The Exascale Programming Challenge
and Chapel’s Response

Brad Chamberlain, Chapel Team, Cray Inc.
SICM? Parallel Computing Workshop
March 29t, 2014

Chapel, Life, the Universe*

Brad Chamberlain, Chapel Team, Cray Inc.
SICM? Parallel Computing Workshop
March 29t, 2014

* time permitting

Safe Harbor Statement .

~

Kl'his presentation may contain forward-looking statements that are
based on our current expectations. Forward looking statements
may include statements about our financial guidance and expected
operating results, our opportunities and future potential, our product
development and new product introduction plans, our ability to
expand and penetrate our addressable markets and other
statements that are not historical facts. These statements are only
predictions and actual results may materially vary from those
projected. Please refer to Cray's documents filed with the SEC from
time to time concerning factors that could affect the Company and

\these forward-looking statements. Y

(%:A B Copyright 2014 Cray Inc.

Prototypical Next-Gen Processor Technologies

AR

Dragonfly Interconnect (optical fiber)

High-Radix Router Module (RM)
' i

| I_'

12, wee 12

Nvidia Echelon

2 UART, 2 USB DDR3 Controller
JTAG, I’C, SPI
36.Cores

PCle 2.0 - 8 Lanes

PCle 2.0 - 4 Lanes

Smart NIC Hardware

PCle 2.0 - 4 Lanes

Flexible 1I/O DDR3 Controller

Tilera Tile-Gx

®
!
cRAY |

COMPUTE | STORE

| ANALYZE

General Trends in These Architectures XS

e Increased hierarchy and/or sensitivity to locality

e Potentially heterogeneous processor/memory types

= Next-gen programmers will have a lot more to think
about at the node level than in the past

COMPUTE | STORE | ANALYZE

DD
@::;:
= Copyright 2014 Cray Inc.

\
. . _ =AY
Why is there an exascale programming crisis? .o

e \
\

Because HPC has adopted programming models that... \
...have poor support for parallel work decomposition and scheduling

...have poor support for array layouts and distributed data structures

...tend to be closely tied to the architectural capabilities they target

= COMPUTE | STORE | ANALYZE
@\-'h Copyright 2014 Cray Inc.

STREAM Triad: a trivial parallel computation

Given: m-element vectors A, B, C
Compute: Vie 1.m, A, =B, + o-C,

In pictures:

D A A S B
BLITTTTTTTTTTTTTTIITTTI]T]
4
CCITTTTT T T T T TTTTTT[TTT]
o H

Z,
@H::::
-2

STREAM Triad: a trivial parallel computation

Given: m-element vectors A, B, C
Compute: Vie 1.m, A, =B, + o-C,

In pictures, in parallel:

Z,
@H::::
-2

STREAM Triad: a trivial parallel computation =R

e \
\

Given: m-element vectors A, B, C
Compute: Vie 1.m, A, =B, + o-C,

In pictures, in parallel (distributed memory):

| | |

i i i

| | |
« @ P B ! B | m

Z_...
G= ®

®
!
CRAaY |

STREAM Triad: a trivial parallel computation .o

Given: m-element vectors A, B, C
Compute: Vie 1.m, A, =B, + o-C,

In pictures, in parallel (distributed memory multicore):

| | |

i - i

| | |
« B P B ! & | m

Z_...
G= ®

STREAM Triad: MPI

#include <hpcc.h> m

static int VectorSize;
static double *a, *b, *c;

int HPCC StarStream (HPCC Params *params) {
int myﬁank, commSize;
int rv, errCount;
MPI Comm comm = MPI COMM WORLD;

MPI Comm size(comm, &commSize);
MPI Comm rank(comm, &myRank);

rv = HPCC Stream(params, 0 == myRank);

MPI Reduce(&rv, é&errCount, 1, MPI INT, MPI SUM,

0O, comm);
return errCount;
int HPCC Stream(HPCC Params *params, int doIO)

register int j;
double scalar;

VectorSize = HPCC LocalVectorSize(params, 3,

sizeof (double), 0);

)
I

= HPCC XMALLOC(double, VectorSize);
HPCC XMALLOC(double, VectorSize);
c = HPCC XMALLOC(double, VectorSize);

o
I

/:\v e
CHAaPEL

{

if (ta || 'b |] 'c) |
if (c) HPCC free(c);
if (b) HPCC free(b);
if (a) HPCCifree(a);
if (doIO) {

fprintf (outFile,

\n", VectorSize);
fclose(outFile);

}

return

scalar

o

’

’

1;

j<VectorSize; j++)
2.0;
0.0;

3.0;

j<VectorSize; j++)
b[jl+scalar*c([j];

HPCC free(c);
HPCC free (b);
HPCC free(a);

{

"Failed to allocate memory (

%

d) .

STREAM Triad: MPI+OpenMP

#include <hpcc.h>
#ifdef OPENMP
#include <omp.h>
#endif

static int VectorSize;
static double *a, *b, *c;

int HPCC StarStream (HPCC Params *params) {
int myﬁank, commSize;
int rv, errCount;
MPI Comm comm = MPI COMM WORLD;

MPI Comm size(comm, &commSize);
MPI Comm rank(comm, &myRank);

rv = HPCC Stream(params, 0 == myRank);
MPI Reduce(&rv, é&errCount, 1, MPI INT, MPI SUM,
0O, comm);

return errCount;

}

int HPCC Stream(HPCC Params *params, int doIO) ({
register int j;
double scalar;

VectorSize = HPCC LocalVectorSize(params, 3,
sizeof (double), 0);

= HPCC XMALLOC(double, VectorSize);
HPCC XMALLOC(double, VectorSize);
c = HPCC XMALLOC(double, VectorSize);

o o
[T

/:\v e
CHAaPEL

MPI + OpenMP

if (la
if (
if |
if |

c
b
a

Il
)
)
)

'b || tec) |
HPCC free(c);
HPCC free (b);
HPCCifree(a);

if (doIO) {

fprintf (outFile,

\I'l",

}

VectorSize);
fclose(outFile);

return 1;

}

#ifdef OPENMP
#pragma omp parallel for

#endif

scalar

J

<VectorSize; j++)
2.0
0.0

’
’

3.0;

#ifdef OPENMP
#pragma omp parallel for

#endif
for (3
alj]

0;

j<VectorSize; j++)
b[jl+scalar*c([j];

HPCC free(c);
HPCC free(b);
HPCC free(a):;

{

"Failed to allocate memory (

%

d) .

STREAM Triad: M
'

#ifdef _OPENMP
#include <omp.h>

Pl+Ope
ot e e

#endif
static int VectorSize; 8 ! 8! g 8
static double *a, *b, *c;]]]
int HPCC_StarStream (HPCC_Params *params) {

int myRank, commSize;

int rv, errCount;

MPI_Comm comm = MPI_COMM WORLD;

MPI_Comm_size(comm, &commSize);

MPI_Comm_rank(comm, &myRank);

rv = HPCC_Stream(params, 0 == myRank);

MPI_Reduce(&rv, &errCount, 1, MPI_INT, MPI_SUM, 0, comm);

nMP vs. CUDA

o m e m e e m v m v m

#define N 2000000

int main() { @ '8 @ @
float *d_a, *d b, *d c; ' ’ '
float scalar;

cudaMalloc ((void**)&d a,
cudaMalloc ((void**)&d b,
cudaMalloc ((void**)&d c,

sizeof (float) *N) ;
sizeof (float) *N) ;
sizeof (float) *N) ;

HPC suffers from too many distinct notations for expressing parallelism and locality

register int J;
double scalar;
VectorSize =

HPCC_LocalVectorSize(params, 3, sizeof(double), 0);

a HPCC_XMALLOC (double, VectorSize);
;

b = HPCC_XMALLOC(double, VectorSize)
c = HPCC_XMALLOC (double, VectorSize);
if (ta |l 'b || le) |

if (c) HPCC_free(c

)i
if (b) HPCC_free(b);
if (a) HPCC_free(a);
if (doIO) {

fprintf(outFile,
fclose(outFile);
}
return 1;

}

"Failed to allocate memory (%d).\n", VectorSize);

#ifdef _OPENMP
#pragma omp parallel for

#endif
for (j=0; j<VectorSize; j++) {
b(3] = 2.0;
clj] = 0.0;

}
scalar = 3.0;

#ifdef _OPENMP
#pragma omp parallel for
#endif
for (j3=0; <\
aljl

HPCC_free(c);
HPCC_free (b);
HPCC_free(a)s

return 0;

GT:E;
e

»

set array<<<dimGrid,dimBlock>>>(d b,
set array<<<dimGrid,dimBlock>>>(d c,

.5f,
.5f,

N) ;
N) ;

scalar=3.0f;
STREAM Triad<<<dimGrid,dimBlock>>>(d b, d c,
cudaThreadSynchronize () ;

d a,

cudafFree (d a);

cudalFree (d b);

cudaFree (d c);

~_global wvoid set array(float *a, float value,
int idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < len) aflidx] = value;

}

__global wvoid STREAM Triad(float *a, float *b,

float scalar, int len)
threadIdx.x + blockIdx.x * blockDim.x;
(idx < len) alidx]+scalar*b[idx];

int idx =

if clidx] =

scalar,

N) ;

int len) {

float *c,

{

STREAM Triad: Chapel

1000,
3.0;

config const m =
alpha =

const ProblemSpace =

var A, B, C: [ProblemSpace]
B = 2.0;

C = 3.0;

A =B + alpha * C;

{1..m}C dmapped ..;

real;

. the special
sauce

Philosophy: Good language design can tease details of locality and
parallelism away from an algorithm, permitting the compiler, runtime,
applied scientist, and HPC expert to each focus on their strengths.

LULESH in Chapel

LULESH in Chapel . o

1288 lines of source code
plus 266 lines of comments
487 blank lines

(the corresponding C+MPI+OpenMP version is nearly 4x bigger)

This is trunk/test/release/examples/benchmarks/lulesh/*.chpl in the
SourceForge repository, as of 122745 (2/16/14).

LULESH in Chapel

It spemfles
(= data structure ch0|ces

¢ local vs. distrlbuted data
_° sparse Vs. dense materlals arrays

Why so many programming models? . o

HPC has traditionally given users...
..low-level, control-centric programming models

..ones that are closely tied to the underlying hardware
..ones that support only a single type of parallelism

| Type of HW Parallelism Programmlng Model Unit of Parallelism

Inter-node executable
Intra-node/multicore OpenMP/pthreads iteration/task
Instruction-level vectors/threads pragmas iteration
GPU/accelerator CUDA/OpenCL/OpenACC SIMD function/task

benefits: lots of control; decent generality; easy to implement
downsides: lots of user-managed detail; brittle to changes

N mar
cHaPEL

What is Chapel? . o

e An emerging parallel programming language \
e Design and development led by Cray Inc.
e in collaboration with academia, labs, industry
e version 1.8 had19 contributors from 8 organizations and 5 countries

e Initiated under the DARPA HPCS program

e Being developed as open (BSD) software at SourceForge

e A work-in-progress

(i\\ COMPUTE | STORE | ANALYZE

CHAaPEL

=% Copyright 2014 Cray Inc.

Chapel's Targets

e Target Architectures:
e multicore desktops and laptops
e commodity clusters and the cloud
e HPC systems from Cray and other vendors
e in-progress: exascale-era architectures

e Chapel’s overall goal: Improve programmer productivity

@M COMPUTE | STORE | ANALYZE

=% Copyright 2014 Cray Inc.

What does “Productivity” mean to you? o

Recent Graduate:
“something similar to what | used in school: Python, Matlab, Java, ...”

Seasoned HPC Programmer: want full control/performance
“that sugary stuff which | don’t need because | was-bera-to-suffer

Computational Scientist:
“something that lets me focus on my parallel computational algorithms
without having to wrestle with architecture-specific details”

Chapel Team:
“something that lets the computational scientist express what they want,
without taking away the control an HPC programmer would want,
implemented in a language as attractive as recent graduates want.”

(E’QM COMPUTE | STORE |

=% Copyright 2014 Cray Inc.

ANALYZE

Three Chapel Successes . o

o Effectively separating algorithms from system mappings

e user-defined array layouts and distributions
e alg: “I'd like an array of this type over this index set”
e map: “how should this array be distributed? stored locally?”

e user-defined parallel iterators
e alg: “forall ...”, whole-array operations, reductions, ...
e map: “how many tasks? how to divide the iterations?”

e seamless integration of data and task parallelism

e Distinct concepts for parallelism and locality*
e “SPMD-only” and “shared memory-only” are restrictive to begin with
e | believe they’re non-starters in an exascale world

e Withstanding the Naysayers
e we've generated cautious optimism in a community that’'s never had a
productive language; and that has seen many, many failed attempts

(* I don’t mean to suggest that Chapel was the first to do this—we weren’t—simply that | believe it to be so crucial as to deserve silver)

COMPUTE | STORE | ANALYZE

@::.t
=% Copyright 2014 Cray Inc.

Three Chapel Challenges .o

e Performance \
e the downside of permitting so much to be user-defined is that there's a
bigger gap to close compared to the status quo

e Reaching a Tipping Point in Acceptance/Utilization
e Chapel has lots of wallflower fans—how to get them invested?
e and when?

e Rapidly Responding to Emerging Architectures
e Chapel is designed to be forward portable, but effort is still required
e ability to respond quickly would increase attractiveness

= COMPUTE | STORE | ANALYZE
@\-.h Copyright 2014 Cray Inc.

How Can Scientists Help? o

e Secure Time/Resources for Studying and Evaluating |
Promising Emerging Technologies
e no need to be more comprehensive than you desire
e but if you don't like the status quo, invest some time in an alternative

e Communicate your wishlists to new languages like Chapel

e “protect me from architectural changes” is a reasonable one
e but surely you’ve got others?

e Be patient
e no truly productive HPC-ready language is going to show up overnight
without warning

e Do something more constructive than stating the obvious

e Yyes, adoption of new languages is a difficult challenge
e do you want to be part of the grumbling crowd, or part of the solution?

« Jlots of user-managed detail
» resistant to. changes
' somewhat.insidious

Landscaping Quotes from the HPC community =R

e \
\

Early HPCS years: |

“The HPC community tried to plant a tree once. It didn’t
survive. Nobody should ever bother planting one again.”

“Why plant a tree if you can’t be assured it will thrive?”
“Why would anyone ever want anything other than ivy?”

“We're in the business of building treehouses that last 40
years; we can't afford to build one in the branches of your
sapling.”

~__

Landscaping Quotes from the HPC community =R

S \
\

Early HPCS years (for the analogy-challenged): |

“The HPC community tried to develop a HLL once. It didn't
survive. Nobody should ever bother developing one again.”

“Why develop a language you can’t be assured it will thrive?”
“Why would anyone ever want anything other than MPI1+X?”

“We're in the business of writing applications that last 40
years; we can't afford to risk writing one in an emerging
language.”

7~
Q@HAﬂ =l
=/

A Corner in Seattle: Takeaways

S "
<
. -q‘,‘" = 4
. »
By i z: x o et
dR‘ - k4 -~ . ‘,
o -~ < 2 o
Ly e ' 4
A e y
- - 4 -
=
o -
.
s 7
. " 4
—
.
=

Challenges for Computer Scientists .o

e What are the abstractions that... |

e give the application scientists the abstractions they want?
e could be realized as DSLs, APls, ADTs, ...

e support mapping down to multiple implementation choices
e e.g., MPI+X as a safety net; Chapel as an investment in a better future

e How do we collaborate effectively?
e there aren’t many parallel language folks, and we each have our own

e lone wolf researcher is seductive: independent, full control, full credit
e but, we didn’t reach the moon via dozens of partially-built rockets

@M COMPUTE | STORE | ANALYZE

=% Copyright 2014 Cray Inc.

A Note on Interoperability .

e If your language only supports one array format, it's only .
going to be efficiently interoperable with a small set of
languages

e Via its user-defined array distributions and layouts,
Chapel enables universal in situ interoperation

A Note on Parallel Education KOO

e When teaching parallel programming, | like to cover: \
e data parallelism

task parallelism

concurrency

synchronization

locality/affinity

deadlock, livelock, and other pitfalls

performance tuning

e | don’t think there’s been a good language out there...
e for teaching all of these things
e for teaching some of these things well at all

e until now: We believe Chapel can fill a crucial gap here

(see http://chapel.cray.com/education.html for more information and
http://cs.washington.edu/education/courses/csep524/13wi/ for my use of Chapel in class)

@M COMPUTE | STORE | ANALYZE

=% Copyright 2014 Cray Inc.

Chapel is a collaborative effort... join us!

$ LABORATORY FOR
= = AY TELECOMMUNICATIONS
“ SCIENCES

| B Lawrence Livermore

Sandia National Laboratories National Laboratory

S

lﬁbl 6}I ’ OAK \%/
Argonne RIDGE ~ Pfiegirtiesst,,
BERKELEY LAB NATIONAL LABORATORY National Laboratory Proudly Operated by Ballelle Since 1965

Lawrence Berkeley
National Laboratory

4 'ma =
— N . \) ‘ -
% R j: ,i UNIVERSIDAD UNIVERSITY OF

C ’ THE UNIVERSITY OF TOKYO DE MALAGA MARYLAND

For More Information: Online Resources .

Chapel project page: http://chapel.cray.com
e overview, papers, presentations, language spec, ...

Chapel SourceForge page: https://sourceforge.net/projects/chapel/
e release downloads, public mailing lists, code repository, ...

Mailing Aliases:

chapel_info@cray.com: contact the team at Cray
chapel-announce@lists.sourceforge.net: announcement list
chapel-users@lists.sourceforge.net: user-oriented discussion list
chapel-developers@lists.sourceforge.net: developer discussion
chapel-education@lists.sourceforge.net: educator discussion
chapel-bugs@lists.sourceforge.net: public bug forum

DD

COMPUTE | STORE | ANALYZE

Copyright 2014 Cray Inc.

For More Information: Suggested Reading .

Overview Papers:
e The State of the Chapel Union [slides], Chamberlain, Choi, Dumler,

Hildebrandt, Iten, Litvinov, Titus. CUG 2013, May 2013.
e a high-level overview of the project summarizing the HPCS period

e A Brief Overview of Chapel, Chamberlain (pre-print of a chapter for A
Brief Overview of Parallel Programming Models, edited by Pavan

Balaji, to be published by MIT Press in 2014).
e a more detailed overview of Chapel’s history, motivating themes, features

Blog Articles:
e [Ten] Myths About Scalable Programming Languages, Chamberlain.
IEEE Technical Committee on Scalable Computing (TCSC) Blog,

(https://www.ieeetcsc.org/activities/blog/), April-November 2012.
e a series of technical opinion pieces designed to rebut standard arguments
against the development of high-level parallel languages

= COMPUTE | STORE | ANALYZE
CG_/;/AE.L Copyright 2014 Cray Inc.

\
- . (el — PPN
Legal Disclaimer . o
Information in this document is provided in connection with Cray Inc. products. No license, express or “ \ \

implied, to any intellectual property rights is granted by this document.
Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to
change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may
cause the product to deviate from published specifications. Current characterized errata are available on
request.

Cray uses codenames internally to identify products that are in development and not yet publically
announced for release. Customers and other third parties are not authorized by Cray Inc. to use
codenames in advertising, promotion or marketing and any use of Cray Inc. internal codenames is at the
sole risk of the user.

Performance tests and ratings are measured using specific systems and/or components and reflect the
approximate performance of Cray Inc. products as measured by those tests. Any difference in system
hardware or software design or configuration may affect actual performance.

The following are trademarks of Cray Inc. and are registered in the United States and other

countries: CRAY and design, SONEXION, URIKA, and YARCDATA. The following are trademarks of Cray
Inc.: ACE, APPRENTICEZ2, CHAPEL, CLUSTER CONNECT, CRAYPAT, CRAYPORIT, ECOPHLEX,
LIBSCI, NODEKARE, THREADSTORM. The following system family marks, and associated model
number marks, are trademarks of Cray Inc.. CS, CX, XC, XE, XK, XMT, and XT. The registered trademark
LINUX is used pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the
mark on a worldwide basis. Other trademarks used in this document are the property of their respective
owners.

Copyright 2014 Cray Inc.

CRANY

THE SUPERCOMPUTER COMPANY

"'_rav.com chapel info

