
Chapel: A Parallel Language
for Productive Scalable Computing

Brad Chamberlain, Chapel Team, Cray Inc.
SeaLang Meetup
December 6, 2017

This presentation may contain forward-looking statements that are
based on our current expectations. Forward looking statements
may include statements about our financial guidance and expected
operating results, our opportunities and future potential, our product
development and new product introduction plans, our ability to
expand and penetrate our addressable markets and other
statements that are not historical facts. These statements are only
predictions and actual results may materially vary from those
projected. Please refer to Cray's documents filed with the SEC from
time to time concerning factors that could affect the Company and
these forward-looking statements.

Safe Harbor Statement

Copyright 2017 Cray Inc.
2

My Background

Copyright 2017 Cray Inc.
3

Education:
● Earned Ph.D. from University of Washington CSE in 2001

● focused on the ZPL data-parallel array language
● Remain associated with UW CSE as an Affiliate Professor

Industry:
● Currently a Principal Engineer at Cray Inc.
● Technical lead / founding member of the Chapel project

Who are you?

Copyright 2017 Cray Inc.

● Workplace / Role?
● Programming Languages?

● Favorites?
● Ones you work on / in?

● Parallel Programming Experience?
● On desktop? At scale?

● Anything else?

4

Who are you? (My Answers)

Copyright 2017 Cray Inc.

● Workplace / Role? Cray / Chapel Technical Lead
● Programming Languages?

● Favorites? Pascal (sentimental), Ada (safety), C (control / speed)
● Ones you work on / in? Chapel, C/C++

● Parallel Programming Experience? just a tad
● On desktop? At scale?

● Anything else? I don’t consider myself a PL expert
● more of a parallel expert who works in languages/compilers

5

Plan for Tonight

Copyright 2017 Cray Inc.

Elements:
● prepared overview talk
● from there, whatever you like…

…interactive Chapel programming demo?
…more in-depth presentation of some topic?
…Q&A / discussion?

Ground Rules:
● please ask questions anytime
● if I get too hand-wavy, feel free to ask “got a visual for that?”

6

What is Chapel?

7
Copyright 2017 Cray Inc.

What is Chapel?

Chapel: A productive parallel programming language
● portable
● open-source
● a collaborative effort

Goals:
● Support general parallel programming

● “any parallel algorithm on any parallel hardware”
● Make parallel programming at scale far more productive

Copyright 2017 Cray Inc.
8

What does “Productivity” mean to you?

Copyright 2017 Cray Inc.

Recent Graduates:
“something similar to what I used in school: Python, Matlab, Java, …”

Seasoned HPC Programmers:
“that sugary stuff that I don’t need because I was born to suffer”

Computational Scientists:
“something that lets me express my parallel computations without having to wrestle
with architecture-specific details”

Chapel Team:
“something that lets computational scientists express what they want,
without taking away the control that HPC programmers want,
implemented in a language as attractive as recent graduates want.”

want full control to ensure performance”

9

Chapel and Other Languages

Copyright 2017 Cray Inc.
10

Chapel strives to be as…
…programmable as Python
…fast as Fortran
…scalable as MPI, SHMEM, or UPC
…portable as C
…flexible as C++
…fun as [your favorite programming language]

“The Audacity of Chapel”

Copyright 2017 Cray Inc.

audacity (according to Google):
/ɔːˈdasɪti/
noun
1. a willingness to take bold risks.

“I applaud the audacity of the Chapel team in attempting to create
a new language given how hard it is for new languages to succeed.”

2. rude or disrespectful behaviour; impudence.
“I can’t believe the Chapel team has the audacity to create a new
language when we already have [C++ | MPI | OpenCL | Python | …]!”

11

Scalable Parallel Programming Concerns

Copyright 2017 Cray Inc.

Q: What do HPC programmers need from a language?
A: Serial Code: Software engineering and performance

Parallelism: What should execute simultaneously?
Locality: Where should those tasks execute?
Mapping: How to map the program to the system?
Separation of Concerns: Decouple these concerns

These are first-order concerns, yet…
existing languages have not treated all of them as such.

12

The Challenge

Copyright 2017 Cray Inc.

Q: So why don’t we already have such a language?
A: Technical challenges?

● while they exist, we don’t think this is the main issue…
A: Due to a lack of…

…long-term efforts
…resources
…co-design between developers and users
…community will
…patience

Chapel is our attempt to reverse this trend

13

The Chapel Team at Cray (May 2017)

Copyright 2017 Cray Inc.
14

14 full-time employees + 2 summer interns + 2–4 GSoC students

The Chapel Team at Cray (May 2017)

Copyright 2017 Cray Inc.
15

14 full-time employees + 2 summer interns + 2–4 GSoC students

You? A friend?
(hiring a manager-evangelist)

Chapel Community Partners

Copyright 2017 Cray Inc.

https://chapel-lang.org/collaborations.html
(and several others…)

16

A Chapel Sampler

17
Copyright 2017 Cray Inc.

Domain Maps
Data Parallelism
Task Parallelism
Base Language

Target
Machine

Locality Control

Chapel language concepts

Copyright 2017 Cray Inc.

Chapel language feature areas

18

Base Language

Copyright 2017 Cray Inc.

Domain Maps
Data Parallelism
Task Parallelism
Base Language

Target
Machine

Locality Control

Lower-level Chapel

19

Base Language Features, by example

iter fib(n) {
var current = 0,

next = 1;

for i in 1..n {
yield current;
current += next;
current <=> next;

}
}

0
1
1
2
3
5
8
…

Copyright 2017 Cray Inc.

config const n = 10;

for f in fib(n) do
writeln(f);

20

Base Language Features, by example

iter fib(n) {
var current = 0,

next = 1;

for i in 1..n {
yield current;
current += next;
current <=> next;

}
}

Copyright 2017 Cray Inc.

CLU-style iteratorsCLU-style iteratorsModern iterators

0
1
1
2
3
5
8
…

config const n = 10;

for f in fib(n) do
writeln(f);

21

config const n = 10;

for f in fib(n) do
writeln(f);

Base Language Features, by example

iter fib(n) {
var current = 0,

next = 1;

for i in 1..n {
yield current;
current += next;
current <=> next;

}
}

Copyright 2017 Cray Inc.

Configuration declarations
(to avoid command-line argument parsing)

./a.out –-n=1000000

0
1
1
2
3
5
8
…

22

config const n = 10;

for f in fib(n) do
writeln(f);

Base Language Features, by example

iter fib(n) {
var current = 0,

next = 1;

for i in 1..n {
yield current;
current += next;
current <=> next;

}
}

Copyright 2017 Cray Inc.

Static Type Inference for:
• arguments
• return types
• variables

Static Type Inference for:
• arguments
• return types
• variables

Static Type Inference for:
• arguments
• return types
• variables

Static Type Inference for:
• variables
• arguments
• return types

0
1
1
2
3
5
8
…

Static type inference for:
• arguments
• return types
• variables

23

Base Language Features, by example

iter fib(n) {
var current = 0,

next = 1;

for i in 1..n {
yield current;
current += next;
current <=> next;

}
}

Copyright 2017 Cray Inc.

config const n = 10;

for (i,f) in zip(0..#n, fib(n)) do
writeln("fib #", i, " is ", f);

Zippered iteration

fib #0 is 0
fib #1 is 1
fib #2 is 1
fib #3 is 2
fib #4 is 3
fib #5 is 5
fib #6 is 8
…

24

Base Language Features, by example

iter fib(n) {
var current = 0,

next = 1;

for i in 1..n {
yield current;
current += next;
current <=> next;

}
}

Copyright 2017 Cray Inc.

range types and
operators

config const n = 10;

for (i,f) in zip(0..#n, fib(n)) do
writeln("fib #", i, " is ", f);

Range types and
operators

fib #0 is 0
fib #1 is 1
fib #2 is 1
fib #3 is 2
fib #4 is 3
fib #5 is 5
fib #6 is 8
…

25

Base Language Features, by example

iter fib(n) {
var current = 0,

next = 1;

for i in 1..n {
yield current;
current += next;
current <=> next;

}
}

Copyright 2017 Cray Inc.

config const n = 10;

for (i,f) in zip(0..#n, fib(n)) do
writeln("fib #", i, " is ", f);

tuples

fib #0 is 0
fib #1 is 1
fib #2 is 1
fib #3 is 2
fib #4 is 3
fib #5 is 5
fib #6 is 8
…

26

Base Language Features, by example

iter fib(n) {
var current = 0,

next = 1;

for i in 1..n {
yield current;
current += next;
current <=> next;

}
}

Copyright 2017 Cray Inc.

config const n = 10;

for (i,f) in zip(0..#n, fib(n)) do
writeln("fib #", i, " is ", f);

fib #0 is 0
fib #1 is 1
fib #2 is 1
fib #3 is 2
fib #4 is 3
fib #5 is 5
fib #6 is 8
…

27

Task Parallelism and Locality Control

Copyright 2017 Cray Inc.

Task Parallelism
Base Language

Target
Machine

Locality Control

Domain Maps
Data Parallelism

28

Task Parallelism and Locality, by example

Copyright 2017 Cray Inc.

taskParallel.chpl
coforall loc in Locales do

on loc {
const numTasks = here.numPUs();
coforall tid in 1..numTasks do

writef("Hello from task %n of %n "+
"running on %s\n",

tid, numTasks, here.name);
}

prompt> chpl taskParallel.chpl –o taskParallel
prompt> ./taskParallel –-numLocales=2
Hello from task 1 of 2 running on n1033

Hello from task 2 of 2 running on n1032

Hello from task 2 of 2 running on n1033

Hello from task 1 of 2 running on n1032

29

Task Parallelism and Locality, by example

Copyright 2017 Cray Inc.

taskParallel.chpl
coforall loc in Locales do

on loc {
const numTasks = here.numPUs();
coforall tid in 1..numTasks do

writef("Hello from task %n of %n "+
"running on %s\n",

tid, numTasks, here.name);
}

prompt> chpl taskParallel.chpl –o taskParallel
prompt> ./taskParallel –-numLocales=2
Hello from task 1 of 2 running on n1033

Hello from task 2 of 2 running on n1032

Hello from task 2 of 2 running on n1033

Hello from task 1 of 2 running on n1032

Abstraction	of
System	Resources

30

Task Parallelism and Locality, by example

Copyright 2017 Cray Inc.

taskParallel.chpl
coforall loc in Locales do

on loc {
const numTasks = here.numPUs();
coforall tid in 1..numTasks do

writef("Hello from task %n of %n "+
"running on %s\n",

tid, numTasks, here.name);
}

prompt> chpl taskParallel.chpl –o taskParallel
prompt> ./taskParallel –-numLocales=2
Hello from task 1 of 2 running on n1033

Hello from task 2 of 2 running on n1032

Hello from task 2 of 2 running on n1033

Hello from task 1 of 2 running on n1032

High-Level
Task	Parallelism

31

Task Parallelism and Locality, by example

Copyright 2017 Cray Inc.

taskParallel.chpl
coforall loc in Locales do

on loc {
const numTasks = here.numPUs();
coforall tid in 1..numTasks do

writef("Hello from task %n of %n "+
"running on %s\n",

tid, numTasks, here.name);
}

Control	of	Locality/Affinity

prompt> chpl taskParallel.chpl –o taskParallel
prompt> ./taskParallel –-numLocales=2
Hello from task 1 of 2 running on n1033

Hello from task 2 of 2 running on n1032

Hello from task 2 of 2 running on n1033

Hello from task 1 of 2 running on n1032

32

Task Parallelism and Locality, by example

Copyright 2017 Cray Inc.

taskParallel.chpl
coforall loc in Locales do

on loc {
const numTasks = here.numPUs();
coforall tid in 1..numTasks do

writef("Hello from task %n of %n "+
"running on %s\n",

tid, numTasks, here.name);
}

prompt> chpl taskParallel.chpl –o taskParallel
prompt> ./taskParallel –-numLocales=2
Hello from task 1 of 2 running on n1033

Hello from task 2 of 2 running on n1032

Hello from task 2 of 2 running on n1033

Hello from task 1 of 2 running on n1032

Abstraction	of
System	Resources

33

Task Parallelism and Locality, by example

Copyright 2017 Cray Inc.

taskParallel.chpl
coforall loc in Locales do

on loc {
const numTasks = here.numPUs();
coforall tid in 1..numTasks do

writef("Hello from task %n of %n "+
"running on %s\n",

tid, numTasks, here.name);
}

prompt> chpl taskParallel.chpl –o taskParallel
prompt> ./taskParallel –-numLocales=2
Hello from task 1 of 2 running on n1033

Hello from task 2 of 2 running on n1032

Hello from task 2 of 2 running on n1033

Hello from task 1 of 2 running on n1032

High-Level
Task	Parallelism

34

Task Parallelism and Locality, by example

Copyright 2017 Cray Inc.

taskParallel.chpl
coforall loc in Locales do

on loc {
const numTasks = here.numPUs();
coforall tid in 1..numTasks do

writef("Hello from task %n of %n "+
"running on %s\n",

tid, numTasks, here.name);
}

prompt> chpl taskParallel.chpl –o taskParallel
prompt> ./taskParallel –-numLocales=2
Hello from task 1 of 2 running on n1033

Hello from task 2 of 2 running on n1032

Hello from task 2 of 2 running on n1033

Hello from task 1 of 2 running on n1032

Not	seen	here:

Data-centric	task	coordination
via	atomic	and	full/empty	vars

35

Task Parallelism and Locality, by example

Copyright 2017 Cray Inc.

taskParallel.chpl
coforall loc in Locales do

on loc {
const numTasks = here.numPUs();
coforall tid in 1..numTasks do

writef("Hello from task %n of %n "+
"running on %s\n",

tid, numTasks, here.name);
}

prompt> chpl taskParallel.chpl –o taskParallel
prompt> ./taskParallel –-numLocales=2
Hello from task 1 of 2 running on n1033

Hello from task 2 of 2 running on n1032

Hello from task 2 of 2 running on n1033

Hello from task 1 of 2 running on n1032

36

Parallelism and Locality: Distinct in Chapel

Copyright 2017 Cray Inc.

● This is a parallel, but local program:

● This is a distributed, but serial program:

● This is a distributed parallel program:

writeln(“Hello from locale 0!”);
on Locales[1] do writeln(“Hello from locale 1!”);
on Locales[2] do writeln(“Hello from locale 2!”);

coforall i in 1..msgs do
writeln(“Hello from task ”, i);

coforall i in 1..msgs do
on Locales[i%numLocales] do
writeln(“Hello from task ”, i,

“ running on locale ”, here.id);

37

Chapel: Scoping and Locality

Copyright 2017 Cray Inc.

var i: int;

0 1 2 3 4

i

Locales (think: “compute nodes”)

38

Chapel: Scoping and Locality

Copyright 2017 Cray Inc.

var i: int;
on Locales[1] {

0 1 2 3 4

i

Locales (think: “compute nodes”)

39

Chapel: Scoping and Locality

Copyright 2017 Cray Inc.

var i: int;
on Locales[1] {
var j: int;

0 1 2 3 4

i j

Locales (think: “compute nodes”)

40

Chapel: Scoping and Locality

Copyright 2017 Cray Inc.

var i: int;
on Locales[1] {
var j: int;
coforall loc in Locales {
on loc {

0 1 2 3 4

i j

Locales (think: “compute nodes”)

41

0 1 2 3 4

Chapel: Scoping and Locality

Copyright 2017 Cray Inc.

var i: int;
on Locales[1] {
var j: int;
coforall loc in Locales {
on loc {
var k: int;
…

}
}

}

i j kkkkk

Locales (think: “compute nodes”)

42

0 1 2 3 4

Chapel: Scoping and Locality

Copyright 2017 Cray Inc.

var i: int;
on Locales[1] {
var j: int;
coforall loc in Locales {
on loc {
var k: int;
k = 2*i + j;

}
}

}

i j kkkkk

Locales (think: “compute nodes”)

OK to access i, j, and k
wherever they live k = 2*i + j;

43

0 1 2 3 4

Chapel: Scoping and Locality

Copyright 2017 Cray Inc.

var i: int;
on Locales[1] {
var j: int;
coforall loc in Locales {
on loc {
var k: int;
k = 2*i + j;

}
}

}

i j kkkkk

Locales (think: “compute nodes”)

here, i and j are remote, so
the compiler + runtime will

transfer their values
k = 2*i + j;

(j)

(i)

44

0 1 2 3 4

Chapel: Locality queries

Copyright 2017 Cray Inc.

var i: int;
on Locales[1] {
var j: int;
coforall loc in Locales {
on loc {
var k: int;

…here… // query the locale on which this task is running
…j.locale… // query the locale on which j is stored

}
}

} i j kkkkk

Locales (think: “compute nodes”)

45

Task Parallelism
Base Language

Target
Machine

Locality Control

Chapel language concepts

Copyright 2017 Cray Inc.

Higher-Level Features

Higher-level
Chapel

Domain Maps
Data Parallelism

46

Data Parallelism, by example

Copyright 2017 Cray Inc.

prompt> chpl dataParallel.chpl –o dataParallel
prompt> ./dataParallel –-n=5
1.1 1.3 1.5 1.7 1.9

2.1 2.3 2.5 2.7 2.9

3.1 3.3 3.5 3.7 3.9

4.1 4.3 4.5 4.7 4.9

5.1 5.3 5.5 5.7 5.9

config const n = 1000;

var D = {1..n, 1..n};

var A: [D] real;
forall (i,j) in D do

A[i,j] = i + (j - 0.5)/n;

writeln(A);

dataParallel.chpl

47

Data Parallelism, by example

Copyright 2017 Cray Inc.

prompt> chpl dataParallel.chpl –o dataParallel
prompt> ./dataParallel –-n=5
1.1 1.3 1.5 1.7 1.9

2.1 2.3 2.5 2.7 2.9

3.1 3.3 3.5 3.7 3.9

4.1 4.3 4.5 4.7 4.9

5.1 5.3 5.5 5.7 5.9

config const n = 1000;

var D = {1..n, 1..n};

var A: [D] real;
forall (i,j) in D do

A[i,j] = i + (j - 0.5)/n;

writeln(A);

dataParallel.chplDomains	(Index	Sets)

48

Data Parallelism, by example

Copyright 2017 Cray Inc.

prompt> chpl dataParallel.chpl –o dataParallel
prompt> ./dataParallel –-n=5
1.1 1.3 1.5 1.7 1.9

2.1 2.3 2.5 2.7 2.9

3.1 3.3 3.5 3.7 3.9

4.1 4.3 4.5 4.7 4.9

5.1 5.3 5.5 5.7 5.9

config const n = 1000;

var D = {1..n, 1..n};

var A: [D] real;
forall (i,j) in D do

A[i,j] = i + (j - 0.5)/n;

writeln(A);

dataParallel.chpl

Arrays

49

Data Parallelism, by example

Copyright 2017 Cray Inc.

prompt> chpl dataParallel.chpl –o dataParallel
prompt> ./dataParallel –-n=5
1.1 1.3 1.5 1.7 1.9

2.1 2.3 2.5 2.7 2.9

3.1 3.3 3.5 3.7 3.9

4.1 4.3 4.5 4.7 4.9

5.1 5.3 5.5 5.7 5.9

config const n = 1000;

var D = {1..n, 1..n};

var A: [D] real;
forall (i,j) in D do

A[i,j] = i + (j - 0.5)/n;

writeln(A);

dataParallel.chpl

Data-Parallel	Forall	Loops

50

Distributed Data Parallelism, by example

Copyright 2017 Cray Inc.

prompt> chpl dataParallel.chpl –o dataParallel
prompt> ./dataParallel –-n=5 --numLocales=4
1.1 1.3 1.5 1.7 1.9

2.1 2.3 2.5 2.7 2.9

3.1 3.3 3.5 3.7 3.9

4.1 4.3 4.5 4.7 4.9

5.1 5.3 5.5 5.7 5.9

use CyclicDist;
config const n = 1000;

var D = {1..n, 1..n}
dmapped Cyclic(startIdx = (1,1));

var A: [D] real;
forall (i,j) in D do

A[i,j] = i + (j - 0.5)/n;

writeln(A);

dataParallel.chpl

Domain	Maps	
(Map	Data	Parallelism	to	the	System)

51

Distributed Data Parallelism, by example

Copyright 2017 Cray Inc.

prompt> chpl dataParallel.chpl –o dataParallel
prompt> ./dataParallel –-n=5 --numLocales=4
1.1 1.3 1.5 1.7 1.9

2.1 2.3 2.5 2.7 2.9

3.1 3.3 3.5 3.7 3.9

4.1 4.3 4.5 4.7 4.9

5.1 5.3 5.5 5.7 5.9

use CyclicDist;
config const n = 1000;

var D = {1..n, 1..n}
dmapped Cyclic(startIdx = (1,1));

var A: [D] real;
forall (i,j) in D do

A[i,j] = i + (j - 0.5)/n;

writeln(A);

dataParallel.chpl

52

Chapel Evaluations

53
Copyright 2017 Cray Inc.

Computer Language Benchmarks Game (CLBG)

Copyright 2017 Cray Inc.

Website supporting cross-
language comparisons
● 13 toy benchmark programs x

~28 languages x many implementations
● exercise key computational idioms
● specific approach prescribed

Take results with a grain of salt
● your mileage may vary

That said, it is one of the only
such games in town…

54

Computer Language Benchmarks Game (CLBG)

Copyright 2017 Cray Inc.

Chapel’s approach to the CLBG:
● striving for elegance over heroism

● ideally: “Want to learn how program xyz
works? Read the Chapel version.”

55

CLBG: Fast-faster-fastest graph (Sep 2016)

Copyright 2017 Cray Inc.
56

Relative performance, sorted by geometric mean

faster

CLBG: Fast-faster-fastest graph (May 2017)

Copyright 2017 Cray Inc.
57

Relative performance, sorted by geometric mean

faster

CLBG: Fast-faster-fastest graph (Dec 2017)

Copyright 2017 Cray Inc.
58

Relative performance, sorted by geometric mean

faster

CLBG: Website

Copyright 2017 Cray Inc.

Can sort results by execution time, code size, memory or CPU use:

gz == code size metric
strip comments and extra

whitespace, then gzip

59

CLBG: Website

Copyright 2017 Cray Inc.

Can also compare languages pair-wise:
● but only sorted by

execution speed…

60

Scatter plots of CLBG code size x speed

Copyright 2017 Cray Inc.
61

Compressed Code Size (normalized to smallest entry)

Ex
ec

ut
io

n
Ti

m
e

(n
or

m
al

iz
ed

 to
 fa

st
es

t e
nt

ry
)

CLBG Cross-Language Summary
(Oct 2017 standings)

Copyright 2017 Cray Inc.
62

smaller

fa
st

er

JRuby

Ruby

Lua

Perl

Erlang

PHP Hack

Dart
Typescript

Racket

Smalltalk

OCaml

Compressed Code Size (normalized to smallest entry)

Ex
ec

ut
io

n
Ti

m
e

(n
or

m
al

iz
ed

 to
 fa

st
es

t e
nt

ry
)

CLBG Cross-Language Summary
(Oct 2017 standings, zoomed in)

Copyright 2017 Cray Inc.
63

smaller

fa
st

er

F#Haskell

OCaml

Pascal

Typescript

C#

Swift
Java

Fortran
C++
C

Rust

Scala

Compressed Code Size (normalized to smallest entry)

Ex
ec

ut
io

n
Ti

m
e

(n
or

m
al

iz
ed

 to
 fa

st
es

t e
nt

ry
)

CLBG Cross-Language Summary
(Oct 2017 standings, zoomed in)

Copyright 2017 Cray Inc.
64

smaller

fa
st

er

F#Haskell

OCaml

Pascal

Typescript

C#

Swift
Java

Fortran
C++
C

Rust

Scala

Compressed Code Size (normalized to smallest entry)

Ex
ec

ut
io

n
Ti

m
e

(n
or

m
al

iz
ed

 to
 fa

st
es

t e
nt

ry
)

CLBG Cross-Language Summary
(Oct 2017 standings)

Copyright 2017 Cray Inc.
65

smaller

fa
st

er

JRuby

Ruby

Lua

Perl

Erlang

PHP Hack

Dart
Typescript

Racket

Smalltalk

OCaml

Compressed Code Size (normalized to smallest entry)

Ex
ec

ut
io

n
Ti

m
e

(n
or

m
al

iz
ed

 to
 fa

st
es

t e
nt

ry
)

CLBG: Qualitative Comparisons

Copyright 2017 Cray Inc.

Can also browse program source code (but this requires actual thought!):

excerpt from 1210 gz Chapel entry excerpt from 2863 gz C gcc entry

66

CLBG: Qualitative Comparisons

Copyright 2017 Cray Inc.

Can also browse program source code (but this requires actual thought!):

excerpt from 1210 gz Chapel entry excerpt from 2863 gz C gcc entry

67

Copyright 2017 Cray Inc.

Can also browse program source code (but this requires actual thought!):

excerpt from 1210 gz Chapel entry excerpt from 2863 gz C gcc entry

CLBG: Qualitative Comparisons

68

Stencil PRK Scalability

Copyright 2017 Cray Inc.
11
0

be
tte

r

0

2000

4000

6000

8000

10000

12000

16 32 64 128 256

G
Fl
op
s/
s

Locales

Stencil PRK Performance (weak scaling)

MPI+OpenMP Chapel

Chapel Performance: HPC Benchmarks

Copyright 2017 Cray Inc.
69

HPCC Stream Triad: Chapel vs. MPI+OpenMP

Copyright 2017 Cray Inc.
14
0

�

����

�����

�����

�����

�����

�� �� �� ��� ���

�
��
�

�������

����������� �� ������
���������������������

���������
���� ��

���� ��
���� ������

���� ������

be
tte

r

�

���

�

���

�

���

�� �� �� ��� ���

�
�
��
�

�������

����������� �� �� ���������

��� ��� ������������
��� ��� ���������

���� ���
���� ��� ��������������

HPCC RA Performance: Chapel vs. MPI

Copyright 2017 Cray Inc.

(x 36 cores per locale)

14
1

be
tte

r

Isx Peformance: Chapel vs. MPI, SHMEM

Copyright 2017 Cray Inc.
14
2

0

2

4

6

8

10

12

14

1 2 4 8 16 32 64

T
im

e
(s

ec
on

ds
)

Nodes

ISx weakISO Total Time

SHMEM

Chapel

MPI

(x 36 cores per node)

be
tte

r

LCALS

STREAM
Triad

HPCC RA

PRK
StencilISx

Nightly performance graphs online
at: https://chapel-lang.org/perf

0
2
4

N
or

m
al

iz
ed

Ti

m
e

Parallel LCALS kernels: Chapel vs g++ w/
OMP

g++ OMP

Chapel parallel

LCALS: Chapel vs. C + OpenMP

Copyright 2017 Cray Inc.
70

Shared memory performance competitive with hand-coded

be
tte

r

0
1
2

N
or

m
al

iz
ed

Ti

m
e

Serial LCALS kernels: Chapel vs. g++
g++ serial

HPCC Stream Triad: Chapel vs. MPI+OpenMP

Copyright 2017 Cray Inc.
71

�

����

�����

�����

�����

�����

�� �� �� ��� ���

�
��
�

�������

����������� �� ������
���������������������

���������
���� ��

���� ��
���� ������

���� ������

be
tte

r

�

���

�

���

�

���

�� �� �� ��� ���

�
�
��
�

�������

����������� �� �� ���������

��� ��� ������������
��� ��� ���������

���� ���
���� ��� ��������������

HPCC RA Performance: Chapel vs. MPI

Copyright 2017 Cray Inc.

(x 36 cores per locale)

72

be
tte

r

ISx Peformance: Chapel vs. MPI, SHMEM

Copyright 2017 Cray Inc.
73

0

2

4

6

8

10

12

14

1 2 4 8 16 32 64

Ti
m

e
(s

ec
on

ds
)

Nodes

ISx weakISO Total Time

SHMEM

Chapel

MPI

(x 36 cores per node)

be
tte

r

Stencil PRK Scalability

Copyright 2017 Cray Inc.
74

be
tte

r

0

2000

4000

6000

8000

10000

12000

16 32 64 128 256

G
Fl
op
s/
s

Locales

Stencil PRK Performance (weak scaling)

MPI+OpenMP Chapel

Chapel’s Multiresolution Features

75
Copyright 2017 Cray Inc.

Multiresolution Design: Support multiple tiers of features
● higher levels for programmability, productivity
● lower levels for greater degrees of control

● build the higher-level concepts in terms of the lower
● permit users to intermix layers arbitrarily

Copyright 2017 Cray Inc.

Chapel’s Multiresolution Philosophy

76

Domain Maps
Data Parallelism
Task Parallelism
Base Language

Target
Machine

Locality Control

Domain Maps: A Multiresolution Feature

Copyright 2017 Cray Inc.

Domain maps are “recipes” that instruct the compiler
how to map the global view of a computation…

=
+

α •

Locale 0

=
+

α •

=
+

α •

=
+

α •

Locale 1 Locale 2

…to the target locales’ memory and processors:
A = B + alpha * C;

77

1

Sample Domain Maps: Block and Cyclic

Copyright 2017 Cray Inc.

var Dom = {1..4, 1..8} dmapped Block({1..4, 1..8});

1 8

4

distributed to

var Dom = {1..4, 1..8} dmapped Cyclic(startIdx=(1,1));

L0 L1 L2 L3

L4 L5 L6 L7

1
1

8

4

L0 L1 L2 L3

L4 L5 L6 L7
distributed to

1

78

Distributed Data Parallelism, by example

Copyright 2017 Cray Inc.

prompt> chpl dataParallel.chpl –o dataParallel
prompt> ./dataParallel –-n=5 --numLocales=4
1.1 1.3 1.5 1.7 1.9

2.1 2.3 2.5 2.7 2.9

3.1 3.3 3.5 3.7 3.9

4.1 4.3 4.5 4.7 4.9

5.1 5.3 5.5 5.7 5.9

use CyclicDist;
config const n = 1000;

var D = {1..n, 1..n}
dmapped Cyclic(startIdx = (1,1));

var A: [D] real;
forall (i,j) in D do

A[i,j] = i + (j - 0.5)/n;

writeln(A);

dataParallel.chpl

79

use CyclicDist;
config const n = 1000;

var D = {1..n, 1..n}
dmapped Cyclic(startIdx = (1,1));

var A: [D] real;
forall (i,j) in D do

A[i,j] = i + (j - 0.5)/n;

writeln(A);

dataParallel.chpl

Distributed Data Parallelism, by example

Copyright 2017 Cray Inc.

prompt> chpl dataParallel.chpl –o dataParallel
prompt> ./dataParallel –-n=5 --numLocales=4
1.1 1.3 1.5 1.7 1.9

2.1 2.3 2.5 2.7 2.9

3.1 3.3 3.5 3.7 3.9

4.1 4.3 4.5 4.7 4.9

5.1 5.3 5.5 5.7 5.9

80

magic?

descriptive?

HPF-like?

Not in the slightest…

Distributed Data Parallelism, by example

Copyright 2017 Cray Inc.

prompt> chpl dataParallel.chpl –o dataParallel
prompt> ./dataParallel –-n=5 --numLocales=4
1.1 1.3 1.5 1.7 1.9

2.1 2.3 2.5 2.7 2.9

3.1 3.3 3.5 3.7 3.9

4.1 4.3 4.5 4.7 4.9

5.1 5.3 5.5 5.7 5.9

81

config const n = 1000;

var D = {1..n, 1..n};

var A: [D] real;
forall (i,j) in D do

A[i,j] = i + (j - 0.5)/n;

writeln(A);

dataParallel.chpl
forall (i,j) in D do…

⇒ invoke D’s default
parallel iterator

• defined by D’s type /
domain map

default domain map
• create a task per local core
• chunk indices across tasks

Chapel’s prescriptive approach:

use CyclicDist;
config const n = 1000;

var D = {1..n, 1..n}
dmapped Cyclic(startIdx = (1,1));

var A: [D] real;
forall (i,j) in D do

A[i,j] = i + (j - 0.5)/n;

writeln(A);

dataParallel.chpl

Distributed Data Parallelism, by example

Copyright 2017 Cray Inc.

prompt> chpl dataParallel.chpl –o dataParallel
prompt> ./dataParallel –-n=5 --numLocales=4
1.1 1.3 1.5 1.7 1.9

2.1 2.3 2.5 2.7 2.9

3.1 3.3 3.5 3.7 3.9

4.1 4.3 4.5 4.7 4.9

5.1 5.3 5.5 5.7 5.9

82

forall (i,j) in D do…

⇒ invoke and inline D’s
default parallel iterator
• defined by D’s type /

domain map

default domain map
• create task per local core
• block indices across tasks

cyclic domain map
on each target locale…
• create a task per core
• chunk local indices across

tasks

Chapel’s prescriptive approach:

prompt> chpl dataParallel.chpl –o dataParallel
prompt> ./dataParallel –-n=5 --numLocales=4
1.1 1.3 1.5 1.7 1.9

2.1 2.3 2.5 2.7 2.9

3.1 3.3 3.5 3.7 3.9

4.1 4.3 4.5 4.7 4.9

5.1 5.3 5.5 5.7 5.9

use CyclicDist;
config const n = 1000;

var D = {1..n, 1..n}
dmapped Cyclic(startIdx = (1,1));

var A: [D] real;
forall (i,j) in D do

A[i,j] = i + (j - 0.5)/n;

writeln(A);

dataParallel.chpl

Distributed Data Parallelism, by example

Copyright 2017 Cray Inc.
83

forall (i,j) in D do…
Chapel’s prescriptive approach:

⇒ invoke and inline D’s
default parallel iterator
• defined by D’s type /

domain map

What if I don’t like D’s
iteration strategy?

default domain map
• create task per local core
• block indices across tasks

cyclic domain map
on each target locale…
• create task per core
• block local indices across

tasks

● Write and call your own parallel iterator:

● Or, use a different domain map:

● Or, write your own domain map and use it:

forall (i,j) in myParIter(D) do…

var D = {1..n, 1..n} dmapped Block(…);

var D = {1..n, 1..n} dmapped MyDomMap(…);

Domain Maps specify…
…mapping of indices to locales
…layout of domains / arrays in memory
…parallel iteration strategies
…core operations on arrays / domains

Chapel and Performance Portability

Copyright 2017 Cray Inc.

● Avoid locking key policy decisions into the language
● Array memory layout?
● Sparse storage format?
● Parallel loop policies?

84

Chapel and Performance Portability

Copyright 2017 Cray Inc.

● Avoid locking key policy decisions into the language
● Array memory layout? not defined by Chapel
● Sparse storage format? not defined by Chapel
● Parallel loop policies? not defined by Chapel

● Instead, permit users to specify these in Chapel itself
● goal: to make Chapel a future-proof language

85

Another Key Multiresolution Feature

Copyright 2017 Cray Inc.

locale models: User-specified locale types for new node architectures
● how do I allocate memory, create tasks, communicate, …

Like domain maps, these are…
…written in Chapel by expert users using lower-level features
…targeted by the compiler as it lowers code
…available to the end-user via higher-level abstractions

86

Wrapping Up

87
Copyright 2017 Cray Inc.

What’s Next? (Big Ticket Items)

Copyright 2017 Cray Inc.

● LLVM back-end as the default
● Work towards Chapel 2.0 release

● goal: no changes thereafter that break backwards compatibility
● Support for delete-free computation
● GPU support
● Application studies / application partnerships

Crossing the Stream of Adoption

Copyright 2017 Cray Inc.
89image source: http://feelgrafix.com/813578-free-stream-wallpaper.html

Research Prototype Adopted in Production

Next MET Office model

Next DOE app

CLBG

Stream

RA

PRK Stencil

ISx CoMD

MiniMD

LCALS

LULESH

[your production
app here]What are the next

stepping stones?

Time-to-science
academic codes

Codes from
startups Who’s interested in

meeting us partway?

CHIUW 2017 Keynote

Copyright 2017 Cray Inc.
90

Chapel’s Home in the Landscape of
New Scientific Computing Languages
(and what it can learn from the neighbours)

Jonathan Dursi, The Hospital for Sick Children, Toronto

Quote from CHIUW 2017 keynote

Copyright 2017 Cray Inc.
91

“My opinion as an outsider…is that Chapel is important,
Chapel is mature, and Chapel is just getting started.
“If the scientific community is going to have frameworks for
solving scientific problems that are actually designed for our
problems, they’re going to come from a project like Chapel.
“And the thing about Chapel is that the set of all things that
are ‘projects like Chapel’ is ‘Chapel.’”

–Jonathan Dursi
Chapel’s Home in the New Landscape of Scientific Frameworks

(and what it can learn from the neighbours)
CHIUW 2017 keynote

https://ljdursi.github.io/CHIUW2017 / https://www.youtube.com/watch?v=xj0rwdLOR4U

Chapel Resources

92
Copyright 2017 Cray Inc.

Chapel Central: https://chapel-lang.org/

Copyright 2017 Cray Inc.
93

How to Stalk Chapel

Copyright 2017 Cray Inc.

http://facebook.com/ChapelLanguage
http://twitter.com/ChapelLanguage
https://www.youtube.com/channel/UCHmm27bYjhknK5mU7ZzPGsQ/
chapel-announce@lists.sourceforge.net

94

Suggested Reading (healthy attention spans)

Chapel chapter from Programming Models for Parallel Computing
● a detailed overview of Chapel’s history, motivating themes, features
● published by MIT Press, November 2015
● edited by Pavan Balaji (Argonne)
● chapter is now also available online

Other Chapel papers/publications available at https://chapel-lang.org/papers.html

Copyright 2017 Cray Inc.
95

Suggested Reading (short attention spans)

CHIUW 2017: Surveying the Chapel Landscape, Cray Blog, July 2017.
● a run-down of recent events

Chapel: Productive Parallel Programming, Cray Blog, May 2013.
● a short-and-sweet introduction to Chapel

Six Ways to Say “Hello” in Chapel (parts 1, 2, 3), Cray Blog, Sep-Oct 2015.
● a series of articles illustrating the basics of parallelism and locality in Chapel

Why Chapel? (parts 1, 2, 3), Cray Blog, Jun-Oct 2014.
● a series of articles answering common questions about why we are pursuing Chapel in

spite of the inherent challenges
[Ten] Myths About Scalable Programming Languages, IEEE TCSC Blog
(index available on chapel-lang.org “blog posts” page), Apr-Nov 2012.

● a series of technical opinion pieces designed to argue against standard reasons given for
not developing high-level parallel languages

Copyright 2017 Cray Inc.
96

Chapel StackOverflow and GitHub Issues

Copyright 2017 Cray Inc.
97

Where to..

Copyright 2017 Cray Inc.
98

Submit bug reports:
GitHub issues for chapel-lang/chapel: public bug forum
chapel_bugs@cray.com: for reporting non-public bugs

Ask User-Oriented Questions:
StackOverflow: when appropriate / other users might care
#chapel-users (irc.freenode.net): user-oriented IRC channel
chapel-users@lists.sourceforge.net: user discussions

Discuss Chapel development
chapel-developers@lists.sourceforge.net: developer discussions
#chapel-developers (irc.freenode.net): developer-oriented IRC channel

Discuss Chapel’s use in education
chapel-education@lists.sourceforge.net: educator discussions

Directly contact Chapel team at Cray: chapel_info@cray.com

Questions?

99
Copyright 2017 Cray Inc.

Legal Disclaimer

Copyright 2017 Cray Inc.

Information in this document is provided in connection with Cray Inc. products. No license, express or implied, to any intellectual property
rights is granted by this document.

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may cause the product to deviate from
published specifications. Current characterized errata are available on request.

Cray uses codenames internally to identify products that are in development and not yet publically announced for release. Customers and
other third parties are not authorized by Cray Inc. to use codenames in advertising, promotion or marketing and any use of Cray Inc.
internal codenames is at the sole risk of the user.

Performance tests and ratings are measured using specific systems and/or components and reflect the approximate performance of Cray
Inc. products as measured by those tests. Any difference in system hardware or software design or configuration may affect actual
performance.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY and design, SONEXION, and
URIKA. The following are trademarks of Cray Inc.: ACE, APPRENTICE2, CHAPEL, CLUSTER CONNECT, CRAYPAT, CRAYPORT,
ECOPHLEX, LIBSCI, NODEKARE, THREADSTORM. The following system family marks, and associated model number marks, are
trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT, and XT. The registered trademark LINUX is used pursuant to a sublicense from LMI,
the exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis. Other trademarks used in this document are the
property of their respective owners.

10
0

