Productive Parallel Programming
from Laptops to Supercomputers with Chapel

Brad Chamberlain

SeaGL 2025
November 7, 2025

A Bit About You?

Q: What makes Chapel uni

A: It's one of the few program
languages designed for sca
parallel computing from the

What is [Scalable] Parallel Computing?

Parallel Computing: Using the processors and memories of multiple compute resources cooperatively

e Why? To run a program...
...faster than we could otherwise
...and/or using larger problem sizes

Compute Compute Compute Compute
Node O Node 1 Node 2 Node 3
o3k e o Xk e e Xk o3k
o 2R e, o X e GO G o
Processor Core
Memory

Scalable Parallel Computing: As more processors and memory are added, benefits increase

HPC = High Performance Computing

—

Parallel Computing has become Ubiquitous

Additional, ubiquitous parallelism today:
e multicore processors

Parallel computing, historically:
 supercomputers

o commodity clusters cloud computing

e GPUs
Compute Compute Compute Compute
Node O Node 1 Node 2 Node 3

B

b

B

. Memory

Processor Core

Parallel Computing has become Ubiquitous

Parallel computing, historically: Additional, ubiquitous parallelism today:
e supercomputers « multicore processors
o commodity clusters e cloud computing
e GPUs
Compute Compute Compute Compute
Node O Node 1 Node 2 Node 3
Processor Core
. Memory

: GPU Core

What is Chapel?

Chapel: A modern parallel programming language
« Portable & scalable

« Open-source & collaborative
« developed on GitHub

« an HPSF / Linux Foundation project : I E'EN UX % HPSF
L E=BTTY orrvsre rounon

FOUNDATION

Goals:
« Support general parallel programming
- Make parallel programming at scale far more productive

Productive Parallel Programming: One Definition

Imagine a programming language for parallel computing that is as...
...readable and writeable as Python

...yet also as...
...fast as Fortran / C / C++
...scalable as MP| / SHMEM

...GPU-ready as CUDA / HIP / OpenMP / Kokkos / OpenCL / OpenACC/ ...
...portable as C

...fun as [your favorite programming language]

This is our motivation for Chapel

CLBG Language Comparison (selected languages, no heroic versions)

mm chapel
~—~ 100 csharpcore
= -
= . more —
) compact i
O | J_ava
'6 w0l - | JuI::
el \ I perl
m 8 python3
. ruby
£ c =
= O mean-smalles
h (- 60 - % gmean—fasttl:tt
6 o
em (O
i
= 0 \
Q © [J
2 "5 w0~ Perl |
e} N\
W5 O ® Ruby
) Pythomn
N
TEU Javaseript =
EFTY eo
Julia =g Fort
5 ch: c .._»_-_-_._.:_._._.-_-,_._-_'f_._.f_E_}' "':f:ff:_‘?::_'_'::::::::::::::
Pel mo “o T Ruste.Q ... P o — — y -
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

Compressed Code Size (noAr'maIiz»ed to most compact entry)

— For further details, see my ChapelCon ‘24 lightning talk

10

https://www.youtube.com/watch?v=U8KM8wv32js&list=PLuqM5RJ2KYFi2yV4sFLc6QeRYpS35UeKl&index=6

CLBG La nguage Compa rison (selected languages, no heroic versions, zoomed in)

Execution Time
(normalized to fastest non-heroic entry)

(=
o
T

1
1.0

mm chapel
Bl csharpcore
\ EEm gcC
more %
B gpp
compact i
B java
 julia
node
. perl
python3
. ruby
B rust
swift
D gmean-smallest
O gmean-fastest

N
N
\
@ Julia
| \
’Ghapol ' ~~~~~~~~~~~ © e C++
1 1 lc ~\\. RuSt 1 1 1
1.5 2.0 2.5 3.0 35 4.0 4.5

Compressed Code Size (ndkmalizéd to most compact entry)

For further details, see my ChapelCon ‘24 lightning talk

N

https://www.youtube.com/watch?v=U8KM8wv32js&list=PLuqM5RJ2KYFi2yV4sFLc6QeRYpS35UeKl&index=6

HPCC Benchmarks in C+MPI+OpenMP vs. Chapel

STREAM TRIAD: C + MPI + OPENMP

include <hpee.h>
fdef _OPENMP
lude <omp.h>

0w
Toe

int HPCC Sta
int myRank
v

= HPCC_Stream(par yRank.
duce (&rv, &errCount, 1, MPI_INT, MPI_SUM, 0, comm);

return errCount;

int HPCC_Stream(HPCC_Params *params, int doIO) {
register int i;
double scalar;
VectorSize = HPCC_LocalVectorSize(params, 3, sizeof(double), 0);
a = HPCC_XMALLOC(double, Ve
b = HPCC_XMALLOC(double, Ve« e
c© = HPCC_XMALLOC(double, VectorSize

—

use BlockDist;

config const n = 1 000 000,

alpha = 0.01;
const Dom = blockDist.createDomain({1l..n});
var A, B, C: [Dom] real;

B =2.0;
C =1.0

~e

B + alpha * C;

HPCC RA: MPI KERNEL

forall (, r) in zip (Updates, RAStream()) do
T[r & indexMask].xor(r):;

4

|72

GB/s

30000
25000
20000
15000
10000

5000

GUPS

onNn A~ O

14
12 |

10

STREAM Performance (GB/s)

MPI+OpenMP —¢—
= ChapelEP —— - -~~~ -~~~ -~ -~~~ ~~~-~~ -~~~ 2
Chapel Global - -+ -

1632 64
Locales (x 36 cores / locale)

256

RA Performance (GUPS)

16 32 64
Locales (x 36 cores / locale)

128

12

Outline

Chapel by Example: Bale Index Gather
Chapel Applications
“Low-level” Features for Parallelism & Locality (time permitting)

Wrap-up

13

Chapel
Bale Index |

Bale Index Gather (IG): In Pictures

0) 1 2 3 4 _ 5 6 7/ 8 9
Kl K £ 3 2] 31 £ e £ E2

Src:

Dst:

sefma]n
I

15

Bale IG in Chapel: Scalar and Array Declarations

config const n
m

var Src: [0..<n] int,
Inds, Dst: [0..<m] int;

16

Bale IG in Chapel: Compiling

config const n
m

var Src: [0..<n] int,
Inds, Dst: [0..<m] int;

Sllchpl bale-ig.chpl
S

17

Bale IG in Chapel: Executing

config const n
m

var Src: [0..<n] int,
Inds, Dst: [0..<m] int;

$ chpl bale-ig.chpl
" /vale-ig
S

—1

Locale 0

e]

H

Locale 1

Locale 2

Locale 3

18

Bale IG in Chapel: Executing, Overriding Configs

config const n = 10,
m = 4;

1Y ¢ o A A A A A

Inds: (TT T T T T T T T I T 11111

Dst: (TTT 171

var Src: [0..<n] int,
Inds, Dst: [0..<m] int;

$ Chpl bale—lg . chpl Locale 0 Locale 1 Locale 2 Locale3
SEA ERR-LET. M- -n=1 000 000 I

Bale IG in Chapel: Array Initialization

use Random;

config const n
m

var Src: [0..<n] int,
Inds, Dst: [0..<m] int;

Src = [1 in O0..<n] 1i*11;
fillRandom(Inds, min=0, max=n-1);

$ chpl bale-ig.chpl
$./bale-ig

S

0 1 2 3 4 5 6 7 8 9
Src: IO |11|22|33|44|55|66|77|88|99|

Inds:|3|7|2|7|
Ds'r:D | | |

Locale 0 Locale 1 Locale 2 Locale 3

edhodl B
tedhod

20

Bale IG in Chapel: Serial Version

config const n = 10, 0o 1 2 3 4 5 6 7 8 9
m = 4; Src: IO|11|22|33|44|55|66|77|88|99|
var Src: [0..<n] int, Inds: I3 |7|2 |7|
Inds, Dst: [0..<m] int; 1
Eor 1 in 0..<m do > |33| I I
Dst[i] = Src[Inds[i]];

$ Chp 1l bale-1 g. Chp 1 Locale 0 Locale 1 Locale 2 Locale 3

$./bale-ig A==

S

Bale IG in Chapel: Serial, Zippered Version

config const n = 10, 0o 1 2 3 4 5 6 7 8 9
m = 4; Src: IO|11|22|33|44|55|66|77|88|99|
var Src: [0..<n] int, inds: |3 |7|2 I7I
Inds, Dst: [0..<m] int; 1
e) i o+ [T
for (d, 1) in zip (Dst, Inds) do
d = Src[i];

$ Chp 1l bale-1 g. Chp 1 Locale 0 Locale 1 Locale 2 Locale 3

$./bale-ig ¢ B

S

Bale IG in Chapel: Parallel, Zippered Version (vectorized)

config const n = 10,
m = 4;

var Src: [0..<n] int,
Inds, Dst: [0..<m] int;

foreach (d, 1) in zip(Dst, Inds) do

d = Src([i];

$ chpl bale-ig.chpl
$./bale-ig

S

0 1 2 3 4 5 6 7 8 9
Src: IO |11|22|33|44|55|66|77|88|99|

Locale 0 Locale 1 Locale 2 Locale 3

8 H

23

Bale IG in Chapel: Parallel, Zippered Version (multicore)

config const n = 10,
m = 4;

var Src: [0..<n] int,
Inds, Dst: [0..<m] int;

forall (d, 1) in zip(Dst, Inds) do
d = Srcl[i];

$ chpl bale-ig.chpl
$./bale-ig

S

0 1 2 3 4 5

6

9

Src: IO |11|22|33|44|55|66|77|88|99|

Locale 0 Locale 1

edhodl B

Locale 2

Locale 3

tedhod

24

Bale IG in Chapel: Parallel Promoted Version (equivalent to previous version)

config const n = 10, 0 1 2 3 4 5 6 7 8 9
m = 4; Src: IO |11|22|33|44|55|66|77|88|99|

var Src: [0..<n] int,
Inds, Dst: [0..<m] int;

Dst = Src[Inds];

$ chpl bale-ig.chpl

S
S

./bale-ig

Locale 0

e]

e

H

Locale 1

Locale 2

Locale 3

o

e

25

Bale IG in Chapel: Parallel, Zippered Version (Multicore, again)

config const n = 10,
m = 4;

var Src: [0..<n] int,
Inds, Dst: [0..<m] int;

forall (d, 1) in zip(Dst, Inds) do
d = Srcl[i];

$ chpl bale-ig.chpl
$./bale-ig

S

0 1 2 3 4 5 6 7 8 9
Src: IO |11|22|33|44|55|66|77|88|99|

Locale 0

e]

e

H

Locale 1

Locale 2

Locale 3

o

e

26

Bale IG in Chapel: Parallel, Zippered Version (GPU)

config const n = 10,
m = 4;

on here.gpus[0] {
var Src: [0..<n] int,
Inds, Dst: [0..<m] int;

forall (d, 1) in zip(Dst, Inds) do
d = Src[i];

$ chpl bale-ig.chpl
$./bale-ig

S

0

1 2 3

6 7

9

Src: IO |11|22|33|44|55|66|77|88|99|

Compute Compute Compute Compute
Node 0 Node 1 Node 2 Node 3
iD iD il] “iD iD TD “"L"D TLD
fnin fnie fnin Inie

27

Bale IG in Chapel: Parallel, Zippered Version (Multicore, again)

config const n = 10,
m = 4;

var Src: [0..<n] int,
Inds, Dst: [0..<m] int;

forall (d, 1) in zip(Dst, Inds) do
d = Srcl[i];

$ chpl bale-ig.chpl
$./bale-ig

S

0 1 2 3 4 5 6 7 8 9
Src: IO |11|22|33|44|55|66|77|88|99|

Locale 0

e]

e

H

Locale 1

Locale 2

Locale 3

o

e

28

Bale IG in Chapel: Parallel , Zippered Version with Named Domains (Multicore)

config const n = 10,
m = 4;
const SrcInds = {0..<n},

DstInds = {0..<m};

var Src: [SrcInds] int,
Inds, Dst: [DstInds] int;

forall (d, 1) in zip(Dst, Inds) do
d = Srcl[i];

$ chpl bale-ig.chpl
$./bale-ig

S

0

2 3

6

9

Src: IO |11|22|33|44|55|66|77|88|99|

Locale 0

edhodl B

Locale 1

Locale 2

Locale 3

tedhod

29

Bale IG in Chapel: Distributed Parallel Version

use BlockDist;

config const n = 10,

m = 4;

const SrcInds = blockDist.createDomain (0.
DstInds = blockDist.createDomain (0.

var Src: [SrcInds]

int,

Inds, Dst: [DstInds] int;

forall (d, 1) in zip(Dst, Inds) do

.<n),
.<m) ;

./bale-ig &t

=—m=...

0 1 2 3 4 5 6 7 8 9

Src: IO |11|22|33|44|55|66|77|88|99|

Locale O Locale 1 Locale 2 Locale 3
o o] oo e X 3k
o3k e oo - o dl e . o3k

30

Bale IG in Chapel: Distributed Parallel Version on HPE Cray EX (Slingshot-11)

use BlockDist;

config const n = 10,
m = 4;

const SrcInds = blockDist.createDomain (0.
DstInds = blockDist.createDomain (0.

var Src:
Inds,

[SrcInds]
Dst:

int,

[DstInds] int;

forall (d, 1) in zip(Dst, Inds) do

.<n),
.<m) ;

$ chpl bale-ig.chpl
$./bale-ig --n=..

S

GB/s

25000
20000
15000
10000

5000

Bale Indexgather Performance
HPE Cray EX (Slingshot-11)

Chapel ——
... SHMEM Exstack —¢—
SHMEM Convey - -% -

. X
| 1 1]

512 1024 2048 4096
Compute Nodes

Src: 0 J11)22

88 | 99

Inds:

Dst:

31

Bale IG in Chapel vs. SHMEM on HPE Cray EX (Slingshot-11)

in zip (Dst,

Inds) do

SHMEM (Exstack version)

GB/s

i=0;
while (exstack proceed(ex, (i==1 num req))) f{
i0 = 1i;

while(i < 1 num req) {
1 indx = pckindx[i] >> 16;
pe = pckindx[i] & Oxffff;
if (!exstack push(ex, &l _indx, pe))
break;
i++;

}
exstack exchange (ex) ;

while (exstack pop(ex, &idx , &fromth)) {
idx = ltable[idx];
exstack push(ex, &idx,

}

lgp_barrier();

exstack exchange (ex) ;

fromth) ;

for (j=10; j<i; Jj++) {
fromth = pckindx[j] & Oxffff;
exstack pop thread(ex, &idx,
tgt[j] = idx;

}

(uinté4_t) fromth) ;

1

while (more = convey advance (requests,

SHMEM (Conveyors version)

,O;

(i == 1 num req)),
more | convey advance(replies, !more)) {
for (; i < 1 num reqg; i++) {
pkg.idx = i;

pkg.val = pckindx[i] >> 16;
pe = pckindx[i] & Oxffff;

if (! convey push(requests, &pkg, pe))
break;
}
while (convey pull (requests, ptr, &from) == convey OK) {
pkg.idx = ptr->idx;
pkg.val = ltable[ptr->val];
if (! convey push(replies, &pkg, from)) {

convey unpull (requests) ;
break;
}
}

while (convey pull (replies, ptr, NULL)
tgt[ptr->idx] = ptr->val;

== convey_OK)

lgp_barrier();

25000
20000
15000
10000

5000

Bale Indexgather Performance
HPE Cray EX (Slingshot-11)

Chapel ——
... SHMEM Exstack —»—
SHMEM Convey - -% -

512 1024 2048
Compute Nodes

Src: 0 J11 88 | 99

Inds:

Dst:

32

Chapel A

Applications of Chapel

Python3 Client ma Chapel Server

Socket

Code Modules
t Distributed
Object Store
R Platform MPP, SMP, Cluster, Laptop, etc. [1-2-
CHAMPS: 3D Unstructured CFD Arkouda: Interactive Data Science at Massive Scale ChOp: Chapel-based Optimization ChplUItra: Simulating Ultralight Dark Matter
Laurendeau, Bourgault-Coté, Parenteau, Plante, et al. Mike Merrill, Bill Reus, et al. T. Carneiro, G. Helbecque, N. Melab, et al. Nikhil Padmanabhan, J. Luna Zagorac, et al.
Ecole Polytechnique Montréal U.S. DoD INRIA, IMEC, et al. Yale University et al.

Low-pass filter with LOWESS (intrinsically parallel) . - (X
= . = “i

RH (%) at Lake Mead

RapidQ: Mapping Coral Biodiversity ChapQG: Layered Quasigeostrophic CFD
Tom Westerhout Nelson Luis Dias Rebecca Green, Helen Fox, Scott Bachman, et al. lan Grooms and Scott Bachman
Radboud University The Federal University of Parana, Brazil The Coral Reef Alliance University of Colorado, Boulder et al.

RBLWrapp: e
ELWizpper FEATURES ENSEMBLES

AT

— f i :

‘ o)\
2R apper,

o EXPLORATION PARAMETERS RATIONALE

I Model Calibration Arachne Graph Analytics Modeling Ocean Carbon Dioxide Removal CrayAl HyperParameter Optimization (HPO)
Marjan Asgari, et al. Bader, Du, Rodriguez, et al. Scott Bachman, Brandon Neth, et al. Ben Albrecht, et al.
University of Guelph New Jersey Institute of Technology [C]Worthy Cray Inc. / HPE

C—1 [images provided by their respective teams and used with permission]

CHAMPS Summary

Whatisit?
— 3D unstructured CFD framework for airplane simulation
— ~100+k lines of Chapel written since 2019

Who wrote it?
— Professor Eric Laurendeau’s students + postdocs at Polytechnique Montreal
S /%% POLYTECHNIQUE
m- - MONTREAL
Why Chapel?

— performance and scalability competitive with MPI + C++
— students found it far more productive to use
— enabled them to compete with more established CFD centers

C—1 [images provided by the CHAMPS team and used with permission]

LR

——
T
i

=

i

RapidQ Coral Biodiversity Summary

Whatisit?
— Measures coral reef diversity using high-res satellite image analysis P
— ~230 lines of Chapel code written in late 2022

Who wrote it?
— Scott Bachman, NCAR/[C]Worthy h NCAR rC-l \'\IOFth\’

uuuuuuuuuuuuuu

« with Rebecca Green, Helen Fox, Coral Reef Alliance @ CORAL

REEF ALLIANCE

Why Chapel?
— easy transition from Matlab, which they had been using

— massive performance improvement:
previous ~10-day run finished in ~2 seconds using 360 cores
— enabled unanticipated algorithmic improvements |
« from O(M-N-P) habitat diversity to O(M-N-P3) spectral diversity : i y - s performincs Gera] MATLAR: | s

o Current performance (360x cores, Chapel): ~ 2 seconds

« Added another ~90 lines of code to make it GPU-enabled Roughly § orders of magnitude impr

« ~4-week desktop run » ~20 minutes on 20 nodes / 512 GPUs

C—1 [images provided by Scott Bachman from his CHIUW 2023 talk and used with permission] 36

https://youtu.be/lJhh9KLL2X0

Diversity in Chapel Application Scales (Code Size and Systems)

Computation: Aircraft simulation / CFD Computation: Coral reef image analysis Computation: Atmospheric data analysis
Code size: 100,000+ lines Code size: ~320 lines Code size: 5000+ lines
Systems: Desktops, HPC systems Systems: Desktops, HPC systems w/ GPUs Systems: Desktops, sometimes w/ GPUs

C—1 [images provided by their respective teams and used with permission]

37

Applications of Chapel

Python3 Client M apel Server

Socket

Code Modules

Distributed
Object Store

Platform MPP, SMP, Cluster, Laptos, etc.
CHAMPS: 3D Unstructured CFD Arkouda: Interactive Data Science at Massive Scale ChOp: Chapel-based Optimization ChplUItra: Simulating Ultralight Dark Matter
Laurendeau, Bourgault-Coté, Parenteau, Plante, et al. Mike Merrill, Bill Reus, et al. T. Carneiro, G. Helbecque, N. Melab, et al. Nikhil Padmanabhan, J. Luna Zagorac, et al.
Ecole Polytechnique Montréal U.S. DoD INRIA, IMEC, et al. Yale University et al.

Low-pass filter with LOWESS (intrinsically parallel)
10— ———

RH (%) at Lake Mead

date

Lattice-Symmetries: a Quantum Many-Body Toolbox Desk dot chpl: Utilities for Environmental Eng. RapidQ: Mapping Coral Biodiversity ChapQG: Layered Quasigeostrophic CFD

Tom Westerhout Nelson Luis Dias Rebecca Green, Helen Fox, Scott Bachman, et al. lan Grooms and Scott Bachman
Radboud University The Federal University of Parana, Brazil The Coral Reef Alliance University of Colorado, Boulder et al.

FEATURES ENSEMBLES
sxnonnnouuunmzrsum|o~;ns

Chapel-based Hydrological Model Calibration Arachne Graph Analytics Modeling Ocean Carbon Dioxide Removal CrayAl HyperParameter Optimization (HPO)

‘MARBLWrapper
———

Marjan Asgari et al. Bader, Du, Rodriguez, et al. Scott Bachman, Brandon Neth, et al. Ben Albrecht et al.
University of Guelph New Jersey Institute of Technology [C]Worthy Cray Inc. / HPE

C—1 [images provided by their respective teams and used with permission]

What is Arkouda?

Q: “What is Arkouda?”

Arkouda Client
(written in Python)

=" JupYter big_add_sum L kst 16 s o e

import arkouda as ak

def ak_argsort(N, seed):
a = ak.randint (@, 2xx64, N, dtype=ak.uinté4, seed=seed)
perm = ak.argsort(a)

assert ak.is_sorted(alperm])

™

O User writes Python code
ﬂ making familiar NumPy/Pandas calls

—1 39

What is Arkouda?

Q: “What is Arkouda?”

Arkouda Client Arkouda Server

= Jupyter big_add_sum uasowspore 16 mots s> cnanc

(written in Python) (written in Chapel)

O User writes Python code
ﬂ making familiar NumPy/Pandas calls

import arkouda as ak

def ak_argsort(N, seed):
a = ak.randint(@, 2%x64, N, dtype=ak.uinté4, seed=seed)
perm = ak.argsort(a)

assert ak.is_sorted(alperm])

A1: “A scalable version of NumPy / Pandas for data scientists”

A2: “A framework for driving supercomputers interactively from Python”

—1

Performance and Productivity: Arkouda Argsort

HPE Cray EX ¢ ¢

— Slingshot-11 network (200 Gb/s)
— 8192 compute nodes

— 256 TiB of 8-byte values

— ~8500 GiB/s (~31 seconds)

HPE Cray EX 8 e

— Slingshot-11 network (200 Gb/s)
— 896 compute nodes

— 28 TiB of 8-byte values

— ~1200 GiB/s (~24 seconds)

HPE Apollo * X

9000
8000
7000
6000
5000
4000
3000
2000
1000

GiB/s

— HDR-100 InfiniBand network (100 Gb/s)

— 576 compute nodes
— 72 TiB of 8-byte values
— ~480 GiB/s (~150 seconds)

Arkouda Argsort Performance

= Slingshot-11 May 2023, 32 GiB/node —¢— - - - - - - - - - - _ _——"_
Slingshot-11 April 2023, 32 GiB/node —eo—
~ HDR-100 IB May 2021, 128 GiB/node —— ~~~_~— ~~ "~~~ 7 °

Implemented using ~100 lines of Chapel

41

For More Information on Arkouda

Arkouda website: https://arkouda-www.qgithub.io/

github documentation gitter

Arkouda is...

Massive-scale data science,

f th f t f I t Fast Interactive Extensible
y p p Arkouda is powered by Chapel, a By distributing your data across One can expand on Arkouda's
programming language built from the multiple nodes, Arkouda allows you to capabilities, thus enabling arbitrary
ground up to support parallelism and rapidly transform and wrangle datasets scalable computations to be performed
distributed computing. Make the most in real time that are simply intractable from Python.
, Avouta NumPy out of every core and every node in for a laptop or desktop.
Ready for supercomputers Industry standard your system.
Launch a a se serve
smport arkouda as ak Powered by Chapel
connect to the server
ak.connect (' localhost ',
.) Arkouda’s backend is in Chapel, an op: parallel
2 = ak. random. randint (0. . . | language. Chapel is unigue among mainstream languages as it puts parallelism and locality N
b = ak.random.randint (0, 2##32, 2#*38) # 1 in the forefront, while not sacrificing productivity or portability. Chapel enables Arkouda to
add them perform well and scale on many different architectures, from multicore laptops to cloud CHAPEL
c=a+b systems to world’s fastest supercomputers.
o theart To learn more about Chapel, check out its blog, presentations, tutorials and demos, and the
print(cle:10]) How Can | Learn Chapel? page.

Tutorial Video [Chat on Gitter

Arkouda users are saying...

Arkouda v2024.12.06 released! ...solving problems in a matter of seconds, as opposed to days...

The new release includes a refactored server making it easier to add new features, more Sparse Matrix fucntionality, new pdarray
manipulation functions, and bug fixes.

— Tess Hayes, Bytoa
Read the release notes — o

11 . . . _—
[I’'m] working with more data than | ever thought possible as a data scientist!

— Jake Trookman, Erias

https://arkouda-www.github.io/
https://arkouda-www.github.io/
https://arkouda-www.github.io/

“7T Questions for Chapel Users” Interview series

A good way to learn more about Chapel users’ apps and experiences

 https://chapel-lang.ora/blog/series/7-questions-for-chapel-users/

7 Questions for David Bader: Graph
Analytics at Scale with Arkouda and Chapel

Posted on November 6, 2024.

Tags: User Experiences | Interviews | Graph Analytics = Arkouda

By: Engin Kayraklioglu, Brad Chamberlain

7 Questions for Tiago Carneiro and
Guillaume Helbecque: Combinatorial
Optimization in Chapel

Posted on July 30, 2025.

Tags: User Experiences Interviews

By: Engin Kayraklioglu, Brad Chamberlain

' 7 Questions for Marjan Asgari: Optimizing
¢ Hydrological Models with Chapel

Posted on September 15, 2025.

Tags: User Experiences | Interviews | Earth Sciences

By: Engin Kayraklioglu, Brad Chamberlain

7 Questions for Scott Bachman: Analyzing
Coral Reefs with Chapel

“With the coral reef program, |
was able to speed it up by a
factor of 10,000. Some of that
was algorithmic, but Chapel had
the features that allowed me to
do it.”

7 Questions for Bill Reus: Interactive
Supercomputing with Chapel for Cybersecurity

“l was on the verge of resigning
myself to learning MPI when | first
encountered Chapel. After writing
my first Chapel program, | knew |
had found something much more
appealing.”

(C, Chapel Language Blog
About Chapel Website Featured Series Tags Authors All Posts

-

Aircraft Aerodynamics in Chapel

@ 7 Questions for Eric Laurendeau: Computing

> “Chapel worked as intended: the
code maintenance is very much
reduced, and its readability is
astonishing. This enables
undergraduate students to
contribute, something almost

impossible to think of when
using very complex software.”

7 Questions for Nelson Luis Dias:
Atmospheric Turbulence in Chapel

“Chapel allows me to use
the available CPU and GPU
power efficiently without
low-level programming of
data synchronization,
managing threads, etc.”

43

https://chapel-lang.org/blog/series/7-questions-for-chapel-users/
https://chapel-lang.org/blog/series/7-questions-for-chapel-users/
https://chapel-lang.org/blog/series/7-questions-for-chapel-users/
https://chapel-lang.org/blog/series/7-questions-for-chapel-users/
https://chapel-lang.org/blog/series/7-questions-for-chapel-users/
https://chapel-lang.org/blog/series/7-questions-for-chapel-users/
https://chapel-lang.org/blog/series/7-questions-for-chapel-users/
https://chapel-lang.org/blog/series/7-questions-for-chapel-users/
https://chapel-lang.org/blog/series/7-questions-for-chapel-users/
https://chapel-lang.org/blog/series/7-questions-for-chapel-users/
https://chapel-lang.org/blog/series/7-questions-for-chapel-users/
https://chapel-lang.org/blog/series/7-questions-for-chapel-users/

“Low-le
Parallelism

Key Concerns for Scalable Parallel Computing

1. parallelism: What computational tasks should run simultaneously?
2. locality: Where should tasks run? Where should data be allocated?

Compute Compute Compute Compute
Node O Node 1 Node 2 Node 3
o3k e GO oo oo
o dR e, ‘ \ o X e ‘ \ oo ‘ \ o3k

Processor Core

. Memory

45

Locales in Chapel

e In Chapel, a locale refers to a compute resource with...
e processors, so it can run ftasks

e memory, so it can store variables
e For now, think of each compute node as being a locale

Compute
Node O

_mm

Compute Compute

Node 1

Node 2

b

B

Compute

Node 3

Processor Core

. Memory

46

Built-In Locale Variables in Chapel

e Two built-in variables for referring to locales within Chapel:

« Locales: An array of locale values representing the system resources on which the program is running

 here:

The locale on which the current task is executing

Locale O

Locale 1

Locale 2

il

B

Locale 3

/ |

here Locales

. Memory

Processor Core

47

Basic Features for Locality

on.chpl

All Chapel programs begin running
as a single task on locale O

writeln ("Hello from locale

var A: [1.

for loc in Locales

on loc {
var B

2, 1..2]

real;

, here.id);

Locale O

Variables are stored using the
memory local to the current task

This loop will serially iterate over
the program’s locales

on-clauses move tasks
to target locales

remote variables can be

accessed directly

Locale 2 Locale 3

I | ™ |

aE al;

r

48

Mixing Locality with Task Parallelism

coforall.chpl

writeln ("Hello from locale ", here.id);
var A: [1l..2, 1..2] real;
coforall loc in Locales {

on loc {
var B = A;

Locale O Locale 1

Locale 2

O

|

s

r

The coforall loop creates

a parallel task per iteration
(in this case, a task per locale)

49

Representing GPUs in Chapel

 In Chapel, we represent GPUs as sub-locales
« Each top-level locale may have an array of locales called ‘gpus’

o We can then target them using Chapel’s traditional features for parallelism + locality
on here.gpus|[0]

{ .

}

Locale O

GPUO

GPU1

coforall gpu in here.gpus do on gpu { ..

Locale 1

GPUO

GPU1

CPU Core

. Memory
GPU Core

Locale 2

GPUO

GPU1

Locale 3

GPUO

GPU1

50

Targeting CPUs and GPUs using Parallelism and Locality

var A: [l1..n, 1..n] real;
coforall 1 in Locales do on 1 {

CPU Core GPU Core . Memory

parallel statements cobegin {
with cobegin Locale O Locale 1 {

inner I

coforall

var B: [l1..n, 1..n] real;

B = 2;
A = B;

}
coforall g in here.gpus do on g f{
var B: [l1..n, 1..n] real;

B = 2;

across A B = Bf

GPUs }
e AR - 2K
§(Gem
e BE-2K- }

T ' writeln (A) ;

: outer coforall across Locales | -

o oo

And much, much more...

This talk has covered just a small subset of Chapel’s features

Additional parallel features:
« atomic and sync types for synchronizing between tasks
« additional ways to create tasks and parallel loops
 reduction and scan operations

Traditional language features:

» object-oriented features
* iterators

« generics, polymorphism, overloading

default arguments, keyword-based argument passing

modules for namespacing

interoperability

etc.

—1

... there’s much more!

52

Summary

Chapel is unique among programming languages

Chapel is being used for productive parallel computing at all scales
— users are reaping its benefits in practical, cutting-edge applications

supports first-class concepts for parallelism and locality

ports and scales from laptops to supercomputers

supports clean, concise code relative to conventional approaches
supports GPUs in a vendor-neutral manner

use BlockDist;

config const n = 10,
m = 4;

const SrcInds = blockDist.createDomain (0..<n),
DstInds = blockDist.createDomain (0..<m) ;

var Src: [SrcInds] int,
Inds, Dst: [DstInds] int;

forall (d, i) in zip(Dst, Inds) do
d = Srcli];

— applicable to domains as diverse as physical simulations and data science =~ . = =mwemsm

Arkouda is a notable case, supporting interactive HPC

date

GB/s

25000
20000
15000
10000

5000

Bale Indexgather Performance
HPE Cray EX (Slingshot-11)

Chapel ——
SHMEM Exstack —*— _ _ ______________=—="______
SHMEM Convey - -* -

N 2 2)
512 1024 2048 4096

o=

Arkouda Client
(written in Python)

O ' user writes Python code
(1) making familiar NumPy/Pandas calls

54

Three Ways to Get Started with Chapel

TECHNOLOGY

Listen to |last week's episode of HPE's “Technology Now” podcast an

Read interviews from the aforementioned 7 Questions for Chapel Users series

Visit the Get Involved page on our website

55

https://hpe.lnk.to/Chapelgu
https://chapel-lang.org/blog/series/7-questions-for-chapel-users/
https://chapel-lang.org/blog/series/7-questions-for-chapel-users/
https://chapel-lang.org/getinvolved/

Ways to engage with the Chapel Community

Synchronous Community Events

 Project Meetings, weekly

« Deep Dive / Demo Sessions, weekly timeslot

» Chapel Teaching Meet-up, monthly

* ChapelCon (formerly CHIUW), annually

Social Media
FOLLOW US
BlueSky
Facebook
LinkedIn
Mastodon
Reddit
X (Twitter)
YouTube

UADBEIK

I

Discussion Forums

GET IN TOUCH
@ Discord

D Discourse

Email
O GitHub Issues

O citter

s\\ Stack Overflow

Asynchrounous Communications

« Chapel Blog, typically ~2 articles per month

« Community Newsletter, quarterly

« Announcement Emails, around big events

Ways to Use Chapel
GET STARTED

g Attempt This Online

""" Docker
E4S
GitHub Releases

Homebrew

Spack

(from the footer of chapel-lang.org)

56

https://github.com/chapel-lang/chapel/discussions/categories/weekly-meeting-topics?discussions_q=
https://github.com/chapel-lang/chapel/discussions/categories/weekly-meeting-topics?discussions_q=
https://github.com/chapel-lang/chapel/discussions/27247
https://github.com/chapel-lang/chapel/discussions/27247
https://chapel-lang.org/meetings/
https://chapel-lang.org/meetings/
https://chapel-lang.org/meetings/
https://chapel-lang.org/meetings/
https://chapel-lang.org/chapelcon/
https://chapel-lang.org/chapelcon/
https://chapel-lang.org/blog/
https://chapel-lang.org/blog/
https://chapel.discourse.group/c/newsletters/24
https://chapel.discourse.group/c/newsletters/24
https://chapel.discourse.group/c/announcements/8
https://chapel.discourse.group/c/announcements/8
https://chapel-lang.org/
https://chapel-lang.org/
https://chapel-lang.org/

Chapel Website

BLOG

WHAT’'S NEW?

TECHNOLOGY
NOW

P

Z

Chapel Featured on ‘Technology Now' Podcast
on October 30, 2025

This week's 'Technology Now' podcast features a conversation about Chapel with Brad Chamberlain.

CONTINUE READING

7~
EHAEEI. DOWNLOAD pocs ~ LEARN RESOURCES ~ COMMUNITY
=
The Chapel Programming Language
Productive parallel computing at every scale.
| @ Hello World writeln("Hello, world!");
// create a parallel task per processor core
Q Distributed Hello World coforall tid in 0..<here.maxTaskPar do
writeln("Hello from task ", tid);
O Parallel File 10 // print these 1,000 messages in parallel using all cores
forall i in 1..1000 do
O 1D Heat Diffusion writeln("Hello from iteration ", i);
QO GPU Kernel
TRY CHAPEL GET CHAPEL LEARN C

PRODUCTIVE PARALLEL

Concise and readable without
compromising speed or expressive
power. Consistent concepts for parallel

computing make it easier to learn.

Built from the ground up to implement
parallel algorithms at your desired level of
abstraction. No need to trade low-level
control for convenience.

Chapel is a comp
generating efficient |
meets or beats the pe
languaj

GPU-ENABLED

SCALABLE

Chapel enables application performance
at any scale, from laptops to clusters, the
cloud, and the largest supercomputers in
the world.

Chapel supports vendor-neutral GPU

programming with the same language
features used for distributed execution.
No boilerplate. No cryptic APls.

Entirely open-source u:
license. Built by a grf
developers|

hapel-lang.org

USERS LOVE IT

The use of Chapel worked as intended: the code maintenance is very

10 Myths About Scalable Parallel Progr
Language Designs

Languages (Redux), Part 7: Minimalist

By Brad Chamberlain on October 15, 2025

The seventh archival post from the 2012 IEEE TCSC blog series with a current reflection on it

CONTINUE READING

1t reduced, and its readability is astonishing. This enables undergraduat
students to contribute to its development, something almost impossilj
think of when using very complex software.

- Eric L r, Polytd

ChapelCon '25 Program Released!
on September 23, 2025

ChapelCon '25 is just two weeks away, and the program is live! Check out the webpage for the full schedule.

CONTINUE READING

«“ A lot of the nitty gritty is hidden from you until you need to know it. ...
like the complexity grows as you get more comfortable - rather than
with everything at once.

- Tess Hayes|

Announcing Chapel 2.6!

By David Longnecker, Jade Abraham, Lydia Duncan, Daniel Fedorin, Ben Harshbarger, Brad Chamberlain on
September 18, 2025

Highlights from the September 2025 release of Chapel 2.6

CONTINUE READING

CHAPEL IN PRODUCTION

7 Questions for Marjan Asgari: Opti | Models with Chapel

izing Hydrologi

By Engin Kayraklioglu, Brad Chamberlain on September 15, 2025

formed its C/OpenMP predecessor using far fewer lines of code. Dramatically
lerated the progress of grad students while also supporting contributions from
dergrads for the first time.

Learn More

An intel
ﬂ FOLLOW US GET IN TOUCH GET STARTED
* BlueSky @ Discord ﬂ Attempt This Online
0 Facebook D Discourse & Docker
[Linkedin] Email ES E4s
@ Mastodon) GitHub Issues ©) GitHub Releases
@ Reddit M oitter % Homebrew
X X (Twitter) 2 Stack Overflow @ spack
D YouTube

—1

57

https://chapel-lang.org/
https://chapel-lang.org/
https://chapel-lang.org/

https://chapel-lang.org
@ChapelLanguage

: © 2025 Hewlett Packard Enterprise Development LP

