Co-Design Via Proxy Applications:
MiniMD in Chapel

Brad Chamberlain, Ben Harshbarger, Chapel Team, Cray Inc.
SIAM PP14, MS78: Co-Design w/ Proxy Apps and Prog. Abstractions
February 21st, 2014

COMPUTE

Safe Harbor Statement .

~

Kl'his presentation may contain forward-looking statements that are
based on our current expectations. Forward looking statements
may include statements about our financial guidance and expected
operating results, our opportunities and future potential, our product
development and new product introduction plans, our ability to
expand and penetrate our addressable markets and other
statements that are not historical facts. These statements are only
predictions and actual results may materially vary from those
projected. Please refer to Cray's documents filed with the SEC from
time to time concerning factors that could affect the Company and

\these forward-looking statements. Y

(%:A B Copyright 2014 Cray Inc.

What is Chapel?

e An emerging parallel programming language

e Design and development led by Cray Inc.
e in collaboration with academia, labs, industry

e Initiated under the DARPA HPCS program
e A work-in-progress

e Chapel’s overall goal: Improve programmer productivity
e Improve the programmability of parallel computers
e Match or beat the performance of current programming models
e Support better portability than current programming models
e Improve the robustness of parallel codes

@ COMPUTE | STORE | ANALYZE

PEL

=% Copyright 2014 Cray Inc.

Chapel's Implementation

e Being developed as open source at SourceForge
e Licensed as BSD software

e A Community Effort

e version 1.8 saw 19 developers from 8 organizations and 5 countries

e Target Architectures:
e multicore desktops and laptops
commodity clusters and the cloud
HPC systems from Cray and other vendors
In-progress: exascale-era architectures

= COMPUTE | STORE | ANALYZE
@\-'h Copyright 2014 Cray Inc.

Chapel and Proxy Applications . o

Overall, we like proxy applications a lot
e A chance to compare Chapel productivity/performance to status quo

e Users are more invested in them than traditional benchmarks
e less likely to say “well, that’s nice, but it says nothing about my work”
e more likely to wrestle through various design decisions with us

e Form a good basis for discussion between teams with distinct skill sets
e codesign!

Larger and more substantive than benchmarks
e yet, without being overwhelming

e Documentation & reference versions have generally been pretty good

= COMPUTE | STORE | ANALYZE

(== @
= Copyright 2014 Cray Inc.

®
!
CRAaY |

Chapel’s First DOE Proxy Application: LULESH o

e \

Goal: Solve one octant of the spherical Sedov problem (blast \
wave) using Lagrangian hydrodynamics for a single material

DB: sedov_001.00617 !
Cycle: 617 Time:0.01 7/

pictures courtesy of Rob Neely, Bert Still, Jeff Keasler, LLNL

—~_
H‘ EHA:EI—

Chapel’s First DOE Proxy Application: LULESH =~ « "'

e \
\

History: \
e |dea came about as a result of a Salishan discussion
e Summer intern did a naive initial port to Chapel in a few weeks

e Chapel team made additional improvements over time
¢ Included a productive pair-programming session with LLNL expert

Now included as an example code in Chapel releases

Remaining work:

e Additional performance tuning work remains
e Several general Chapel issues
e Some application-specific (e.g., optimize data distribution for locality)

e Also, need to catch up with LULESH 2.0

— COMPUTE | STORE | ANALYZE
N e
@E.L Copyright 2014 Cray Inc. @

Exploring Co-Dasign in Chapel
Using LULESH

v iy
Ty = 3005

i
'v.‘rv.f

-y

COMPUTE | STORE | ANALYZE

=HA=~;A-"I:
Copyright 2014 Cray Inc.

LULESH in Chapel

LULESH in Chapel . o

1288 lines of source code
plus 266 lines of comments
487 blank lines

(the corresponding C+MPI+OpenMP version is nearly 4x bigger)

This is trunk/test/release/examples/benchmarks/lulesh/*.chpl in the
SourceForge repository, as of 122745 (2/16/14).

LULESH in Chapel

It spemfles
(= data structure ch0|ces

¢ local vs. distrlbuted data
_° sparse Vs. dense materlals arrays

LULESH in Chapel S

 Here is some sample representatlen mdependent code

.

Representation-Independent Physics RN

proc IntegrateStressForElems(sigxx, sigyy, sigzz, determ) {
forall k in Elems { <€

varb x, b y, b _z: 8*real;
var x_local, y_local, z_local: 8*real;

IocalizeNeighEorNode_s(k, X, X_local, y, y_local, z, z_local); (—_
var fx_local, fy_local, fz_local: 8*real;
local {

/* Volume calculation involves extra work for numerical consistency. */
CalcElemShapeFunctionDerivatives(x_local, y_local, z_local,

b x,b_y, b z determ[k]);

CalcElemNodeNormals(b_x, b _y, b _z, x_local, y local, z_local);

SumElemStressesToNodeForces(b_x, b_y, b_z, sigxx[K], sigyy[k], sigzz[K],

t fx_local, fy_local, fz_local);
}

for (noi, t) in elemToNodesTuple(k) {
fx[noi].add(fx_locallt]);

fy[noi].add(fy_local[t]); All of this is independent of:
}fZ[“Oi]-add(fz_'oca'[ﬂ)? > structured vs. unstructured mesh
) » shared vs. distributed data
} » sparse vs. dense representation
G=

)

\
Multiresolution Design cRAY

Multiresolution Design: Support multiple tiers of features
e higher levels for programmability, productivity
e lower levels for greater degrees of control

Chapel language concepts

(Domain Maps)

Task Parallelism
Base Language

Locality Control

Target Machine

e build the higher-level concepts in terms of the lower
e permit the user to intermix layers arbitrarily

.

Data Parallelism in LULESH (Structured) .

const Elems

= {0
Nodes = {0

var determ: [Elems]

forall k in Elems {

. . #elemsPerEdge, O..#elemsPerEdge},\\
. .#nodesPerEdge, 0..#nodesPerEdge};

real;

..determ|[k]... }

OO0000000O0

OO0000000O0

OO0000000O0

OO0000000O0

OO0000000O0

OO0000000O0

OO0000000O0

OO0000000O0

Elems

9]0]I0]0]0I0I0]0]0.
Nodes

Data Parallelism in LULESH (Unstructured) N

const Elems = {0..#numElems}, ‘\
Nodes = {0..#numNodes};

var determ: [Elems] real;

forall k in Elems { ..determ[k].. }

Elems

9]0]0]0]0I0]0]0]0]0]10]010I0]10]0]0]0I0]10]0]0I0]0]0I00
Nodes

Materials Representation o

e Not all elements will contain all materials, and some will !
contain combinations

COMPUTE | STORE | ANALYZE

=
C= ®
= Copyright 2014 Cray Inc.

Materials Representation (Dense) .o

>

naive approach: store all materials everywhere
(reasonable for LULESH 1.0, but not in practice)

const MatlElems = Elems,
Mat2Elems FElems;

Materials Representation (Sparse) N

>

Improved approach: use sparse subdomains to
only store materials where necessary

var MatlElems: sparse subdomain (Elems) = enumerateMatlLocs (),
Mat2Elems: sparse subdomain (Elems) = enumerateMat2Locs();

(&= ®

\
. . . . CRAY |
Data Parallel lterators: Multiresolution in Action Q008

S \
\

Q: How are domains and arrays implemented?
(distributed or local? distributed how? stored in memory how?) |

~N

const Elems = {0..#numElems},
Nodes = {0..#numNodes};

var determ: [Elems] real;

A: Via domain maps...

Domain Maps: Concept . o

Domain maps are “recipes” that instruct the compiler how \
to map the global view of a computation...

...to the target locales’ memory and processors:

| |
! !
| |
! !
+ | + |
| |
! !
| |
[[

Locale 1

(&= @

LULESH Data Structures (local) .

const Elems = {O..#numElems},:l
Nodes = {0..#numNodes};

var determ: [Elems] real;

forall k in EFlems { .. }

Sy No domain map specified = use default layout
« current locale owns all indices and values
« computation will execute using local processors only

R e s

0000

-
i
CcCRAY |

LULESH Data Structures (distributed, block) .o

S \
\

const Elems = {0..#numElems} dmapped Block(..), \\ i
Nodes = {0..#numNodes} dmapped Block (..);

var determ: [Elems] real;

forall k in EFlems { .. }

Elems ! ' ' '

000000000000000000000000000

Nodes I l | I

-
i
CcCRAY |

LULESH Data Structures (distributed, cyclic) .o

S \
\

const Elems = {0..#numElems} dmapped Cyclic(m),\\ i
Nodes = {0..#numNodes} dmapped Cyclic(..);

var determ: [Elems] real;

forall k in EFlems { .. }

Elems

Q000 00000000000 000000000000
Nodes

Chapel’s Domain Map Philosophy .

1. Chapel provides a library of standard domain maps
e to support common array implementations effortlessly

2. Advanced users can write their own domain maps in
Chapel

e to cope with shortcomings in our standard library

Domain Maps

Task Parallelism

Base Language
Locality Control

3. Chapel’s standard domain maps are written using the

same end-user framework
e to avoid a performance cliff between “built-in” and user-defined cases

~__

Support compile-time reconfiguration . o

const ElemSpace = if use3DRepresentation
then {0..#elemsPerkEdge, 0..#elemsPerkEdge, 0..#elemsPerkEdge}

else {0..#numElems},

NodeSpace = if use3DRepresentation
then {0..#nodesPerEdge, O0..#nodesPerEdge, O0..#nodesPerEdge}

else {0..#numNodes};

const Elems = if useBlockDist then ElemSpace dmapped Block (ElemSpace)
else ElemSpace,

Nodes = if useBlockDist then NodeSpace dmapped Block (NodeSpace)
else NodeSpace;

const MatElems: MatElemsType = if useSparseMaterials then enumerateMatElems ()
else Elems;

proc MatElemsType type {
if useSparseMaterials then
return sparse subdomain (Elems) ;
else
return Elems.type;

}

(&= ®

=/

MiniMD Study

=

=Rasyr
cCcHARPEL
—

=/

COMPUTE | STORE | ANALYZE

What is MiniMD? A

e “Mini Molecular Dynamics”
e A proxy application from Sandia’s Mantevo group

e Representative of key idioms from real applications

e ~5000 lines of C++/MPI
e ~2000 lines in Chapel

e Molecular Dynamics?
e Computing physical properties like energy, pressure, and temperature
for a simulated space containing moving atoms

e Interesting in that it’s the first stencil code we’ve had a
chance to focus on in Chapel

@cm COMPUTE | STORE | ANALYZE

=% Copyright 2014 Cray Inc.

Store atoms in spatial bins .
Q
o e ¢
e Given a bunch of atoms S0 e
o /"/ o (Neol|®
record atom { (]
var vel, force, position : 3*real; ® @ ®
} j N ® J Y
O // OI‘_
® o ®
® + .
o

e Sort atoms into bins based on spatial position

const binSpace = {1..12, 1..12};
var perBinSpace = {1..8};
var bins: [binSpace] [perBinSpace] atom;

e Use cutoff to restrict number of atoms to compute against
e Reduces complexity from O(n?) to ~O(n)

Compute forces between atoms

for atom in bin {
for neighbor in atom.neighbors {
if distance(atom, neighbor) < cutoff {
updateForces (atom, neighbor);

}

forall bin in bins { i\\

N cmaer
cHaPEL
=

Now let’s go to distributed memory...

Distributing Bins in C++/MPI

while (ipx <= nprocs) {

if (nprocs % ipx == 0) {
nremain = nprocs / ipx;
ipy = 1;

while (ipy <= nremain) {

/ ipx / ipy +
/ ipx / ipz +

if (nremain % ipy == 0)
ipz = nremain / ipy;
surf = area[0]

areal[l]
areal2]

/ ipy / 1ipz;

if (surf < bestsurf)

bestsurf = surft;
procgrid[0] = ipx;
procgrid[1l] = ipy;
procgrid[2] = ipz;
}
}
ipy++;

ipxt+;

7S cmase
CHAPEL

\

int reorder = 0;
periods[0]

periods[l] = periods[2] = 1;

MPI Cart create(MPI COMM WORLD, 3, procgrid,

periods, reorder, &cartesian);

MPI Cart get(cartesian, 3, procgrid, periods,
myloc) ;

MPI Cart shift(cartesian, 0, 1, &procneigh[0][0],

&procneigh[0] [1]);

MPI Cart shift(cartesian, 1, 1, &procneigh[1][0],

&procneigh[1][1]);

MPI Cart shift(cartesian, 2, 1, &procneigh[2]([0],

&procneigh[2][1]);

for (int idim = 0;

for(int i = 1;

idim < 3; idim++)
i <= need[idim]; i++, iswap += 2)

MPI Cart shift(cartesian, idim, i,

&sendproc_exc[iswap],
&sendproc_excliswap + 1]);

MPI Cart shift(cartesian, idim, i,

&recvproc_ exc[iswap + 1],
&recvproc_ excliswap]);

Hundreds of lines of additional MPI setup

Distributing Bins in Chapel

record atom {

var vel, force, position : 3*real;

) T

const binSpace = {1..12, 1..12};
var perBinSpace = {1..8};
var bins : [binSpace] [perBinSpace] atom;

. - . . - CcC=RANY
Distributing Bins in Chapel .
e
e -
T P 1 Te
o [|o o 9°
record atom { o
var vel, force, position : 3*real; .. | a
) o SrELs
L
P le el® o
Q L —+
o
L e
const binSpace = {1..12, 1..12} dmapped Block(..);
var perBinSpace = {1..8};
var bins : [binSpace] [perBinSpace] atom;

Compute forces between atoms (dist. mem.) SR

S \
\

Runtime distributes work across locales ‘
/ and handles communication of data
.. . K
forall bin in bins { i\\
for atom in bin {
for neighbor in atom.neighbors ({

if distance(atom, neighbor) < cutoff {
updateForces (atom, neighbor);

}

\
Wi

There must be a catch...? .

Yes, performance! (today, at least)
e Chapel communication currently tends to be fine-grain, demand-driven

e Stencils really want to move slabs of data between neighbors
e This is why stencils and MPI have had a positive feedback cycle

e Chapel was designed for good support for stencils...
e See, for example, Richard Barrett's CUG 2007 talk

...and for good stencil performance
e Based on previous work in ZPL which outperformed F+MPI for stencils

e Yet, stencils have not been a focus of our efforts to date
e Sadly, HPCS milestones and HPCC have not required them...

@cm COMPUTE | STORE | ANALYZE

=% Copyright 2014 Cray Inc.

i
CcC=RANY

NAS MG Speedup: ZPL vs. Fortran + MPI . o
\
MG [| ZPL scales better than MPI
since its communication is
16 = L expressed in an
T s implementation-neutral

way; this permits the
compiler to use SHMEM on
this Cray T3E but MPl on a

— — = linear speedup

—eo— A-ZPL
ZPL

—a— F+MPI

—
N
I

/. commodity cluster

ZPL also performs better at smaller
scales where communication is not
the bottleneck = new languages need
not imply performance sacrifices

Similar observations—and more dramatic
ones—have been made using more recent
architectures, languages, and benchmarks

Speedup over best 16-processor time
(114.607 seconds in A-ZPL)
(00)
|

0 32 64 128 256
Processors
Cray T3E

Generality Notes

MG

Each ZPL binary supports:

 an arbitrary load-time problem size

* an arbitrary load-time # of processors
» 1D/2D/3D data decompositions

m — . T % =T =
g ¥ 12- ZPL
S c —a— F+MP
o 3 -
<« : _
%8 8
Q o -
L 0 i
o N~
> Q 7

({o]
o¥ 47
S - -
T ~
q, -
Q
% =

0 I I |
0O 32 o064 128
Processors
Cray T3E

This MPI binary only supports:
- a static 2**k problem size

- a static 2**j # of processors

» a 3D data decomposition

The code could be rewritten to relax
these assumptions, but at what cost?
- in performance?
- in development effort?

Code Size

1200
O communication
1000 H declarations
@ computation
800
Q
3 566
&
S 600
(7]
Q
£
-
400
200
0 ,
F+MPI ZPL A-ZPL
Language

7\ COMPUTE | STORE | ANALYZE
@\-'h Copyright 2014 Cray Inc.

Code Size Notes

» the ZPL codes are 5.5-6.5x shorter because |\

rather than an SPMD programming model

it supports a global view of parallelism \
=> little/no code for communication

O communication
B declarations

@ computation

=> little/no code for array bookkeeping \

800

566 \
600

s of Code

-

More important than the \ \

size difference is that it
is easier to write, read,

modify, and maintain

LUV

4 N\
242 F:! F
77
0 70
F+MPI ZPL A-ZPL

Language

\
. . . . C)RAY |
High-level languages can benefit Productivity .o
) \
y

o 167 ® 1200

£ s \
o3 — — — linear speedup 1000 [J communication |

® o —e— A-ZPL ,

o N 12 - ZPL m declarations

O g

S« —a&— F+MPI 800 E computation

2= 3 566

8 3

=S 8- C 600

o 9 o

2 ¢ »

w2 2

2S5 - 5 400 —n

o @ 4 —

o ¥

3= 200

| BB

- 70 77

0 T | I | 0 ‘ ‘
0O 32 64 128 256 F+MPI ZPL A-ZPL
Processors Language

Cray T3E

e more programmable, flexible
e able to achieve competitive performance
e more portable by leaving low-level detalils to the compiler

N mar
cHaPEL

As ZPL, So Chapel? =R

ZPL-like results should be achievable by Chapel as well

e Chapel’s data parallel features are based on ZPL’s

Yet, Chapel lags ZPL precisely because of the generality
introduced via abstractions like domain maps

e ZPL, like C and Fortran, “owned” its array format and operations
e Chapel permits it to be specified flexibly by the end-user

e Ultimately, similar performance should be achievable, but we started
out with a significant disadvantage, and are still catching up

So what’s an impatient HPC programmer to do?

= COMPUTE | STORE |

ANALYZE
Copyright 2014 Cray Inc.

Use Chapel’s Multiresolution Features...

Chapel language concepts

(Domain Maps)

Data Parallelism
Task Parallelism
Base Language

Locality Control

Target Machine

\
. . (el — PPN
Use Chapel’s Multiresolution Features...

1) Ben wrote an explicit version of MiniMD |
e SPMD + manually fragmented data structures as in an MPI code

class Chunk {..} \ AllChunks
var AllChunks: [LocaleSpace] Chunk;

coforall loc in Locales do :: :; iN
on loc {
var myChunk = new Chunk(..);
All1Chunks[here.id] = myChunk;

updateFluff (myChunk) ;
forall bin in myChunk ..

e of course, because of Chapel's PGAS model, communication was
expressed using array slicing rather than message passing

N mar
cHaPEL

Use Chapel’s Multiresolution Features... . o

2) Then he refactored that logic into a Stencil domain map: \
e an extension of Block supporting fluff and boundary conditions

const binSpace = {1..12, 1..12} dmapped Stencil (..);
var perBinSpace = {1..8};
var bins : [binSpace] [perBinSpace] atom;

...with user-callable routines to update these values

A PEL

bins.updateFluff () ; ‘\\
forall bin in bins {

for atom in bin {
for neighbor in atom.neighbors ({
if distance(atom, neighbor) < cutoff {
updateForces (atom, neighbor);

}

To browse MiniMD in Chapel

e See examples/benchmarks/miniMD/ in the Chapel release

e Or, point browser to:

http://svn.code.sf.net/p/chapel/code/trunk/test/release/examples/benchmarks/miniMD

e You’'ll find two versions of the code:

e version 1: supports three approaches via compiler options:
e single-locale (shared memory)
e naive multi-locale: uses Block distribution
e Stencil-Block multi-locale: uses Ben’s custom distribution

e version 2: explicit SPMD version

COMPUTE | STORE | ANALYZE

=
@::;:
= Copyright 2014 Cray Inc.

Next Steps

e Presently:

e working on single-locale optimizations to benefit most Chapel codes

miniMD LJ (--size=10) Time

— stencil nolocal
— explicit nolocal

Copyright 2014 Cray Inc.

— simple block nolocal
— simple nolocal
— simple
—old
©»
©
c
8
[¢}]
@
(]
E
= A I
Oct 13 Nov 13 Dec 13 Jan 14 Feb 14
= COMPUTE | STORE | ANALYZE
&=

Next Steps o

e Presently:
e working on single-locale optimizations to benefit most Chapel codes

e Short-term:
e Detailed review of code for performance/elegance improvements
e Performance studies, comparisons, and optimizations
e Merge Stencil domain map capabilities into Block

e Longer-term:

e Have Chapel compiler automatically insert calls to update fluff
e (reproduce ZPL analysis and optimization within Chapel)

= COMPUTE | STORE | ANALYZE

@..g.;—‘.t
= Copyright 2014 Cray Inc.

A Closing Note on Chapel’s Productivity .o
S \
\
Ben... \
e an undergraduate
e with no significant parallel programming experience
e no Chapel experience
e no MiniMD experience

...wrote 4 elegant versions of MiniMD in ~13 weeks

2 weeks: learned Chapel, miniMD, wrote single-locale transliteration
2 weeks: edited for Chapel style based on feedback from team

2 weeks: performance improvements and Block multi-locale version

3 weeks: explicitly distributed version

2.5 weeks: wrote the Stencil distribution version (and the dist. itself)

1.5 weeks: merged single-locale, Block, and Stencil versions into one
e select between them with a compiler flag

COMPUTE | STORE | ANALYZE

=
= Copyright 2014 Cray Inc.

Summary

e Proxy apps are great
e LULESH and MiniMD are particularly good examples

e Initial Chapel ports of LULESH and MiniMD are available

e Chapel’s programmability goals are being met
e more work required on performance optimizations and tuning

@M COMPUTE | STORE | ANALYZE

=% Copyright 2014 Cray Inc.

Chapel...

...Is a collaborative effort — join us!

$ LABORATORY FOR
= = AY TELECOMMUNICATIONS
“ SCIENCES

| B Lawrence Livermore

Sandia National Laboratories National Laboratory

S

lﬁbl 6}I ’ OAK \%/
Argonne RIDGE ~ Pfiegirtiesst,,
BERKELEY LAB NATIONAL LABORATORY National Laboratory Proudly Operated by Ballelle Since 1965

Lawrence Berkeley
National Laboratory

4 'ma =
— N . \) ‘ -
% R j: ,i UNIVERSIDAD UNIVERSITY OF

C ’ THE UNIVERSITY OF TOKYO DE MALAGA MARYLAND

For More Information: Online Resources .

Chapel project page: http://chapel.cray.com
e overview, papers, presentations, language spec, ...

Chapel SourceForge page: https://sourceforge.net/projects/chapel/
e release downloads, public mailing lists, code repository, ...

Mailing Aliases:

chapel_info@cray.com: contact the team at Cray
chapel-announce@lists.sourceforge.net: announcement list
chapel-users@lists.sourceforge.net: user-oriented discussion list
chapel-developers@lists.sourceforge.net: developer discussion
chapel-education@lists.sourceforge.net: educator discussion
chapel-bugs@lists.sourceforge.net: public bug forum

DD

COMPUTE | STORE | ANALYZE

Copyright 2014 Cray Inc.

For More Information: Suggested Reading .

Overview Papers:
e The State of the Chapel Union [slides], Chamberlain, Choi, Dumler,

Hildebrandt, Iten, Litvinov, Titus. CUG 2013, May 2013.
e a high-level overview of the project summarizing the HPCS period

e A Brief Overview of Chapel, Chamberlain (pre-print of a chapter for A
Brief Overview of Parallel Programming Models, edited by Pavan

Balaji, to be published by MIT Press in 2014).
e a more detailed overview of Chapel’s history, motivating themes, features

Blog Articles:
e [Ten] Myths About Scalable Programming Languages, Chamberlain.
IEEE Technical Committee on Scalable Computing (TCSC) Blog,

(https://www.ieeetcsc.org/activities/blog/), April-November 2012.
e a series of technical opinion pieces designed to rebut standard arguments
against the development of high-level parallel languages

= COMPUTE | STORE | ANALYZE
CG_/;/AE.L Copyright 2014 Cray Inc.

\
- . (el — PPN
Legal Disclaimer . o
Information in this document is provided in connection with Cray Inc. products. No license, express or “ \ \

implied, to any intellectual property rights is granted by this document.
Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to
change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may
cause the product to deviate from published specifications. Current characterized errata are available on
request.

Cray uses codenames internally to identify products that are in development and not yet publically
announced for release. Customers and other third parties are not authorized by Cray Inc. to use
codenames in advertising, promotion or marketing and any use of Cray Inc. internal codenames is at the
sole risk of the user.

Performance tests and ratings are measured using specific systems and/or components and reflect the
approximate performance of Cray Inc. products as measured by those tests. Any difference in system
hardware or software design or configuration may affect actual performance.

The following are trademarks of Cray Inc. and are registered in the United States and other

countries: CRAY and design, SONEXION, URIKA, and YARCDATA. The following are trademarks of Cray
Inc.: ACE, APPRENTICEZ2, CHAPEL, CLUSTER CONNECT, CRAYPAT, CRAYPORIT, ECOPHLEX,
LIBSCI, NODEKARE, THREADSTORM. The following system family marks, and associated model
number marks, are trademarks of Cray Inc.. CS, CX, XC, XE, XK, XMT, and XT. The registered trademark
LINUX is used pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the
mark on a worldwide basis. Other trademarks used in this document are the property of their respective
owners.

Copyright 2014 Cray Inc.

(&= ®

CRANY

THE SUPERCOMPUTER COMPANY

"'_rav.com chapel info

