Chapel: Task-Based Communication
in a Productive Language

Elliot Ronaghan, Chapel Team, Cray Inc.
SIAM PP18
March 8 2018

SIAM Conference on
/ Parallel Processing
\ fi

or Scientific Computing
CCRANY .
CHAPEL . ¢

—

= <3$-®

N

Safe Harbor Statement

~

Kl'his presentation may contain forward-looking statements that are
based on our current expectations. Forward looking statements
may include statements about our financial guidance and expected
operating results, our opportunities and future potential, our product
development and new product introduction plans, our ability to
expand and penetrate our addressable markets and other
statements that are not historical facts. These statements are only
predictions and actual results may materially vary from those
projected. Please refer to Cray's documents filed with the SEC from
time to time concerning factors that could affect the Company and

these forward-looking statements.
_ ? J

Copyright 2018 Cray Inc.

What is Chapel? —_— Y

Chapel: A productive parallel programming language

e portable
e Open-source
e a collaborative effort (/ N
(el —P7 g
! CHAPEL
Goals: —

e Support general parallel programming -
e “any parallel algorithm on any parallel hardware”

e Make parallel programming at scale far more productive

\

Copyright 2018 Cray Inc.

N
>/

Chapel and Productivity

e Chapel strives to be...
...as programmable as Python
...as fast as Fortran
...as scalable as MPIl, SHMEM, or UPC
...as portable as C
...as flexible as C++
...as fun as [your favorite programming language]

\

§

Copyright 2018 Cray Inc.

CLBG Cross-Language Summary PSSR A

(Oct 2017 standings)

100

I csharpcore
B dart
EEN erlang
Il fpascal
B fsharp
N gcc
N ghc
N gnat
g0
. gpp
hack
ifc
m java
N jruby
. lua
node
B ocaml
. perl
. B php
S~ i python3

= Pythoemn

s
3

Smalltalk - g mm st
sbcl
- B scala
RS swift
OCaml m RaCket\PHP = ‘t");pescript
~ O . yarv
J@V@@@[ﬂ]pﬂ; Dgt | - . t . D Il—.[lglp [[] egmean-smallest
Typescript |_EEotE D,‘% u- L GRS () gmean-fastest
_,4--@*. P O ST
=S -‘-tz::' _______ P

1.0 1.5] 3.0

Compressed Code Slze (normalized to smallest entry)

Execution Time
(normalized to fastest entry)

CLBG Cross-Language Summary
(Oct 2017 standings, zoomed in)

N
Typescript .",.\ |
Javaseript ©

- OCaml
\\\. N

“Scala
Haskell ® “Fi#
mi

Execution Time
(normalized to fastest entry)

. Rust

N o 1 O

<
.
.
C e

[} 2.5 3.0

1.0 1.5

Compressed Code Size (normalized to smallest entry)

I csharpcore
B dart
I erlang
W fpascal
B fsharp
N gcc
N ghe
N gnat
g0
. gpp
hack
ifc
B java
N jruby
. lua
node
B ocaml
N perl

\\\ B php

python3
I racket
. st

shcl
Bl scala

swift
I typescript
7]

M yarv
\(D gmean-smallest

(O gmean-fasfiest

CLBG Cross-Language Summary
(Oct 2017 standings, zoomed in)

N
Typescript .",.\ |
Javaseript ©

OCa

ml
30 ;

n
“Scala
Haskell ® “Fi#
D \\\.’\ \\\\

. \ \\P
~.. . mPascal
S \\ \ SO
~ \ AN N

N N
SN
RN
- @
(@) RS
<
<

Execution Time
(normalized to fastest entry)

()

Chapel N ‘\%‘:By\st

N o 1 O

<
.
.
C e

1.0 1.5 [} 2.5 3.0

Compressed Code Size (normalized to smallest entry)

B chapel
I csharpcore
B dart
I erlang
W fpascal
B fsharp
N gcc
N ghe
N gnat
g0
. gpp
hack
ifc
B java
N jruby
. lua
node
B ocaml
N perl

\\\ B php

python3
I racket
. st

shcl
Bl scala

swift
I typescript
7]

M yarv
\(D gmean-smallest

(O gmean-fasfiest

CLBG Cross-Language Summary PSSR A

(Oct 2017 standings)

100
B chapel
I csharpcore
B dart
EEN erlang
Il fpascal
B fsharp
N gcc
N ghc
N gnat
g0
. gpp
hack
ifc
m java
N jruby
. lua
node
B ocaml
. perl
. B php
S~ i python3

= Pythoemn

s
3

Smalltalk - g mm st
sbcl
- B scala
RS swift
OCamI] RaCket\PHP i = ‘t");pescript
Dart . - O ‘ . yarv
J@V@@@Tﬂpﬂ:. q. ﬂ . t o D ﬂ__l[lglp % gmean-smallest

Typescrlpt D'% - _‘ ») gmean-fastest
Chapel ‘.? :0"""‘ .n-«---OO '.. --9

Execution Time
(normalized to fastest entry)

----- me - %--.a

] 3.0

Compressed Code Slze (normalized to smallest entry)

Chapel Performance: HPC Benchmarks

.
\
CRANY
PSar

LCALS: Chapel vs. C + OpenMP

.
\

Shared memory performance competitive with hand-coded
Serial LCALS kernels: Chapel vs. g++

2 8 g4+ serial

= II|IIIIII|III“IIIIIIIIIIIIIIIIIIIIIIIIIII

Parallel LCALS kernels: Chapel vs g++ w/ E

OMP

Normalized
Time

Normalized
Time

LCALS

HPCC RA

HPCC RA Performance: Chapel vs. MPI

Performance of RA (atomics)

GUP/s

STREAM PRK R
o ol wm wm owmom II T T .'4"“”“ P _Locales (xsswms;:elrs\ouc:slk
hapel paraliel ref MPI bucketing —s— 1.1 w+q oversubscribed -+
. .
C
[riad 1Sx Stencil |
- \ - \ -
HPCC Stream Triad: Chapel vs. MPI+OpenMP = =Ras Isx Peformance: Chapel vs. MPI, SHMEM R Stencil PRK Scalability e
. \ . \ Stencil PRK Performance (weak scaling) .
\ \ \
[P0V o
Performance of STREAM I1Sx weakiSO Total Time
14 {00} P
25000
20000 e 12 L, 000 e
S 310 2
2 15000 ,..—-‘”‘MM . L
O 10000 El SHVEM R
5000 / ® 6 —Chapel
0 t 1 J =4 —MPI 5 Bl
1632 64 128 256 2 2 P = L L)
0 16 32 64 128 256
Locales 1 2 4 8 16 32 64 Locales
R:«rﬁ..;; - chllze:: - 1.12 Global e Nodes (x 36 cores per node)

MPI+OpentP —e— Chapel ——

7R
(O

Nightly performance graphs online
at: https://chapel-lang.org/perf

https://chapel-lang.org/perf

Chapel Performance: HPC Benchmarks

Local loop kernels

LCALS

STREAM
Triad

|Sx

HPCC RA

PRK
Stencil

Global Random
Updates

Embarrassing/Pleasing |

Parallelism

Bucket-Exchange

Pattern

Stencil Boundary
Exchanges

Nightly performance graphs online
at: https://chapel-lang.org/perf

https://chapel-lang.org/perf

=

14 fuII-t| ne employees + 2 summer mterns + 2—4 GSoC students

Chapel Community Partners o

B 7 THE GEORGE AY

{ et Ll "> WASHINGTON ‘//_/\

HAVERFORD S ONversT . \WESTERN
COLLEGE AMD "V}‘f’\‘ WASHINGTON, DC WASHINGTON UNIVERSITY

Casxr B omuce 9

THE UNIVERSITY OF TOKYO NIVERSITY OF
THE UNIVERSITY
Ayl MARYLAND

-~

A
rreeee '"I

B Lawrence Livermore
National Laboratory

BERKELEY LAB
Lawrence Berkeley Sandia National Laboratories

National Laboratory

(and several others...)
https://chapel-lang.org/collaborations.html

https://chapel-lang.org/collaborations.html

Plan for this talk

e Chapel by comparison: Random Access
e Runtime overview
e Performance optimizations enabled by runtime

@
k_/ Copyright 2018 Cray Inc.

Chapel by Comparison

HPCC Random Access — Y

e Random Access (RA) benchmark
e make random xor-updates to a distributed array of integers \
e stresses fine-grained communication (in its purest form)
e benchmark allows up to 1% of updates to be missed/dropped

¢

Random Access

/* Perform updates to main table. The scalar equivalent is:

for (i=0; i<NUPDATE; i++) {
Ran = (Ran << 1) # (((s64Int) Ran < 0) ? POLY : 0);
Table[Ran & (TABSIZE-1)] A= Ran;

PR —

R
i

MPI_Irecv(&LocalRecvBuffer, localBufferSize, tparams.dtype64,
MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &inreq);
while (i < SendCnt) {
/* receive messages */
do {
MPI_Test(&inreq, &have_done, &status);
if (have_done) {
if (status.MPI_TAG == UPDATE_TAG) {
MPI_Get_count(&status, tparams.dtype64, &recvUpdates);
bufferBase = 0;
for (j=0; j < recvUpdates; j ++) {
inmsg = LocalRecvBuffer[bufferBase+j];
LocalOffset = (inmsg & (tparams.TableSize - 1)) - tparams.GlobalStartMyProc;
HPCC_Table[LocalOffset] A= inmsg;

}
} else if (status.MPI_TAG == FINISHED_TAG) {
NumberReceiving--;
}else
MPI_Abort(MPI_COMM_WORLD, -1);
MPI_Irecv(&LocalRecvBuffer, localBufferSize, tparams.dtype64,
MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &inreq);
}
} while (have_done && NumberReceiving > 0);
if (pendingUpdates < maxPendingUpdates) {
Ran = (Ran << 1) A ((s64Int) Ran < ZERO64B ? POLY : ZERO64B);
GlobalOffset = Ran & (tparams.TableSize-1);
if (GlobalOffset < tparams.Top)
WhichPe = (GlobalOffset / (tparams.MinLocalTableSize + 1));
else
WhichPe = ((GlobalOffset - tparams.Remainder) / tparams.MinLocalTableSize);
if (WhichPe == tparams.MyProc) {
LocalOffset = (Ran & (tparams.TableSize - 1)) - tparams.GlobalStartMyProc;
HPCC_Table[LocalOffset] *= Ran;

@

(GUPS) Kernel: MPI

} else{
HPCC_InsertUpdate(Ran, WhichPe, Buckets);
pendingUpdates++;

i++;
}
else {
MPI_Test(&outreq, &have_done, MPI_STATUS_IGNORE);
if (have_done) {
outreq = MPI_REQUEST_NULL;
pe = HPCC_GetUpdates(Buckets, LocalSendBuffer, localBufferSize, &peUpdates);
MPI_Isend(&LocalSendBuffer, peUpdates, tparams.dtype64, (int)pe, UPDATE_TAG,
MPI_COMM_WORLD, &outreq);
pendingUpdates -= peUpdates;
}
}
}

/* send remaining updates in buckets */
while (pendingUpdates > 0) {
/* receive messages */
do{
MPI_Test(&inreq, &ave_done, &status);
if (have_done) {
if (status.MPI_TAG == UPDATE_TAG) {
MPI_Get_count(&status, tparams.dtype64, &recvUpdates);
bufferBase = 0;
for (j=0; j < recvUpdates; j ++) {
inmsg = LocalRecvBuffer[bufferBase+j];
LocalOffset = (inmsg & (tparams.TableSize - 1)) - tparams.GlobalStartMyProc;
HPCC_Table[LocalOffset] = inmsg;

}
} else if (status.MPI_TAG == FINISHED_TAG) {
/* we got a done message. Thanks for playing... */
NumberReceiving--;
}else {
MPI_Abort(MPI_COMM_WORLD, -1);

}
MPI_Irecv(&LocalRecvBuffer, localBufferSize, tparams.dtype64,
MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &inreq);

} while (have_done && NumberReceiving > 0);

-
b
CRAY

[\

MPI_Test(&outreq, &have_done, MPI_STATUS_IGNORE); ‘ \
if (have_done) { \
outreq = MPI_REQUEST_NULL;
pe = HPCC_GetUpdates(Buckets, LocalSendBuffer, localBufferSize, &peUpdates);
MPI_Isend(&LocalSendBuffer, peUpdates, tparams.dtype64, (int)pe, UPDATE_TAG
MPI_COMM_WORLD, &outreq);
pendingUpdates -= peUpdates;

/* send our done messages */
for (proc_count = 0 ; proc_count < tparams.NumProcs ; ++proc_count) {
if (proc_count == tparams.MyProc) { tparams.finish_req[tparams.MyProc] =
MPI_REQUEST_NULL; continue; }
/* send garbage - who cares, no one will look at it */
MPI_Isend(&Ran, 0, tparams.dtype64, proc_count, FINISHED_TAG,
MPI_COMM_WORLD, tparams.finish_req + proc_count);
}

/* Finish everyone else up... */
while (NumberReceiving > 0) {
MPI_Wait(&inreq, &status);
if (status.MPI_TAG == UPDATE_TAG) {
MPI_Get_count(&status, tparams.dtype64, &recvUpdates);
bufferBase = 0;
for (j=0; j < recvUpdates; j ++) {
inmsg = LocalRecvBuffer[bufferBase+j];
LocalOffset = (inmsg & (tparams.TableSize - 1)) - tparams.GlobalStartMyProc;
HPCC_Table[LocalOffset] = inmsg;

}
} else if (status.MPI_TAG == FINISHED_TAG) {
I* we got a done message. Thanks for playing... */
NumberReceiving--;
}else {
MPI_Abort(MPI_COMM_WORLD, -1);

}
MPI_Irecv(&LocalRecvBuffer, localBufferSize, tparams.dtype64,
MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &inreq);
}

MPI_Waitall(tparams.NumProcs, tparams.finish_req, tparams.finish_statuses);

Random Access (GUPS) Kernel: Chapel <=|=A:Yf '

/* Perform updates to main table. The scalar equivalent is:
*
for (i=0; i<NUPDATE,; 1i++) {
Ran = (Ran << 1) * (((s6d4Int) Ran < 0) ? POLY : 0);
Table[Ran & (TABSIZE-1)] “= Ran;
}

* Ok F o F

Random Access (GUPS) Kernel: Chapel <=|=A:Yf '

/* Perform updates to main table. The scalar equivalent is:
*

% for (1i=0; 1i<NUPDATE,; i++) {

* Ran = (Ran << 1) © (((s64Int) Ran < 0) 2?2 POLY : 0);
2 Table[Ran & (TABSIZE-1)] “= Ran;

* }

*/

Chapel Code

forall (, r) in zip(Updates, RAStream()) do
T[r & indexMask] "= r;

)
Random Access (GUPS) Kernel: Chapel CRAN,
forall (, r) in zip(Updates, RAStream()) do

T[r & indexMask] "= r;

Random Access (GUPS) Kernel: Chapel

Chapel RMO

forall (, r) in zip(Updates, RAStream()) do
T[r & indexMask] "= r;

Chapel On-stmt

b
CRAY

forall (, r) in zip(Updates, RAStream()) do
on TableDist.idxToLocale[r & indexMask] do
T[r & indexMask] "= r;

)
Random Access (GUPS) Kernel: Chapel CRAaN
forall (, r) in zip(Updates, RAStream()) do

T[r & indexMask] "= r;

Chapel On-stmt

forall (, r) in zip(Updates, RAStream()) do
on TableDist.idxToLocale[r & indexMask] do
T[r & indexMask] "= r;

Chapel Atomic

forall (, r) in zip (Updates, RAStream()) do

T[r & indexMask] .xor(r);

HPCC RA Performance: Chapel vs.

Performance of RA
(Chapel vs MPI)

MPI

16 32 64 128

Locales

=
= Copyright 2018 Cray Inc.

\
CR=RAY |
[\
S \
\

Reference no-bucketing =
Chapel =—*—

Chapel Runtime

Compiling Chapel

Chapel

Source
Code

Standard
Modules
(in Chapel)

Chapel
Executable

Chapel Compilation Architecture

Chapel
Source
Code

Chapel

Compiler

Chapel-to-C Generated
Compiler C Code

_.[

Standard
C Compiler
& Linker

J

I

Standard
Modules
(in Chapel)

Internal Modules
(in Chapel)

Runtime Support

: | Library (in C)

el Q| E

c»m D

o= 3 3

1 BN ER B

A3 IS |]<
1218

e ll =

L2 LS
Sec0cec0ccc0000000000000000000s

Chapel
Executable

— TT

Chapel Compilation Architecture

: | Runtime Support
: | Library (in C)
AR

(B g c%
ez |13
1A =R
el s

\

\

Chapel Runtime cRas

e Lowest level of Chapel software stack
e Supports language concepts and program activities ‘
e Task creation, communication, memory allocation

e Composed of layers
e Standardized interfaces
e Interchangeable implementations

\

Chapel Runtime Organization

Chapel Runtime Support Library

Commu- Tasking Memory Launch- Qlo Timers
nication ers

Standard

Standard and third-party libraries

(

Runtime Tasking Layer

Chapel Runtime Support Library

Tasking

Synchronization

el S

Qthreads Massive-
fifo Tasks Threads
(Sandia) (U Tokyo)
pthreads
POSIX
Threads

Runtime Tasking Layer

e Supports parallelism

e Operations
e Create a group of tasks

e Start a “moved” task
e Start a remote task “moved” by the comm layer

C

Runtime Tasking Layer

Qthreads Overview

Qthreads
Tasks
(Sandia)

\
Qthreads Overview ANy

e Lightweight, locality-aware tasking library
e cooperative scheduling
e (threads are entirely in user space
e extremely fast task creation and switching
e designed to be highly concurrent
e run millions of gthreads, limited only by available memory
e locality-aware
e multiple scheduler options
e From simple fifo queues to advanced work-stealing schedulers

¢

Copyright 2014 Cray Inc.

Runtime Communication Layer

Chapel Runtime Support Library

Communication

—

GASNet
(Berkeley)

ugni

\

\

Runtime Communication Layer

e Supports Communication
e gets, puts, remote-task-creation

e Works with tasking layer (through API)

e allows arbitrary comm/compute overlap

chpl comm put (..) {
done = do remote put(..);
while (!complete (&done)) {
chpl task yield(); //yield while waiting for network
}
}

\
Communication + Tasking Overview CRAY

e “Unified” runtime permits many optimizations
e standardized APls prevent unnecessary/harmful coupling

e e.g. allows communication and computation overlap
e in a trivial to implement manner
e task switching in user-space makes this fast
e cooperative tasking minimizes overhead for creating many tasks

\

Copyright 2014 Cray Inc.

(35)

Comm/compute overlap with RA

HPCC RA Performance: Chapel vs.

Performance of RA
(Chapel vs MPI)

MPI

16 32 64 128

Locales

=
= Copyright 2018 Cray Inc.

\
CR=RAY |
[\
S \
\

Reference no-bucketing =
Chapel =—*—

\
HPCC RA Performance: Chapel vs. MPI ANy,
UpdateDist = new dmap (new Block (boundingBox={0..N U-1})); \
Performance of RA |
(Chapel vs MPI)
25p--""""""" """ °"T°"TTTTTTTTTToTT T

Reference no-bucketing =
Chapel =—*—

HPCC RA Performance: Chapel vs. MP! o

Q \
Update Dist Declaration) \

UpdateDist = new dmap (new Block (boundingBox={0..N U-1}, \
tasksPerLocale=2*here.maxTaskPar)) ;

Performance of RA
(Chapel vs MPI)

Reference no-bucketing =
Chapel =—*—
Chapel oversubscribed *==®-*

Wrapping Up

\
Summary CRAY |
(Y \
S \
\

e Chapel is a productive parallel programming language
e productivity enabled by rich tasking and communication runtime \

e Flexible, but cohesive runtime enables optimizations
e €.g. comm/compute overlap
o future avenues: distributed work stealing, comm aggregation

e Chapel performance can match C+MPI+OpenMP

e with improvements in readability, writability, code size

\

Copyright 2018 Cray Inc.

Chapel Resources

The Chapel age

What is Chapel?

Home Chapel is a modern programming language that is...
Chapel Overview
« parallel: contains first-class concepts for concurrent and parallel computation
What's New? « productive: designed with programmability and performance in mind
Emwni:',a: « portable: runs on laptops, clusters, the cloud, and HPC systems

« scalable: supports locality-oriented features for distributed memory systems

How Can | Learn Chapel? open-source: hosted on GitHub, permissively licensed

Documentation

Download Chapel New to Chapel?

Try It Now

Rolease Notes

As an introduction to Chapel, you may want to...

« read a blog article or book chapter
« watch an overview talk or browse its slides
Soclal Media / Blog Posts « download the release
Press .
.

User Resources
Educator Resources
Developer Resources

browse sample programs

s enitions view other resources to learn how to trivially write distributed programs like this

Tutorlals
Publications and Papers

use CyclicDist; // use the Cyclic distribution Library
CHIUW config const n = 10@; // use ./a.out --n=<val> to override this default
CHUG
Lightning Talks forall i in {1..n} dmapped Cyclic(startldx=1) do

writeln("Hello from iteration ", i, " of ", n, " running on node ", here.id);
Contributors / Credits

Research Groups

License

What's Hot?

lang. i i =
m;: - ywm Chapel 1.16 is now available—download a copy today!

« The CHIUW 2018 call for participation is now available!
O « A recent Cray blog post reports on highlights from CHIUW 2017.
LYo « Chapel is now one of the supported languages on Try It Online!
« Watch talks from ACCU 2017, CHIUW 2017, and ATPESC 2016 on YouTube.
« Browse slides from PADAL, EAGE, EMBRACE, ACCU, and other recent talks.

See also: What's New?

https://chapel-lang.org/

How to Track Chapel

http://facebook.com/ChapelLanguage

http://twitter.com/ChapelLanquage

https://www.youtube.com/channel/UCHMmM27bYjhknK5mU7Z2zPGsQ/

chapel-announce@lists.sourceforge.net

Page Messages Notificationsf)] Insights Publishing Tools

e Liked v
7/ N

N Following v 4 Share «s

-

C\ Chapel Programming Language
S/ Aol 210t e
» to note that Chapel is

Sthinthe

@ChapelLanguage

g8 8

B

program time / fastest program time

benchmarks game

Home

Posts.

Videos

Photos

About

Likes

m 270 people reached

& Uke W Comment 4 Sharo

© Russal Winder, Mykola Rabchavskiy and 2 others

o y
/ Computer Language Game's. " graphs.
4 That said, we're even prouder of how clear and concise the Chapel
th ‘entries that per .
Chapel .
Programming How many times slower?
Language 300

L el

%

20 Apr 2017 ubdq

\

J
Chapel Language
@ChapelLanguage
Chapel is a productive parallel

programming language designed for
large-scale computing whose

& chapel.cray.com
() Joined March 2016

3 115 Photos and videos

development is being led by Gcray_inc

TWEETS FOLLOWING FOLLOWERS LKES

222 12 129 32

Tweets Tweets & replies Media

7% Chapel Language GChapelLanguage - 5h
k@? Doing interesting applications work in Chapel or another PGAS language?
Submit it to the PAW 2017 workshop at @SC17.

sourceryinstitute.github.io/PAW/

Copyright 2018 Cray Inc.

Chapel Parallel Programming Language

Home Videos Playlists Channels About

Chapel videos

Parallel ing | Brad

jonne Training Program on Extreme-Scale Computing, Summer 2016,

Wild", Nikhil

W 2016: the 3rd Anousl Chapel
loble at

http://facebook.com/ChapelLanguage
http://twitter.com/ChapelLanguage
https://www.youtube.com/channel/UCHmm27bYjhknK5mU7ZzPGsQ/

Suggested Reading (healthy attention spans) <=|=,A‘Y\®' '

S \
\

Chapel chapter from Programming Models for Parallel Computing
a detailed overview of Chapel’s history, motivating themes, features \
published by MIT Press, November 2015
edited by Pavan Balaji (Argonne)
chapter is now also available online

Other Chapel papers/publications available at https://chapel-lang.org/papers.html

https://mitpress.mit.edu/programming
https://chapel-lang.org/publications/PMfPC-Chapel.pdf
https://chapel-lang.org/papers.html

Suggested Reading (short attention spans) —_P-CUy

(Y \
S \
\

CHIUW 2017: Surveying the Chapel Landscape, Cray Blog, July 2017.
e arun-down of recent events

Chapel: Productive Parallel Programming, Cray Blog, May 2013.
e a short-and-sweet introduction to Chapel
Six Ways to Say “Hello” in Chapel (parts 1, 2, 3), Cray Blog, Sep-Oct 2015.
e a series of articles illustrating the basics of parallelism and locality in Chapel
Why Chapel? (parts 1, 2, 3), Cray Blog, Jun-Oct 2014.

e a Series of articles answering common questions about why we are pursuing Chapel in
spite of the inherent challenges

[Ten] Myths About Scalable Programming Languages, |EEE TCSC Blog

(index available on chapel-lang.org “blog posts” page), Apr-Nov 2012.

e a series of technical opinion pieces designed to argue against standard reasons given for
not developing high-level parallel languages

(C\\
@
= Copyright 2018 Cray Inc.

http://www.cray.com/blog/chiuw-2017-surveying-chapel-landscape/
http://blog.cray.com/
http://blog.cray.com/?p=5889
http://blog.cray.com/
http://www.cray.com/blog/six-ways-to-say-hello-in-chapel-part-1/
http://www.cray.com/blog/six-ways-to-say-hello-in-chapel-part-1/
http://www.cray.com/blog/six-ways-to-say-hello-in-chapel-part-2/
http://www.cray.com/blog/six-ways-to-say-hello-in-chapel-part-3/
http://blog.cray.com/
http://blog.cray.com/?p=6877
http://blog.cray.com/?p=6877
http://blog.cray.com/?p=6908
http://blog.cray.com/?p=7060
http://blog.cray.com/
https://www.ieeetcsc.org/activities/blog
http://chapel-lang.org/media.html

Chapel StackOverflow and GitHub Issues

NS
='ctackoverflow Questions Jobs Documentation Tags Users Q_ [chapel]
O This repository Pull requests Issues Marketplace Gist A 4+~ " v
Tagged Questions nfo newest frequent votes adt
a4 O - v
Chapel, the Cascade High Productivity Language, is a parallel programming language developed by Cray. - cha pel lang / Chapel © Watch a5 % Unstar | 455 ? Fork | 145
learn more... top users synonyms \
1 Code @ Issues 292 Pull requests 26 Projects 0 Settings Insights ~
2 Can one generate a grid of the Locales where a Distribution is mapped? i o) i
votes))) Filters ~ is:issue is:open Labels Milestones New issue
If | run the following code: use BlockDist; config const dimension: int = 5; const space = {0..#
0..#di ion}); const i domain(2) ingl jpace) = space
chapel asked 13 hours @ .) .
ba @® 292 0Open v 77 Closed Author ~ Labels v Projects v Milestones v Assignee v Sort v
22 views . s
52 02
@® Implement "bounded-coforall" optimization for remote coforalls area: Compiler
3 Is “[<var> in <distributed variable>]" equivalent to “forall'? YRR
1 #6357 13 hi h
vores | noticed something in a snippet of code | was given: var D: domain(2) IO T
= Space; var A: [D] int; [a in A] a = a.locale.id; Is [a in A] equivalent to forallain A a = . . .
(® Consider using processor atomics for remote coforalls EndCount area: Compiler 313
syntax chapel asked 15 hours @ 7W
N barrymoo:
24 views . a2 of #6356 opened 13 hours ago by ronawho 0of6
(® make uninstall area: BTR |type: Feature Request
2 Get Non-primitive Variables from within a Cobegin - Chapel #6353 opened 14 hours ago by mppf
votes
| want to compute some information in parallel and use the result outside the cobegin. To be 2 "
my requirement is to retrieve a domain (and other non primitive types) like this var a,b: ... © make check doesn't work with ./configure area: BTR 7
e asked Apr 18.a #6352 opened 16 hours ago by mppf
- . PPRETEY . . 3 .
45 views 4v> ’:?:”D;‘ (@ Passing variable via in intent to a forall loop seems to create an iteration-private variable, (2
not a task-private one area: Compiler |type: Bug
#6351 opened a day ago by cassella
3 Is there a default String conversion method in Chapel?
voes Is there a default method that gets called when | try to cast an object into a string? (E.g. toSH| (@ Remove chpl_comm_make_progress area: Runtime easy |type: Design 1
_n __str__in Python.) | want to be able to do the following with an array of Objects, ... #6349 opened a day ago by sungeunchoi
® Runtime error after make on Linux Mint area: BTR user issue s
#6348 opened a day ago by danindiana

Copyright 2018 Cray Inc.

Where to..

Submit bug reports:
GitHub issues for chapel-lang/chapel: public bug forum
chapel_bugs@cray.com: for reporting non-public bugs

Ask User-Oriented Questions:
StackOverflow: when appropriate / other users might care
#chapel-users (irc.freenode.net): user-oriented IRC channel
chapel-users@lists.sourceforge.net: user discussions

Discuss Chapel development
chapel-developers@lists.sourceforge.net: developer discussions
#chapel-developers (irc.freenode.net): developer-oriented IRC channel

Discuss Chapel’s use in education
chapel-education@lists.sourceforge.net: educator discussions

Directly contact Chapel team at Cray: chapel info@cray.com

¢

Copyright 2018 Cray Inc.

Questions?

\
Legal Disclaimer SRR

Information in this document is provided in connection with Cray Inc. products. No license, express or implied, to any intellectual property o \

rights is granted by this document.
Cray Inc. may make changes to specifications and product descriptions at any time, without notice.
All products, dates and figures specified are preliminary based on current expectations, and are subject to change without notice. \

Cray hardware and software products may contain design defects or errors known as errata, which may cause the product to deviate from
published specifications. Current characterized errata are available on request.

Cray uses codenames internally to identify products that are in development and not yet publically announced for release. Customers and
other third parties are not authorized by Cray Inc. to use codenames in advertising, promotion or marketing and any use of Cray Inc.
internal codenames is at the sole risk of the user.

Performance tests and ratings are measured using specific systems and/or components and reflect the approximate performance of Cray
Inc. products as measured by those tests. Any difference in system hardware or software design or configuration may affect actual
performance.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY and design, SONEXION, and
URIKA. The following are trademarks of Cray Inc.. ACE, APPRENTICE2, CHAPEL, CLUSTER CONNECT, CRAYPAT, CRAYPORT,
ECOPHLEX; LIBSCI, NODEKARE, THREADSTORM. The following system family marks, and associated model number marks, are
trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT, and XT. The registered trademark LINUX is used pursuant to a sublicense from LMI,
the exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis. Other trademarks used in this document are the
property of their respective owners.

(C\\
@
= Copyright 2018 Cray Inc.

SIAM Conference on
/ Parallel Processing
\ for Scientific Computing

)
Saag™ 2

C R0y

THE SUPERCOMPUTER COMPANY

