Chapel: A Parallel Language \
for Productive Scalable Computing

Brad Chamberlain, Chapel Team, Cray Inc.
SealLang Meetup

December 6, 2017
N

ccRAY
‘ CHAPEL MF
=

7~
C

Safe Harbor Statement

~

Ghis presentation may contain forward-looking statements that are
based on our current expectations. Forward looking statements
may include statements about our financial guidance and expected
operating results, our opportunities and future potential, our product
development and new product introduction plans, our ability to
expand and penetrate our addressable markets and other
statements that are not historical facts. These statements are only
predictions and actual results may materially vary from those
projected. Please refer to Cray's documents filed with the SEC from
time to time concerning factors that could affect the Company and

these forward-looking statements.
\ ? Y,

Copyright 2017 Cray Inc.

My Background cRas |

‘‘‘‘‘‘‘‘‘‘‘‘ f OF WASHINGTON

Education: Computer Science & Engineering o

e Earned Ph.D. from University of Washington CSE in 2001 B
e focused on the ZPL data-parallel array language

e Remain associated with UW CSE as an Affiliate Professor u

=

cRasr
CcCHAaPRPEL
—

=/

Industry: CRANY
e Currently a Principal Engineer at Cray Inc.
e Technical lead / founding member of the Chapel project

=/ Copyright 2017 Cray Inc.

Who are you?

e Workplace / Role?

e Programming Languages?
e Favorites?
e Ones you work on/in?

e Parallel Programming Experience?
e On desktop? At scale?

e Anything else?

=/ Copyright 2017 Cray Inc.

Who are you? (My Answers) cRasy

e Workplace / Role? Cray/ Chapel Technical Lead

e Programming Languages? ‘
o Favorites? Pascal (sentimental), Ada (safety), C (control / speed)
e Ones you work on/in? Chapel, C/C++

e Parallel Programming Experience? just a tad
e On desktop? At scale?

e Anything else? | don’t consider myself a PL expert
e more of a parallel expert who works in languages/compilers

Copyright 2017 Cray Inc.

Plan for Tonight cRas

Elements:
e prepared overview talk

e from there, whatever you like...
...Interactive Chapel programming demo?
...more in-depth presentation of some topic?
...Q&A / discussion?

Ground Rules:
e please ask questions anytime
e if | get too hand-wavy, feel free to ask “got a visual for that?”

=/ Copyright 2017 Cray Inc.

What is Chapel?

What is Chapel?

Chapel: A productive parallel programming language
e portable
e Open-source
e a collaborative effort

Goals:

e Support general parallel programming
e “any parallel algorithm on any parallel hardware”

e Make parallel programming at scale far more productive

=/ Copyright 2017 Cray Inc.

N
&/

What does “Productivity” mean to you? o

Recent Graduates:
“something similar to what | used in school: Python, Matlab, Java, ...”

Seasoned HPC Programmers:
“that sugary stuff that | don’t need because | -wasborato-suffer”
want full control to ensure performance”
Computational Scientists:
“something that lets me express my parallel computations without having to wrestle
with architecture-specific details”

Chapel Team:
“something that lets computational scientists express what they want,
without taking away the control that HPC programmers want,
implemented in a language as attractive as recent graduates want.”

=/ Copyright 2017 Cray Inc.

Chapel and Other Languages

Chapel strives to be as...
...programmable as Python
...fast as Fortran
...scalable as MPI, SHMEM, or UPC
...portable as C
...flexible as C++
...fun as [your favorite programming language]

=/ Copyright 2017 Cray Inc.

“The Audacity of Chapel” cRas

audacity (according to Google):
/0. dastti/ \
noun

1. a willingness to take bold risks.
‘I applaud the audacity of the Chapel team in attempting to create
a new language given how hard it is for new languages to succeed.”

2. rude or disrespectful behaviour; impudence.

“| can’t believe the Chapel team has the audacity to create a new
language when we already have [C++ | MPI | OpenCL | Python | ...]

=/ Copyright 2017 Cray Inc.

\
Scalable Parallel Programming Concerns SR '

)
S \
\

Q: What do HPC programmers need from a language?
A: Software engineering and performance ‘
What should execute simultaneously?
Locality: Where should those tasks execute?
Mapping: How to map the program to the system?
Separation of Concerns: Decouple these concerns

These are first-order concerns, yet...
existing languages have not treated all of them as such.

The Challenge ==AYf '

Q: So why don’t we already have such a language?

A: fechnical-challenges? \
e while they exist, we don’t think this is the main issue...

A: Due to a lack of...
...long-term efforts

...resources
...Co-design between developers and users

...community will
...patience

Chapel is our attempft to reverse this trend

=/ Copyright 2017 Cray Inc.

14 fuII-tlme employees + 2 summer mterns + 2—4 GSoC students

The Chapel Team at Cray (May 201/ cRas

You? A friend?
. (hiring a manager-evangelist)

: e N\ PR T 4&" s
% - - Fas -
6" ” : .._' R bal -
- T

s = M W -

) oy Bl £
LT .
~3 A : \ v

ﬁ) Q

14 full-time employees + 2 summer interhs + 2—4 GSoC students

Chapel Community Partners P

P N,
THE GEORGE
Ll 7 WASHINGTON -//_,\
HAVERFORD S OVem WESTERN
COLLEGE AMD i\/}“:\\ WASHINGTON, DC WASHINGTON UNIVERSITY

pkmky A gSRicE @m

THE UNIVERSITY OF TOKYO
THE UNIVERSITY
OF ARIZONA

wg Lawrence Livermore
National Laboratory

BERKELEY LAB

Lawrence Berkeley Sandia National Laboratories

National Laboratory

(and several others...)
https://chapel-lang.org/collaborations.html

A Chapel Sampler

Chapel language feature areas

Chapel language concepts

Domain Maps

Task Parallelism
Base Language
Locality Control

Base Language

C Domain Maps
Data Parallelism
Task Parallelism

b1 Base Language
Locality Control

Lower-level Chapel

Base Language Features, by example

iter fib(n) { config const n = 10;
var current = 0,
next = 1; for £ in fib(n) do

writeln(f) ;
for i in 1..n {
yield current;
current += next;
current <=> next;

N
@

Base Language Features, by example

Modern iterators

iter fib(n) { config const n = 10;
var current = 0,
next = 1; for £ in fib(n) do

writeln(f) ;
for i in 1..n {
yield current;
current += next;
current <=> next;

@

Base Language Features, by example

iter fib(n) { \

var current = 0,
next = 1;

for i in 1..n {
yield current;
current += next;
current <=> next;

Configuration declarations
(to avoid command-line argument parsing)

./a.out —-n=1000000

canig const n = 10;

for £ in fib(n) do
writeln (£f) ;

Base Language Features, by example

Static type inference for:

» variables

iter fib(n)!
var current = 0,
next = 1;

~

for i in 1..n {
yield current;
current += next;
current <=> next;

e arguments
* return types

confii/?éhst n'
for £%in fib (n)

writeln (£f) ;

do

Base Language Features, by example

iter fib(n) { \

var current = 0,
next = 1;

for i in 1..n {
yield current;
current += next;
current <=> next;

Zippered iteration

config const n =

for (i,f) in zip (0

writeln("fib #",

..#n, fib(n)) do

i, " 4ig n’ f),

Base Language Features, by example

Range types and

operators

iter fib(n) {
var current =
next = 1;

of)

for i in 1..n {
yield current;
current += next;
current <=> next;

config const n =\10;

for (i,f) in zip(0..#n,

writeln("fib #", 1,

"

Base Language Features, by example

iter fib(n) { configfconst n = 10;
var current = 0,
next = 1; for (i,f) in zip(0..#n, fib(n)) do
writeln (, 1, , f);

for i in 1..n {
yield current;
current += next;
current <=> next;

N
C

Base Language Features, by example

iter fib(n) { config const n = 10;
var current = 0,
next = 1; for (i,f) in zip(0..#n, fib(n)) do
writeln (, 1, , f);

for i in 1..n {
yield current;
current += next;
current <=> next;

=~
C

Task Parallelism and Locality Control

«
—)

——)

Domain Maps
Data Parallelism
Task Parallelism
Base Language
Locality Control

Task Parallelism and Locality, by example e

7~
@

taskParallel.chpl

coforall loc in Locales do
on loc {
const numTasks = here.numPUs () ;
coforall tid in 1..numTasks do
writef ("Hello from task %n of %n "+
"running on %s\n",

tid, numTasks, here.name);

prompt> chpl taskParallel.chpl -o taskParallel
prompt> ./taskParallel —--numLocales=2
Hello from task 1 of 2 running on nl033

Hello from task 2 of running on nl032

2
Hello from task 2 of 2 running on nl033
Hello from task 1 of 2

running on nl032

Task Parallelism and Locality, by example e

Abstraction of

System Resources

taskParallel.chpl

coforall loc in Locales do

on loc
const numTasks = here.numPUs () ;

coforall tid in 1..numTasks do
writef ("Hello from task %$n of %n "+
"running on %s\n",

tid, numTasks, here.name);

prompt> chpl taskParallel.chpl -o taskParallel
prompt> ./taskParallel —--numLocales=2
Hello from task 1 of 2 running on nl033

Hello from task 2 of running on nl032

2
Hello from task 2 of 2 running on nl033
Hello from task 1 of 2

running on nl032

Task Parallelism and Locality, by example

High-Level
Task Parallelism

taskParallel.chpl

~-coforall loc in Locales do

on loc {
const numTasks = here.numPUs () ;
coforall tid in 1..numTasks do
writef ("Hello from task %$n of %n "+
"running on %s\n",

tid, numTasks, here.name);

prompt> chpl taskParallel.chpl -o taskParallel

prompt> ./taskParallel —--numLocales=2

Hello
Hello
Hello
Hello

from task 1 of 2 running on nl033

from task 2 of running on nl032

2
from task 2 of 2 running on nl033
from task 1 of 2

running on nl032

Task Parallelism and Locality, by example

Control of Locality/Affinity

taskParallel.chpl

coforall loc in Locales do
on loc {
const numTasks = here.numPUs () ;
coforall tid in 1..numTasks do
writef ("Hello from task %$n of %n

"running on %s\n",

tid, numTasks, here.name);

”_I_

prompt> chpl taskParallel.chpl -o taskParallel

prompt> ./taskParallel —--numLocales=2
Hello from task 1 of 2 running on nl033

Hello from task 2 of running on nl032

2
Hello from task 2 of 2 running on nl033
Hello from task 1 of 2

running on nl032

Task Parallelism and Locality, by example

Abstraction of

System Resources

taskParallel.chpl

coforall loc in Locales do
on loc {

const numTasks = here.numPUs () ;

coforall tid in 1..numTasks do
itef ("Hello from task %n of %n

on %$s\n",

tid, numTasks, here.name);

”_I_

prompt> chpl taskParallel.chpl -o taskParallel

prompt> ./taskParallel —--numLocales=2
Hello from task 1 of 2 running on nl033

Hello from task 2 of running on nl032

2
Hello from task 2 of 2 running on nl033
Hello from task 1 of 2

running on nl032

Task Parallelism and Locality, by example e

High-Level

Task Parallelism

taskParallel.chpl

coforall loc in Locales do
on loc {
const numTasks = here.numPUs () ;
\\\\'coforall tid in 1..numTasks do
writef ("Hello from task %$n of %n "+
"running on %s\n",

tid, numTasks, here.name);

prompt> chpl taskParallel.chpl -o taskParallel
prompt> ./taskParallel —--numLocales=2
Hello from task 1 of 2 running on nl033

Hello from task 2 of running on nl032

2
Hello from task 2 of 2 running on nl033
Hello from task 1 of 2

running on nl032

Task Parallelism and Locality, by example e

taskParallel.chpl

coforall loc in Locales do
on loc {
const numTasks = here.numPUs () ;
coforall tid in 1..numTasks do

writef ("Hello from task %$n of %n "+

Not seen here:

"running on %s\n",
Data-centric task coordination tid, numTasks, here.name);
via atomic and full/empty vars }

prompt> chpl taskParallel.chpl -o taskParallel
prompt> ./taskParallel —--numLocales=2
Hello from task 1 of 2 running on nl033

Hello from task 2 of running on nl032

2
Hello from task 2 of 2 running on nl033
Hello from task 1 of 2

running on nl032

Task Parallelism and Locality, by example e

7~
@

taskParallel.chpl

coforall loc in Locales do
on loc {
const numTasks = here.numPUs () ;
coforall tid in 1..numTasks do
writef ("Hello from task %n of %n "+
"running on %s\n",

tid, numTasks, here.name);

prompt> chpl taskParallel.chpl -o taskParallel
prompt> ./taskParallel —--numLocales=2
Hello from task 1 of 2 running on nl033

Hello from task 2 of running on nl032

2
Hello from task 2 of 2 running on nl033
Hello from task 1 of 2

running on nl032

Parallelism and Locality: Distinct in Chapel <=|=A:Y®' '

\

S \
\

e This is a parallel, but local program:

coforall 1 in 1..msgs do \
writeln (“Hello from task 7, i)

e This is a distributed, but serial program:

writeln (“Hello from locale 0!”); W

on Locales[l] do writeln(“Hello from locale 1!”);
on Locales[2] do writeln(“Hello from locale 2!'”);

e This is a distributed parallel program:

coforall i in 1..msgs do
on Locales[i%numLocales] do
writeln (“Hello from task ”, i,
“ running on locale ”, here.id);

—
=/ Copyright 2017 Cray Inc.

Chapel: Scoping and Locality

var 1: int;

Locales (think: “compute nodes”)

=)
=/ Copyright 2017 Cray Inc.

\
CR=RANY |
(Y \
S \
\

Chapel: Scoping and Locality

var i: int;
on Locales[1] {

Locales (think: “compute nodes”)

=)
=/ Copyright 2017 Cray Inc.

Chapel: Scoping and Locality

var i: int;
on Locales[1] {
var J: int;

Locales (think: “compute nodes”)

=)
=/ Copyright 2017 Cray Inc.

Chapel: Scoping and Locality

var i: int;
on Locales[1] {
var J: int;
coforall loc in Locales {
on loc {

Locales (think: “compute nodes”)

=)
=/ Copyright 2017 Cray Inc.

Chapel: Scoping and Locality

var i: int;
on Locales[1] {
var J: int;
coforall loc in Locales {
on loc {
var k: int;

Locales (think: “compute nodes”)

=)
=/ Copyright 2017 Cray Inc.

Chapel: Scoping and Locality

var i: int;
on Locales[1] {
var J: int;
coforall loc in Locales {
on loc {
var k: int;
k = 2*%1 + 73

OK to access i, j, and k
) wherever they live

Locales (think: “compute nodes”)

Copyright 2017 Cray Inc.

Chapel: Scoping and Locality

var i: int;
on Locales[1] {
var J: int;
coforall loc in Locales {
on loc {
var k: int;
k = 2%1 + 3;
here, i and j are remote, so

the compiler + runtime will
} transfer their values

Locales (think: “compute nodes”)

Copyright 2017 Cray Inc.

Chapel: Locality queries o

var i: int;
on Locales[1] {
var j: int; '
coforall loc in Locales {
on loc {
var k: int;

..here... // query the locale on which this task is running
..J.locale.. //query the locale on which j is stored

Locales (think: “compute nodes”)

=)
=/ Copyright 2017 Cray Inc.

Higher-Level Features AN

Chapel language concepts

C Domain Maps
D Higher-level
 Task Parallelism Chapel

Base Language
Locality Control

Data Parallelism, by example

7~
C

dataParallel.chpl

config const n = 1000;

var D = {l1..n, 1..n};

var A: [D] real;
forall (i,j) in D do

Ali,j] = 1+ (J - 0.5)/n;

writeln (2) ;

prompt> chpl dataParallel.chpl -o dataParallel

prompt>

1.1 1.

2
3.
4
5

1

1
1
1
1

2
3.
4
5

3 1.51.7 1.9
2.7 2.9
3.7 3.9
4.7 4.9
5.7 5.9

./dataParallel --n=5

\
Data Parallelism, by example ANy

Domains (Index Sets) dataParallel.chpl

config const n = 1000;

var D = {1..n, 1..n};

var A: [D] real;
forall (i,j) in D do

Ali,Jj] =1 4+ (J - 0.5)/n;
writeln (2) ;

prompt> chpl dataParallel.chpl -o dataParallel
prompt> ./dataParallel --n=5
1.1 1.3 1.5 1.7 1.9

2.1
3.1
4.1
5.1

2 2.7 2.9
3. 3.7 3.9
4 4.7 4.9
5 5.7 5.9

7~
@

\
Data Parallelism, by example ANy

dataParallel.chpl

config const n = 1000;

var D = {l1..n, 1..n};

var A: [D] real;
forall (i,j) in D do

Ali,Jj] =1 4+ (J - 0.5)/n;
writeln (2) ;

prompt> chpl dataParallel.chpl -o dataParallel
prompt> ./dataParallel --n=5
1.1 1.3 1.5 1.7 1.9

2
3.
4
5

12
1 3.
1 4
15

2.7 2.9
3.7 3.9
4.7 4.9
5.7 5.9

N
C

\
Data Parallelism, by example ANy

dataParallel.chpl

config const n = 1000;

var D = {l1..n, 1..n};

Data-Parallel Forall Loops

var A: [D] real;
forall (i,j) in D do

Ali,Jj] =1 4+ (J - 0.5)/n;
writeln (2) ;

prompt> chpl dataParallel.chpl -o dataParallel
prompt> ./dataParallel --n=5
1.1 1.3 1.5 1.7 1.9

2.1
3.1
4.1
5.1

2 2.7 2.9
3. 3.7 3.9
4 4.7 4.9
5 5.7 5.9

7~
@

Distributed Data Parallelism, by example

Domain Maps

(Map Data Parallelism to the System)

dataParallel.chpl

use CyclicDist;

config const n = 1000;
var D = {l1l..n, 1..n}
dmapped Cyclic(startIdx =
var [D] real;
forall (i,j) in D do
Ali,j] =i + (J - 0.5)/n;

writeln (2) ;

(1,1))7

prompt> chpl dataParallel.chpl -o dataParallel

prompt>

1.1 1.

2.1
3.1
4.1
5.1

1

2
3.
4
5

3 1.51.7 1.9
2.7 2.9
3.7 3.9
4.7 4.9
5.7 5.9

./dataParallel --n=5 --numlocales=4

Distributed Data Parallelism, by example o

dataParallel.chpl

use CyclicDist;

config const n = 1000;
var D = {l1l..n, 1..n}
dmapped Cyclic(startIdx = (1,1));

var A: [D] real;
forall (i,j) in D do

Ali,Jj] =1 4+ (J - 0.5)/n;
writeln (2) ;

prompt> chpl dataParallel.chpl -o dataParallel
prompt> ./dataParallel --n=5 --numLocales=4
1.1 1.3 1.5 1.7 1.9

2.1
3.1
4.1
5.1

2 2.7 2.9
3. 3.7 3.9
4 4.7 4.9
5 5.7 5.9

N
C

Chapel Evaluations

Computer Language Benchmarks Game (cLBG) <=I=A:Yf '

S \
The Computer Language . . \
Website supporting cross-

64-bit quad core data set Ianguage Com pariSOnS

Will your toy benchmark program be faster if you write it in
a different programming language? It depends how you write

e 13 toy benchmark programs x
~28 languages x many implementations
Ada C Chapel ~C# Cr+ Dart e exercise key computational idioms

Erlang F# Fortran Go Hack

e specific approach prescribed

Haskell Java JavaScript Lisp Lua

OCaml Pascal Perl PHP Python Take reSUIts With a grain Of salt
i e your mileage may vary

Swift TypeScript

(for researchers) fast-faster-fastest That said, it is one of the only
such games in town...

Copyright 2017 Cray Inc.

Computer Language Benchmarks Game (cLBG) ==A:Yf '

it!

The Computer Language
Benchmarks Game

64-bit quad core data set

Will your toy benchmark program be faster if you write it in
a different programming language? It depends how you write

Which programs are fast?
Which are succinct? Which are efficient?

Ada C Chapel Cc# C++ Dart

Erlang F# Fortran Go Hack

Haskell Java JavaScript Lisp Lua

OCaml Pascal Perl PHP Python

Racket Ruby JRuby Rust Smalltalk

Swift TypeScript

{ for researchers } fast-faster-fastest >

stories

S \
\

Chapel’s approach to the CLBG:

e striving for elegance over heroism

e ideally: “Want to learn how program xyz
works? Read the Chapel version.”

CRANY
)

\

\

CLBG: Fast-faster-fastest graph (Sep 2016)

\

O
L
S ums ums wmwd T F—ilg
@ |eosed 9oy [eosed | e o
& WATIouowW #4 ALt { &
O WATT oUW #D kil | &
S o 10asdsn ST =
[} m_@.u_msu odeyy ke] ©
& 3launfopy alnlc = [
O w
muu 0 |wedo | juie- =—{ [H
> m DHO [[SEH w—{ [k
Q 100 1IN [#D 246D |={1H
w C e|pos e|eds — [}
+ E
QO 209 09 09 ook o [H
D Ojpyur ueniog | prir uess{ T H £
nm, PAR[BAPE[I S
Q ispy FseH L
@ | LVYND 500 ef =—{1H g
& +46+4D S
(- N o
o 206) D26 O 2
o o O O o nm —
T
Q. swi wesboud 1s93se) / SwWwiy weboud
)
P
hd
L
)
14

CLBG: Fast-faster-fastest graph (May 2017) <Ry

\
e |

\

S \
\

Relative performance, sorted by geometric mean

How many times slower? \
O £ 4 = o © o & O o = & 4 O o
300| 0 9 7 < 3 >3t 0% o EO I 5

-

@) —
100 .t L9 .5 6L $°9a3h
3 35 4 S _ > 5 & Z 0 — 2 ¥ z
50| & o N850, LET®
30 | © c g &L VOH 8 -

-
o
4
S
g
4
_Pascal
4
=54
o
b=

program time / fastest program time

5
> 1 | T T] 1 1
1 A =
1 ;i'l' — 1 > I —I- — ¥ _.l 1
benchmarks game 09 May 2017 ub4q

CLBG: Fast-faster-fastest graph (Dec 2017) <=|=A:Y®' '

\

S \
\

Relative performance, sorted by geometric mean
How many times slower? \

O 4+ + = = ®m & O U O 1 =00 =
300l T & B« Y>E550 OJFE
o T 2 c = o © = 0 oy ©
o SU) _c'_’U)UUO n o @)
c el = O

100 _+|_‘7’» © 0 UES?d:”%“%(D %q)g?

N
|
I

W U
o o
-

T

-

program time / fastest program time

10 2
| e el
1 tﬁw%nf_:lrks g@m@ éé 01 Dec 2017 u64q

CLBG: Website

Can sort results by execution time, code size, memory or CPU use:

The Computer Language

Benchmarks Game

pidigits

description

program source code, command-line and

measurements

X source secs
1.0 Chapel #2 1.62
1.0 Chapel 1.62
1.1 Pascal Free Pascal #3 1.73
1.1 Cgec 1.73
1.1 Ada 2005 GNAT #2 1.74
1.1 Rust #2 1.74
1.1 Rust 1.74
1.1 Swift #2 1.75
1.1 Lisp SBCL #4 1.79
1.2 C++g++ #4 1.89
1.2 Lua #5 1.94
1.2 Go #3 2.02
1.3 PHP #5 2.15
1.3 PHP #4 2.16
1.3 Racket #2 2.17

m
34,024
33,652

2,284
2,116
3,776
7,876
7,892
8,532
25,164
3,868
3,248
10,744
9,884
9,856
27,660

423
501
482
448

1065

1306

1420
601
940
508
479
603
394
384

1122

ﬂ
1.64
1.64
1.72
1.73
1.73
1.74
1.74
1.75
1.79
1.89
1.93
2.02
2.15
2.16
2.17

cpu load
99% 3% 1% 4%

100% 0% 1% 1%
1% 100% 1% 1%

1% 99% 1% 0%
1% 0% 100% 0%
1% 100% 1% 1%
100% 1% 2% 1%
100% 1% 1% 0%
3% 2% 1% 100%
100% 1% 2% 1%

1% 1% 1% 99%

2% 0% 5% 96%
1% 0% 100% 1%
100% 0% 0% 2%

100% 0% 1% 0%

1.0
1.5
1.5
1.5
1.5
1.6
1.7
1.7
1.7
1.8
1.8
1.8
1.8
1.9
1.9

The Computer Language

Benchmarks Game

pidigits
description

program source code, command-line and

measurements

source secs
Perl #4 3.53
Python 3 #2 3.51
PHP #4 2.16
Perl #2 3.92
PHP #5 2.15
Chapel #2 1.62
Cgcc 1.73
Perl 15.87
Racket 25.63
Lua #7 3.76
Ruby #5 3.14
Lua #5

Pascal Free Padii® F ol code size metric
e el sStrip comments and extra

mem

6,836
10,344
9,856
6,784
9,884
34,024
2,116
9,032
130,528
3,192
477,09

394
423
448
452
453
477
478

cpu

3.52
3.50
2.16
3.92
2.15
1.64
1.73
15.86
25.58
3.75
3.12

PHP #3 whitespace, then gzip

cpu load
0% 0% 1% 100%

0% 2% 1% 100%
100% 0% 0% 2%
1% 0% 33% 68%
1% 0% 100% 1%

99% 3% 1% 4%

1% 99% 1% 0%
1% 100% 1% 1%
100% 0% 1% 1%
1% 100% 0% 2%
0% 100% 2% 1%
% 1% 1% 99%

b 100% 1% 1%

o 1% 100% 1%

0% 0% 0% 1%

CLBG: Website

Can also compare languages pair-wise:

e but only sorted by
execution speed...

k-nucleotide
source

Chapel

fasta
source

Chapel

Fortran Intel

The Computer Language
Benchmarks Game

Chapel programs versus Fortran Intel

all other Chapel programs & measurements

by benchmark task performance

secs
16.69
87.62

secs
1.71
2.53

mem
350,432
203,604

mem

52,184

gz
1063
2238

gz
1392
1327

cpu
62.96
87.57

cpu
5.90
2.53

cpu load
100% 92% 93% 93%

1% 0% 100% 0%

cpu load
99% 82% 83% 82%

0% 1% 0% 100%

\
Scatter plots of CLBG code size x speed SRR
: : [0 smallest

— O fastest :
g - 3 5 gmean-smallest
ol @) § § () gmean-fastest
EB | 5 | .
L | 0 . . .
c O
22 [
g
'ﬁ‘_;“ § 5 ?
¢ g m . " &
= 9 ;
: m B . @

Compressed Code Size (normalized to smallest entry)

CLBG Cross-Language Summary el
(Oct 2017 standings) « o

100 _ i T \

I csharpcore

B dart

Il erlang

I fpascal

B fsharp \
S gec

N ghc

I gnat

g0
. egpp
hack
ifc
UMM java
N jruby
E lua
node
e ocaml
; I perl
o[l PND
S~ : python3

“._Erlan
ang Smalltalk - g mm s
‘\‘ i sbcl
H g B scala
swift
ocaml m Racket PHP T B B = ::pescript
Dal't m- ,‘\\\ ® () . . yarv
J@V@@@Tﬂpﬂ: \. ﬁ . o D ﬂ__l[lglp i D gmean-smallest

Typescript ™ m-5- wyom- N i S O gneen-fostest

Compressed Code Slze (normallzed to smallest entry)

Execution Time
(normalized to fastest entry)

~
=3

CLBG Cross-Language Summary
(Oct 2017 standings, zoomed in)

10

\

5 N |
Typescr!pt I~'.\\ |
Javaseript ©
8 b L R B \\\\\\ Ij\ .

“Scala
Haskell ® “F#
N

Execution Time
(normalized to fastest entry)

’

o)

’I
0
o, I
°

1.5 3.0

Compressed Code Size (normalized to smallest entry)

2.0 2.5

fsharp

gcc

ghc

gnat

g0

gpp

hack

ifc

java

jruby

lua

node

ocaml

perl

php
python3
racket

i

sbhcl

scala
swift
typescript
VW

yarv
gmean-smallest
gmean-fasest

CLBG Cross-Language Summary el

(Oct 2017 standings, zoomed in)

10
B chapel
Il csharpcore

\

5 N |
Typescr!pt I~'.\\ |
Javaseript ©

8 b L R B \\\\\\ Ij\ .

Bl fsharp
H gcc
I chc
N gnat
g0
. gpp
hack
ifc
java
jruby
lua
node
ocaml
perl
php
python3
racket
i
sbhcl
scala
swift
typescript
VW
yarv
gmean-smallest
gmean-fasest

“Scala
Haskell ® “F#
B e

Execution Time
(normalized to fastest entry)

’

’

0
o, 2
PS +

o)

1.0 1.5 2.0 2.5 3.0 3.5

Compressed Code Size (normalized to smallest entry)

CLBG Cross-Language Summary el
(Oct 2017 standings) « o

100 - T : \

: : i g B chapel
: : : I csharpcore

B dart

Il erlang

I fpascal

B fsharp \
S gec

N ghc

I gnat

g0
. egpp
hack
ifc
UMM java
N jruby
E lua
node
e ocaml
; I perl
o[l PND
S~ : python3

\\\‘\ Erlan \\\\; racke
ceang Smalltalk - g mm s
‘\‘ : sbcl
é : B scala
PHP swift
OCamI m Racket ~ e R R — = ::pescript

IN e) . O ; i B yarv
J@V@@@E’ﬂpﬂ: Dal't - ;. ﬁ . . D ﬂ__lﬁglp [] gmean-smallest
Typescrlpt

W= ﬂ Er % - 3~‘ —‘;::::‘E‘:":"”‘\f':-—:-::‘— O gmean-fastest
Chapel -

2.0 2.5 3.0 3.5

Execution Time
(normalized to fastest entry)

~
=3

Compressed Code Size (normalized to smallest entry)

-
]
CRAY

[\
S \

CLBG: Qualitative Comparisons

Can also browse program source code (but this requires actual thought!):

proc main() { void get_affinity(int* is_smp, cpu_set_t* affinityl, cpu_set_t* affinity2)

printColorEquations(); {
L X) . cpu_set_t active_cpus;
const groupl = [i in 1..popSizel] new Chameneos(i, ((i-1)%3):Color); FILE* ;
const group2 = [i in 1..popSize2] new Chameneos(i, colorsl0[i]); char buf [2048]; \
. char const* pos;
cobegin { . int cpu_idx;
holdMeetings(groupl, n); int physical_id;
holdMeetings(group2, n); int core_id;_
} int cpu_cores;
. int apic_id;
print(groupl); size_t cpu_count;
print(group2); size_t i;

for c in groupl do delete c; char const*
for c in group2 do delete c; size_t processor_str_len strlen(processor_str);
} char const* physical_id str "physical id";
size_t physical_id str_len = strlen(physical_id_str);
char const* core_id_str "core id";
/7 size_t core_id str len strlen(core id str);
// Print the results of getNewColor() for all color pairs. char const* cpu cores str "cpu cores";
/7 . . size_t cpu_cores-str len = strlen(cpu_cores_str);
proc printColorEquations() { - - - - -
for cl in Color do
for c2 in Color do
writeln(cl, " + ", c2,

processor_str "processor";

CPU_ZERO(&active_cpus);
sched_getaffinity(0, sizeof(active_cpus), &active_cpus);
cpu_count = 0;

-> ", getNewColor(cl, c2));

writeln(); for (i = 0; i != CPU_SETSIZE; i += 1)
{
if (CPU_ISSET(i, &active_cpus))
{
/" cpu_count += 1;
// Hold meetings among the population by creating a shared meeting } -

// place, and then creating per-chameneos tasks to have meetings.
//
proc holdMeetings(population, numMeetings) {

const place = new MeetingPlace(numMeetings);

coforall c in population do
c.haveMeetings(place, population);

// create a task per chameneos

delete place;

}

excerpt from 1210 gz Chapel entry

}

if (cpu_count 1)

is_smp[0] = 0;
return;

}

is_smp[0] = 1;
CPU_ZERO(affinityl);

excerpt from 2863 gz C gcc entry

o

Copyright 2017 Cray Inc. __/

CLBG: Qualitative Comparisons e

[\
Q

Can also browse program source code (buft this requ:res actual thought!):

proc main() { i int* , cpu_set_t* affinityl, cpu_set t* affinity2)
printColorEquations(); __ ,.aee
.
----------- » active_cpus;
const groupl = [i 1n JLeepopsSi¥el] new Chameneos(i, cobegln { £;
const ‘g_r-qluai = 11 1n 1..popSize2] new Chameneos(i, ¢ buf [2048];

cobegin { holdMeetings(groupl, n); Son. tax;

holdMeetings(groupl, n); physical_id;

j horanestings(roup2, m; holdMeetings(group2, n); Sore.id;

cpu_cores;

™ apic_id;

prifttymoupl);, } cpu_count;

print(group2); Tttrresaa.,, i

for ¢ -:“‘ groupl do delete c; tTTeesaa.,.. processor_str = "processor";

for c in group2 do delete c; size_t pr _str_len = strlen(processor_str);
} char const* physical_id str = "physical id";

size_t physical_id str_len = strlen(physical_id_str);
// char const* core_id_str = "core id";
id_str);
// Print the results of getNewColor() for all colqs‘ﬁc . . . :;((;;::?71 _str);
7 - proc holdMeetings(population, numMeetings) { o eme. cores_str):
proc printColorEquations() { ot ! (epu_ -)i
o* - . .
for c1 in Color do const place = new MeetingPlace(numMeetings);
for c2 in Color do o*
writeln(ecl, " + ", c2, " “’ ", getNewColor(cl, ¢
writeln(); “‘; . .
coforall c in population do // creaf
“" . .

/7 c.haveMeetings(place, population);
// Hold ;néetlngs among the population by creating a sH
// pL&ée and then creating per-chameneos tasks to ha

o

g 1ng:]
const place = new MeetingPlace(numMeetings); delete place 4
coforall c in population do // creatp a tg }
c.haveMeetings(place, population);

delete place;

excerpt from 1210 gz Chapel entry excerpt from 2863 gz C gcc entry

e

CLBG: Qualitative Comparisons <=|=A:Yj’ '

Can also browse program source code (but this requires actual thought!):

proc main() { void get_affinity(int* is_smp, cpu_set_t* affinityl, cpu_set_t* affinity2)

. . {
char const* core_id_str = "core id"}L cpu_set_t active_cpus;
: .4 K FILE* £;
size_t core_id_str_ len = strlen(coj: char buf [2048]; \
char const* cpu_cores_str = "cpu core{ 3 ;‘;:2‘ constr opa. daxy
size_t cpu_cores_str_len = strlen(cpy * i Pyl
“_ int cpu_zores ;
. int apic_id;
CPU_ZERO(&active_cpus); El size t cpu_count;
- . P Size | 17
sched getaffinity(0, sizeof(active cpus), &active cpus); B
Cpu Csunt - 0 . - - " cl.:ar const* processor_str N = "griceisor"; r)
L - r . size_t processor_str_len = strlen(processor_str);
s o ne s _ W 3 oa— * ch tx hysical id_st = "physical id";
for (l = 0 HE 8 l"‘ CPU_SETSIZE, 1 += 1) "' zi::_:ons ghzziz:l_;d_:ti_len = sEr{:xll‘(::hy;ical_id_str);
{ size_t core:id:str_len ; strlen(o;'e_id_str);
3 1 1 h t* t =" "
1f (CPU—ISSET(1, &aCtlve—cpus)) si::_‘tmns zg::z?;::::t:_len = s:l;‘llefl?q;\sx_cores_str);
{ CPU_ZERO(&active_cpus);
Cpu Count += 1; sched_getaffinity(0, sizeof(active_cpus), &active_cpus);
- cpu_count = 0;
} for (i = 0; i != CPU_SETSIZE; i += 1)
{
} if (CPU_ISSET(i, &active_cpus))
{
cpu_count += 1;
if (cpu_count == 1)) }
{ . if (cpu_count == 1)
is smp[0] = 0;
- is_smp[0] = 0;
teturn ; return;
} }
es Lae is_smp[0] = 1;
[CPU_ZERO(affinityl);

excerpt from 1210 gz Chapel entry excerpt from 2863 gz C gcc entry

k \
—
=/ Copyright 2017 Cray Inc.

Chapel Performance: HPC Benchmarks

.

LCALS: Chapel vs. C + OpenMP

Shared memory performance competitive with hand-coded
Serial LCALS kernels: Chapel vs. g++

2
1

0 IhIIIIII|IIII“II]II|IIII|IIIIIIIIIIII|IIIIIIIIII

Parallel LCALS kernels: Chapel vs g++ w/ 5

OMP

®g++ serial

Normalized
Time

Time

2 =g+ OMP
o ol m mn omn oal II R T I

Normalized

= Chapel parallel

\
CRANY
0

\

LCALS

STREAM
Triad

HPCC RA

|Sx

PRK
Stencil

HPCC RA Performance: Chapel vs. MPI

Performance of RA (atomics)

Locales (x 36 cores per locale)
ref MP no-bucketing —o— 115 urq ——

ref MPl bucketing —=— 1.15 +q oversubscribed -+

=
@
o \ . \ -
HPCC Stream Triad: Chapel vs. MPI+OpenMP =Ras Isx Peformance: Chapel vs. MPI, SHMEM cRas Stencil PRK Scalability e
. . .
. \ . \ Stencil PRK Performance (weak scaling) . \
\ \ \
Perf f STREAM) D e
O A timaivatheads) ISx weaklSO Total Time
14 LLV0N i
25000 e »
- 8000 b= - <=L
20000 . .
- @10 i
@ 15000 — £ B poof T
o 8 8 6
O 10000 8 SHMEM 000
5000 f- “E’ =—Chapel
F 4 —MPI = bl T
0 i L) , £
1632 64 128 256 2 Qe L 2)
0 16 32 64 128 256
Locales 1 2 8 16 32 64 Locales
Reference 1.12EP —=— 112 Global e Nodes (x 36 cores per node)
111 EP —=— LIl Global -

MPI+OpentP —e— Chapel ——

7R
(O

Nightly performance graphs online
at: https://chapel-lang.org/perf

LCALS: Chapel vs. C + OpenMP <=|=A:Yj’ '

Shared memory performance competitive with hand-coded
Serial LCALS kernels: Chapel vs. g++

2 W g++ serial
1

0 "
<
S S
ISy

ooooo

Normalized
Time

N N

v

o &
KZ

7

& N o O & & A
N Op)g%d)@q§ oP @°0Q‘2~°° K4 S S ‘,oé)\o & S & \o,}o\&o O}oé’)@ &£ & O\L\‘ﬁ o?oc“\e
SR & PO &L L7 AT E o & S
&F €&« &7 G E & S E T &
AR 7 & T of

X
W

& & &
& AT 7
a9 <«
N R
> & O S & o
A <

Parallel LCALS kernels: Chapel vs g++ w/
OMP

mg++ OMP

B Chapel parallel

Normalized
Time

ol sm =m mm sl II sl EN EE EE Em
Ovyo QVVO oY'Vo O ®© eq& & \V\<\ ° %& Ooé) Q & 2

R
$
»

oON b
0&3‘(/

(@
=)
Copyright 2017 Cray Inc.

HPCC Stream Triad: Chapel vs. MPI1+OpenMP <=|=A:Yj’ '

) \
\

Performance of STREAM

(GASNet/mpi+qthreads)

25000 ‘
20000
» 15000

(a8
O 10000
5000
0
|6 32 64 128 256
Locales
Reference —e— [.I2EP —e— |.12 Global ----e---
.1l EP —=— |.I| Global ----®---

e

Copyright 2017 Cray Inc.

HPCC RA Performance: Chapel vs. MPI ==A:Y:" '

Performance of RA (atomics)

GUP/s

16 32 64 128 256
Locales (x 36 cores per locale)
ref MPI no-bucketing —— .15 u+tq ——
ref MPI bucketing —=— I.15 u+q oversubscribed ----*---

ISx Peformance: Chapel vs. MPIl, SHMEM

ISx weaklSO Total Time

Time (seconds)
N A o ® o N &

o

1 2 4 8 16 32 64
Nodes (x 36 cores per node)

Copyright 2017 Cray Inc.

\
CcC=RAY |
e \
S \
\
\
SHMEM
= Chapel

—MPI

Stencil PRK Scalability cRaNy |

Stencil PRK Performance (weak scaling) ° \
12000

10000
8000

6000

GFlops/s

4000

2000

16 32 64 128 256
Locales

MPI+OpenMP —®— Chapel =

=
=/ Copyright 2017 Cray Inc.

Chapel’s Multiresolution Features

Chapel’s Multiresolution Philosophy o

e \
S \
\

Multiresolution Design: Support multiple tiers of features
e higher levels for programmability, productivity \
e lower levels for greater degrees of control

Domain Maps

Task Parallelism

Base Language
Locality Control

e build the higher-level concepts in terms of the lower
e permit users to intermix layers arbitrarily

\
Domain Maps: A Multiresolution Feature CRANY |

e \
S \
\

Domain maps are “recipes” that instruct the compiler
how to map the global view of a computation... \

A = B + alpha * C;

...to the target locales’ memory and processors:
I I

Sample Domain Maps: Block and Cyclic

var Dom

= 4, .8} dmapped Block(

{1.

.4,

1.

.8})z

LO 'L1
“ distributed to e

L2 L3

L6 L7

var Dom

= {1..4,

1..8} dmapped Cyclic(startIdx=

(1,1)

Iy

£

distributed to

LO

L1

L4 L5

L2 L3

L6 L7

Distributed Data Parallelism, by example o

dataParallel.chpl

use CyclicDist;

config const n = 1000;
var D = {l1l..n, 1..n}
dmapped Cyclic(startIdx = (1,1));

var A: [D] real;
forall (i,j) in D do

Ali,Jj] =1 4+ (J - 0.5)/n;
writeln (2) ;

prompt> chpl dataParallel.chpl -o dataParallel
prompt> ./dataParallel --n=5 --numLocales=4
1.1 1.3 1.5 1.7 1.9

2.1
3.1
4.1
5.1

2 2.7 2.9
3. 3.7 3.9
4 4.7 4.9
5 5.7 5.9

N
C

Distributed Data Parallelism, by example o

magic? | HPF-like? dataParallel.chpl
o use CyclicDist;
descriptive? config const n = 1000;

var D = {l1l..n, 1..n}
<:) dmapped Cyclic(startIdx = (1,1));
C) var A: [D] real;

forall (i,j) in D do

Not in the slightest... 211,41 = 4 + (3 = 0.5)/n;

writeln (2) ;

prompt> chpl dataParallel.chpl -o dataParallel
prompt> ./dataParallel --n=5 --numLocales=4
1.1 1.3 1.5 1.7 1.9

2.1
3.1
4.1
5.1

2 2.7 2.9
3. 3.7 3.9
4 4.7 4.9
5 5.7 5.9

Distributed Data Parallelism, by example o

Chapel’s prescriptive approach: ([—=—— "

forall (i,3j) in D do..

config const n = 1000;

= invoke D’s default var D = {l..n, 1..n};
parallel iterator
var A: [D] real;

* defined by D’s type / forall (i,3) in D do
domain map A[i,3] =i + (3 - 0.5)/n;

writeln (2) ;

default domain map

prompt> chpl dataParallel.chpl -o dataParallel

 create a task per local core
» chunk indices across tasks

prompt> ./dataParallel --n=5 --numLocales=4
1.1 1.3 .5 1.7 1.9

2.1
3.1
4.1
5.1

2 2.7 2.9
3. 3.7 3.9
4 4.7 4.9
5 5.7 5.9

Distributed Data Parallelism, by example

Chapel’s prescriptive approach:

forall (i,3j) in D do..

= invoke and inline D’s
default parallel iterator
 defined by D’s type /

domain map

defaillt domain man
cyclic domain map

. on each target locale...
 create a task per core

1.1

* chunk local indices across
tasks

2.1
3.1
4.1
5.1

dataParallel.chpl

use CyclicDist;

config const n = 1000;
var D = {l1l..n, 1..n}
dmapped Cyclic(startIdx = (1,1));
var A: [D] real;
forall (i,j) in D do
Ali,Jj] =1 4+ (J - 0.5)/n;

writeln (2) ;

prompt>
1.

2
3.
4
5

prompt> chpl dataParallel.chpl -o dataParallel

./dataParallel --n=5 --numlocales=4
3 .5 1.7 1.9

2.7 2.9
3.7 3.9
4.7 4.9
5.7 5.9

!
Distributed Data Parallelism, by example <=l=A:Yf '
) § \
Chapel’s prescriptive approach: dataparallel.chpl
forall (i,j) in D do.. use CyclicDist;
config const n = 1000; \
var D = {l1l..n, 1..n}
What if | don’t like D’s dmapped Cyclic(startIdx = (1,1));
iteration strategy? var A: [D] real;
Ooforall (i,j) in D do
Ali,il =i + (3 - 0.5)/n;
Write and call your own parallel iterator:

forall (i,j) in myParIter (D) do..
Or, use a different domain map:
var D = {1..n, 1..n} dmapped Block(..);

Or, write your own domain map and use it:

var D

{1..n,

1..n} dmapped MyDomMap (..) ;

Domain Maps specify...
...mapping of indices to locales
...layout of domains / arrays in memory

...parallel iteration strategies
...core operations on arrays / domains

@

Chapel and Performance Portability AN

Q \
S \
\

e Avoid locking key policy decisions into the language
e Array memory layout? \
e Sparse storage format?
e Parallel loop policies?

Copyright 2017 Cray Inc.

Chapel and Performance Portability AN

(Y \
S \
\

e Avoid locking key policy decisions into the language

e Array memory layout? not defined by Chapel \
e Sparse storage format? not defined by Chapel
o Parallel loop policies? not defined by Chapel

e Instead, permit users to specify these in Chapel itself
e goal: to make Chapel a future-proof language

=/ Copyright 2017 Cray Inc.

Another Key Multiresolution Feature AN

Q \
S \
\

locale models: User-specified locale types for new node architectures
e how do | allocate memory, create tasks, communicate, ... \

Like domain maps, these are...
...written in Chapel by expert users using lower-level features
...targeted by the compiler as it lowers code
...available to the end-user via higher-level abstractions

C/ : (86)

=/ Copyright 2017 Cray Inc.

Wrapping Up

What’s Next? (Big Ticket ltems) ==AYf '

e LLVM back-end as the default

e Work towards Chapel 2.0 release ‘
e goal: no changes thereafter that break backwards compatibility

e Support for delete-free computation
e GPU support
e Application studies / application partnerships

Copyright 2017 Cray Inc.

Crossing the Stream of Adoption cRas

"‘ Resech Prototype -

that e the next § [your productlon
app here]

e el oerom stepplng stones?

\ ‘ « SN R
RA LULESH : startups. . Who S mterested in

Time-to-science J meeting us partway?
academlc codes B

image source: http://feelgrafix.com/813578-free-stream-wallpaper.html

CHIUW 2017 Keynote cRas

Chapel’s Home in the Landscape of

New Scientific Computing Languages \
(and what it can learn from the neighbours)

Jonathan Dursi, The Hospital for Sick Children, Toronto

)

Quote from CHIUW 2017 keynote :l:Ayf '

S \
\

“My opinion as an outsider...is that Chapel is important,
Chapel is mature, and Chapel is just getting started. :

“If the scientific community is going to have frameworks for
solving scientific problems that are actually designed for our
problems, they’re going to come from a project like Chapel.

“And the thing about Chapel is that the set of all things that
are ‘projects like Chapel’ is ‘Chapel.’”
—Jonathan Dursi

Chapel’s Home in the New Landscape of Scientific Frameworks
(and what it can learn from the neighbours)
CHIUW 2017 keynote

https://ljdursi.github.io/CHIUW2017 / https://www.youtube.com/watch?v=xj0rwdLOR4U

=)
=/ Copyright 2017 Cray Inc.

Chapel Resources

Chapel Central: https://chapel-lang.org/

N The Chapel Parallel Programming Language

CHAPEL
—
What is Chapel?

Chapel is a modern programming language that is...

Home
Chapel Overview

parallel: contains first-class concepts for concurrent and parallel computation
productive: designed with programmability and performance in mind
portable: runs on laptops, clusters, the cloud, and HPC systems

scalable: supports locality-oriented features for distributed memory systems
open-source: hosted on GitHub, permissively licensed

What's New?
Upcoming Events
Job Opportunities

How Can | Learn Chapel?
Documentation

Download Chapel New to Chapel?
Try It Now
Release Notes

As an introduction to Chapel, you may want to...
User Resources.
Educator Resources

read a blog article or book chapter
Developer Resources

.
« watch an overview talk or browse its slides

Social Media / Blog Posts « download the release

Press « browse sample programs
« view other resources to learn how to trivially write distributed programs like this:

Presentations
Tutorials
Publications and Papers use CyclicDist; // use the Cyclic distribution Library
CHIUW config const n = 100; // use ./a.out --n=<val> to override this default
CHUG
Lightning Talks forall i in {1..n} dmapped Cyclic(startIdx=1) do

writeln("Hello from iteration ", i, " of ", n, " running on node ", here.id);
Contributors / Credits
Research Groups
License

What's Hot?

chapel-lang.org « Chapel 1.16 is now available—download a copy today!

chapel_info@cray.com

The CHIUW 2018 call for participation is now available!

s
(P « A recent Cray blog post reports on highlights from CHIUW 2017.
Evyo « Chapel is now one of the supported languages on Try It Online!

Watch talks from ACCU 2017, CHIUW 2017, and ATPESC 2016 on YouTube.

Browse slides from PADAL, EAGE, EMBRACE, ACCU, and other recent talks.

See also: What's New?

How to Stalk Chapel

http://facebook.com/ChapelLanquage

http://twitter.com/ChapelLanguaqge

https://www.youtube.com/channel/UCHMmM27bYjhknK5mU7Z2zPGsQ/

chapel-announce@lists.sourceforge.net

=

n Sl i o S -

Page Messages Notifications Insights Publishing Tools

=

ol Liked v X\ Following v 4 Share

| Programming Language
47pm- €

We're pleased to note that Chapel is currently ranked 5th in the

= Computer Language Benchmarks Game's “fast-faster-fastest” graphs.
That said, we're even prouder of how clear and concise the Chapel
i entries that p .

Chapel org/.

Programming Fl How many times slower?
Language H 300 232
@ChapelLanguage ém : : :
ome. 50 z -
E 30
Posts 3 gIISeR
S
Videos g s égéé
T 3
E
Pk] 2ed
1
ADY £ Benchmarks game 20 Apr 2017 ubdq
Likes
= 270 pecsleresched
& ke W Comment A Share C-
(© Russel Winder, Mykola Rabchevsiiy and 2 others Top Comments ™

C s

Chapel Language
@ChapelLanguage

Chapel is a productive parallel
programming language designed for
large-scale computing whose
development is being led by @cray_inc
& chapel.cray.com

[) Joined March 2016

3 115 Photos and videos

TWEETS FOLLOWING FOLLOWERS LIKES

222 12 129 32

Tweets Tweets & replies Media

/75 Chapel Language @ChapelLanguage - 5h
(?/ Doing interesting applications work in Chapel or another PGAS language?
' submit it to the PAW 2017 workshop at @SC17.
sourceryinstitute.github.io/PAW/

PAW;

2~
7 %l

The 2nd Annual PGAS Applications

Copyright 2017 Cray Inc.

N

@

=/

Chapel Parallel Programming Language

Home Videos Playlists Channels About

Chapel videos

=~ SC16 Chapel Tutorial Promo

Chapel Parallel Programming Language

6 months ago + 392 views

This s & ~4-minute promotional video for our SC16 Chapel tutorial, and also a good way to
geta quick taste of Chapel. All codes shown represent complete Chapel programs, not.

Chapel Productive, Muli ion Parallel |Brad
Cray, Inc.

ANL Training

7 months ago + 651 views

Presented at the Argonne Training Program on Extreme-Scale Computing, Summer 2016.

CHIUW 2016 keynote: “Chapel in the ical) Wild", Nikhil

Chapel Parallel Programming Language
10 months ago + 277 views

This is Nikhil Padmanabharis keynote talk from CHIUW 2016: the 3rd Annual Chapel
Impl d Users workshop. The siid bl

Suggested Reading (healthy attention spans) ==as

S \
\

Chapel chapter from Programming Models for Parallel Computing
a detailed overview of Chapel’s history, motivating themes, features \
published by MIT Press, November 2015
edited by Pavan Balaji (Argonne)
chapter is now also available online

Suggested Reading (short attention spans) cRas

(Y \
S \
\

CHIUW 2017: Surveying the Chapel Landscape, Cray Blog, July 2017.
e arun-down of recent events
Chapel: Productive Parallel Programming, Cray Blog, May 2013.
e a short-and-sweet introduction to Chapel
Six Ways to Say “Hello” in Chapel (parts 1, 2, 3), Cray Blog, Sep-Oct 2015.
e a Series of articles illustrating the basics of parallelism and locality in Chapel
Why Chapel? (parts 1, 2, 3), Cray Blog, Jun-Oct 2014.

e a series of articles answering common questions about why we are pursuing Chapel in
spite of the inherent challenges

[Ten] Myths About Scalable Programming Languages, |EEE TCSC Blog

(index available on chapel-lang.org “blog posts” page), Apr-Nov 2012.

e a series of technical opinion pieces designed to argue against standard reasons given for
not developing high-level parallel languages

C/ ‘ 26 ‘

=/ Copyright 2017 Cray Inc.

Chapel StackOverflow and GitHub Issues e

votes

24 views

votes

45 views

votes

NS — 0
S stackoverflow Questions Jobs Documentaton Tags Users Q_ [chapel] @ = logh Sign Up \
(’ This repository Pull requests Issues Marketplace Gist
Tagged Questions nfo newest frequent votes acti
1 0 - -
Chapel, the Cascade High Productivity Language, is a parallel programming language developed by Cray. - cha pel lang / Chapel © Watch as % Unstar | 455 ? Fork | 145
learn more... top users synonyms \
1 Code @®lssues 292 Pull requests 26 Projects 0 Settings Insights ~
2 Can one generate a grid of the Locales where a Distribution is mapped? i . . i
votes X § X B Filters ~ is:tissue is:open Labels Milestones New issue
If 1 run the following code: use BlockDist; config const dimension: int = 5; const space = {0..#
0..#di ion}; const i domain(2) pace) = space|
chapel asked 13 hours & N f a
parrymel @® 292 Open v 77 Closed Author ~ Labels v Projects v Milestones ~ Assignee v Sort v
22 views . v
52 02
@® Implement "bounded-coforall" optimization for remote coforalls area: Compiler
3 Is “[<var> in <distributed variable>]" equivalent to “forall’? iyps:Eecformancs]

#6357 opened 13 hours ago by ronawho

| noticed something in a snippet of code | was given: var D: domain(2)
= Space; var A: [D] int; [a in A] a = a.locale.id; Is [a in A] equivalentto forallainAa= ...

(@ Consider using processor atomics for remote coforalls EndCount area: Compiler J13
syntax chapel asked 15 hours af type: Performance
- :zrryv;m #6356 opened 13 hours ago by ronawho 0of 6
(® make uninstall area: BTR |type: Feature Request
Get Non-primitive Variables from within a Cobegin - Chapel #6353 opened 14 hours ago by mppf

| want to compute some information in parallel and use the result outside the cobegin. To be . .
my requirement is to retrieve a domain (and other non primitive types) like this var a,b: ... © make check doesn't work with ./configure area: BTR 37

16 hi f
chapel asked Apr 18 at 6352 opened 16 hours ago by mpp!

-

4v> :ii”":‘ | (@ Passing variable via in intent to a forall loop seems to create an iteration-private variable, D2
not a task-private one area: Compiler [type: Bug

#6351 opened a day ago by cassella

Is there a default String conversion method in Chapel?

Is there a default method that gets called when | try to cast an object into a string? (E.g. toStf © Remove chpl_comm_make_progress area: Runtime easy [type: Design (k]
__str__in Python.) | want to be able to do the following with an array of Objects, ... #6349 opened a day ago by sungeunchoi
@® Runtime error after make on Linux Mint area: BTR user issue J1s

#6348 opened a day ago by danindiana

Where to..

Submit bug reports:
GitHub issues for chapel-lang/chapel: public bug forum
chapel _bugs@cray.com: for reporting non-public bugs

Ask User-Oriented Questions:
StackOverflow: when appropriate / other users might care
#chapel-users (irc.freenode.net): user-oriented IRC channel
chapel-users@lists.sourceforge.net: user discussions

Discuss Chapel development
chapel-developers@lists.sourceforge.net: developer discussions
#chapel-developers (irc.freenode.net): developer-oriented IRC channel

Discuss Chapel’s use in education
chapel-education@lists.sourceforge.net: educator discussions

Directly contact Chapel team at Cray: chapel _info@cray.com

Copyright 2017 Cray Inc.

(3)
&/

Questions?

\
Legal Disclaimer SR

Information in this document is provided in connection with Cray Inc. products. No license, express or implied, to any intellectual property o \

rights is granted by this document.
Cray Inc. may make changes to specifications and product descriptions at any time, without notice.
All products, dates and figures specified are preliminary based on current expectations, and are subject to change without notice. \

Cray hardware and software products may contain design defects or errors known as errata, which may cause the product to deviate from
published specifications. Current characterized errata are available on request.

Cray uses codenames internally to identify products that are in development and not yet publically announced for release. Customers and
other third parties are not authorized by Cray Inc. to use codenames in advertising, promotion or marketing and any use of Cray Inc.
internal codenames is at the sole risk of the user.

Performance tests and ratings are measured using specific systems and/or components and reflect the approximate performance of Cray
Inc. products as measured by those tests. Any difference in system hardware or software design or configuration may affect actual
performance.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY and design, SONEXION, and
URIKA. The following are trademarks of Cray Inc.: ACE, APPRENTICE2, CHAPEL, CLUSTER CONNECT, CRAYPAT, CRAYPORT,
ECOPHLEX, LIBSCI, NODEKARE, THREADSTORM. The following system family marks, and associated model number marks, are
trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT, and XT. The registered trademark LINUX is used pursuant to a sublicense from LMI,
the exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis. Other trademarks used in this document are the
property of their respective owners.

=/ Copyright 2017 Cray Inc.

=

cRasyr
CcCHARPEL
—

=/

C R0y

THE SUPERCOMPUTER COMPANY

