is almost always shorter and easier to read/write/maintain

Platform: GitHub
License: Apache 2.0
Release Cadence: Quarterly (Mar, June, Sept, Dec)
Contributors:

• over time: 200+ from 100+ affiliations worldwide
• per-release: ~25–35, primarily from HPE/Cray
• docs for contributors: chapel-lang.org/docs/developer/

Code of Conduct: CODE_OF_CONDUCT.md
Governance: HPE-led, with user input and guidance
Decision-Making:

• consensus-oriented
• ad hoc subteams to explore and propose solutions

• discussions on GitHub issues and in community forums

8

How Is Chapel Developed?

https://github.com/chapel-lang/chapel

https://chapel-lang.org/docs/developer/
https://github.com/chapel-lang/chapel/blob/main/CODE_OF_CONDUCT.md
https://github.com/chapel-lang/chapel

Release Formats:
• Source releases via GitHub
• Spack

• E4S
• Linux packages via apt/rpm
• Homebrew

• Docker
• Modules on HPE Cray systems
• ATO / GitHub Codespaces

Chapel releases leverage and bundle:
• GASNet (LBNL) and libfabric (OFI) for communication
• Qthreads (Sandia) for tasking

• hwloc (OpenMPI) for HW introspection
• jemalloc for memory allocation
• LLVM for back-end compilation
• GMP for bigint support
• re2 for regular expression support
• libunwind, utf8-decoder, whereami

9

How Is Chapel Deployed?

https://chapel-lang.org/download/

https://chapel-lang.org/download/

CI/CD: relatively quick, pre-merge checks
Smoke Testing: longer, post-merge checks

• goal: head off catastrophes overnight

Nightly Testing: 125+ jobs managed with Jenkins
• leverages a suite of 17,500+ tests

• spans a multitude of platforms, vendors, networks, …
• jobs for specific configs, compiler flags, user apps, …
• jobs for memory leaks, valgrind/asan errors, …
• jobs for correctness and performance tracking

10

How Is Chapel Tested?

https://chapel-lang.org/perf-nightly.html

https://chapel-lang.org/perf-nightly.html

Live/Virtual Events
• ChapelCon (formerly CHIUW), annually
• Office Hours, monthly
• Live Demo Sessions, monthly

Community / User Forums
• Discord
• Discourse
• Email Contact Alias chapel+qs@discoursemail.com
• GitHub Issues
• Gitter
• Reddit
• Stack Overflow

Electronic Broadcasts
• Chapel Blog, ~biweekly
• Community Newsletter, quarterly
• Announcement Emails, around big events

Social Media
• Bluesky
• Facebook
• LinkedIn
• Mastodon
• X / Twitter
• YouTube

11

How Does the Chapel Community Communicate?

https://chapel-lang.org/ChapelCon24.html
https://chapel-lang.org/events.html
https://chapel-lang.org/events.html
https://discord.com/invite/xu2xg45yqH
https://chapel.discourse.group/
https://github.com/chapel-lang/chapel/issues
https://gitter.im/chapel-lang/chapel
https://www.reddit.com/r/chapel/
http://stackoverflow.com/questions/tagged/chapel
https://chapel-lang.org/blog/
https://chapel.discourse.group/c/newsletters/24
https://chapel.discourse.group/c/announcements/8
https://bsky.app/profile/chapellanguage.bsky.social
https://www.facebook.com/ChapelLanguage
https://www.linkedin.com/company/ChapelLanguage/
https://mastodon.social/@chapelprogramminglanguage
https://x.com/ChapelLanguage
https://www.youtube.com/@ChapelLanguage

Maturity Level:
• We’re applying at the “Established” stage, believing we easily meet the requirements
• We’re interested in improving our processes under HPSF, which would also help move us toward the “Core” stage

– establishing a community governing body and documenting it

– establishing security processes
– extending merge privileges to non-HPE developers

Motivations for Applying:
• Believe it will help improve our project’s visibility and stature
• Expect it to help address “single-vendor” concerns that discourage potential users and collaborators
• Hope to network with other open-source HPC projects and share best practices

– Our experience with HPC testing, portability, performance tracking, etc. may be useful to other projects, and we have lots to learn too
– We’re particularly interested in leveraging Linux Foundation / HPSF expertise in the “Core” areas noted above

Infrastructure Needs:
• Nothing pressing at present
• Ideally: Compute resources outside HPE for community testing or the ability to “try Chapel in the cloud”
• Might be nice: Assistance with things like paid CI/CD runners, DNS registration, financial donations, etc.

12

Chapel’s HPSF Application

Thank you
https://chapel-lang.org
@ChapelLanguage

