Y bradc@cray.com
@ chapel-lang.org
¥ @ChapelLanguage

Performance Portability: The Dream =R

Performance Portability: when software performs well across a range of
architectures and problem configurations with
modest development and maintenance effort

©2019 Cray Inc. C 2

Performance Portability: The Harsh Reality Smacr

Whenever system architectures expose a unique feature...

For example:
* vector instructions
 accelerators
* special flavors of memory
« RDMA (Remote Direct Memory Access)
* network support for atomic operations

...performance portability becomes challenging
* Use the feature?
* Ignore it?

© 2019 Cray Inc. (@

Performance Portability: The Harsh Reality Smacr

Whenever system architectures expose a unique feature...

For example:
* vector instructions
* accelerators
* special flavors of memory
« RDMA (Remote Direct Memory Access)
* network support for atomic operations
...performance portability becomes challenging

» Use the feature? = will likely break performance portability to other systems
* Ignore it?

©2019 Cray Inc. (@

Performance Portability: The Harsh Reality Smacr

Whenever system architectures expose a unique feature...

For example:
* vector instructions
 accelerators
* special flavors of memory
« RDMA (Remote Direct Memory Access)
* network support for atomic operations

...performance portability becomes challenging
» Use the feature? = will likely break performance portability to other systems
* Ignore it? = leaves performance on the table, wasting resources

©2019 Cray Inc. (@

Performance Portability: The Harsh Reality Smacr

Whenever system architectures expose a unique feature...

For example:
* vector instructions
 accelerators
* special flavors of memory
« RDMA (Remote Direct Memory Access)
* network support for atomic operations

...performance portability becomes challenging
» Use the feature? = will likely break performance portability to other systems
* Ignore it? = leaves performance on the table, wasting resources
« Support multiple implementations? = lots of code engineering and upkeep

©2019 Cray Inc. (@ 6

Performance Portability: The Harsh Reality SR

Whenever system architectures expose a unique feature...

For example:
* vector instructions
 accelerators
» special flavors of memory
 RDMA (Remote Direct Memory Access)
=) . network support for atomic operations <=

...performance portability becomes challenging
» Use the feature? = will likely break performance portability to other systems
* Ignore it? = leaves performance on the table, wasting resources
« Support multiple implementations? = lots of code engineering and upkeep

©2019 Cray Inc. C 7

HPCC RA

An illustrative example

© 2019 Cray Inc.

Case Study: HPCC Random Access (RA) e

Data Structure: distributed table

|

Computation: update random table locations in parallel

Two variations:
* lossless: don't allow any updates to be lost
* lossy: permit some fraction of updates to be lost

© 2019 Cray Inc. C 9

Case Study: HPCC Random Access (RA)

Data Structure: distributed table

CRANY

|

Computation: update random table locations in parallel

Two variations:
=) « |lossless: don’t allow any updates to be lost ==
* lossy: permit some fraction of updates to be lost

© 2019 Cray Inc. C

10

HPCC RA (lossless): Pseudocode =ma~

parallel for val in RandomValues:
loc < val & mask

Table[loc]| < Table[loc] atomic-xor val

©2019 Cray Inc. (@) "

HPCC RA (lossless): Pseudocode cmas

parallel for val in RandomValues:
loc < val & mask

Table[loc]| < Table[loc] atomic-xor val

©2019 Cray Inc. C 12

HPCC RA: From pseudocode to conventional code ===~

With network atomics:

 use a vendor-specific networking library
* e.g., UGNI

 use a portable library supporting network atomics
* e.9., GASNet-EX, OpenSHMEM, OFI (libfabric)

Without network atomics:

 use active messages + processor atomics
* e.g., GASNet-EX + C11 atomics

©2019 Cray Inc. C 13

HPCC RA: with or without network atomics cmas

© 2019 Cray Inc.

GUPS

RA Performance (GUPS)
with network atomics

6

5

4

3

2

| Wlthoqt network atomics
0 Ocucnnanaee: Bioioiiioi onsonnasenaseesasasna s s .

Locales (x 36 cores / locale)

(@ 14

HPCC RA: From pseudocode to conventional code ===~

With network atomics:

 use a vendor-specific networking library
* e.g., UGNI

 use a portable library supporting network atomics
* e.9., GASNet-EX, OpenSHMEM, OFI (libfabric)

Without network atomics:

* use active messages + processor atomics
* e.g., GASNet-EX + C11 atomics

* buffer updates locally, exchange buffers, and compute (a switch in algorithm)
> e.g., MPI

©2019 Cray Inc. (@) 1

HPCC RA: buffering vs. network atomics Smas

RA Performance (GUPS)
with network atomics

via buffering and exchanging

GUPS
N W
'

Locales (x 36 cores / locale)

©2019 Cray Inc. C 16

The Case for
Languages

© 2019 Cray Inc.

A Historical Look at Performance Portability S

1950’s: Period of rapid hardware evolution and diversity
 performance coding was done in assembly / machine code
= by definition, a lack of performance portability
« FORTRAN was invented to help with this challenge
« users were initially skeptical that it would perform well enough
« ultimately, won over by productivity benefits and optimizing compilers

Since then: other high-level languages have followed suit for other domains
* e.g., C, C++, Java, Swift, ...

©2019 Cray Inc. (@) @

Meanwhile, in present-day HPC... cRas

* we're also experiencing a rapid evolution in hardware diversity
« we’re programming via libraries, pragmas, DSLs (domain-specific languages), ...
* e.g., C/C++/Fortran + MPI + OpenMP / CUDA / OpenCL / Kokkos / ... + ...
« obtaining good performance and scalability
* but hitting performance portability challenges
« by embedding architecture-specific assumptions
* or by working hard to avoid them
 analogous to assembly language programming for specific HW/SW parallelism

Could programming languages help HPC programmers?

©2019 Cray Inc. C 9

Why Consider New Languages at all?

Performance

Algorithms

High level, elegant syntax
Improve programmer productivity

Static analysis can help with correctness
We need a compiler (front-end)

If optimizations are needed to get
performance

We need a compiler (back-end)

Language defines what is easy and hard
Influences algorithmic thinking

© 2019 Cray Inc.

CRANY

[Source: Kathy Yelick,
CHIUW 2018 keynote:
Why Languages Matter

More Than Ever]

20

What is Chapel? cmas

Chapel: A productive parallel programming language

» portable & scalable

» open-source & collaborative /~
CcCRANY
CHAPEL

Goals: 0

» Support general parallel programming

 “any parallel algorithm on any parallel hardware”

» Make parallel programming at scale far more productive

©2019 Cray Inc. C 21

Chapel and Productivity S

Chapel aims to be as...
...programmable as Python
...fast as Fortran
...scalable as MPI, SHMEM, or UPC
...portable as C
...flexible as C++
...fun as [your favorite programming language]

©2019 Cray Inc. (@ 22

HPCC RA: buffering vs. network atomics Smas

RA Performance (GUPS)
with network atomics

via buffering and exchanging

GUPS
N W
'

Locales (x 36 cores / locale)

©2019 Cray Inc. C 23

HPCC RA: MPI vs. Chapel Smas

RA Performance (GUPS)

6 B e e e e e 2 T
5 __
4 e — o e R L L L L o e e e T e e e e e e -
&
o B e
O MPI buffering + exchange
2 e — o e e D e e e e e e ————— _
5> or Chapel without network atomics
O -------------------------- Qeeeeesmmnnnnmnsasssesnessseosnmaaa et T T T :
32 64 128 256 512

Locales (x 36 cores / locale)

©2019 Cray Inc. C 24

HPCC RA: MPI vs. Chapel Smas

RA Performance (GUPS)

6 B e e e e e 2 T
5 __
4 e — o e R L L L L o e e e T e e e e e e -
&
o B e
O MPI buffering + exchange
2 e — o e e D e e e e e e ————— _
>~ Chapel without network atomics

--------------------------------- T

Cases like this in which a pair of programs perform asymmetrically
relative to one another on systems with and without network
atomics indicate a challenge to performance portability.
C

© 2019 Cray Inc. 25

HPCC RA: MPI kernel

/* Perform updates to main table. The scalar equivalent is: } else {
* HPCC_InsertUpdate (Ran, WhichPe, Buckets);
* for (i=0; i<NUPDATE; i++) { pendingUpdates++;
* Ran = (Ran << 1) * (((s64Int) Ran < 0) ? POLY : 0); }
* Table[Ran & (TABSIZE-1)] = Ran; it+;
*)
% else {

MPI_Test (soutreq, s&have done, MPI_STATUS_IGNORE) ;
if (have_done) {
outreq = MPI_REQUEST_NULL;
pe = HPCC_GetUpdates (Buckets, LocalSendBuffer, localBufferSize,
speUpdates) ;
MPI_Isend(&LocalSendBuffer, peUpdates, tparams.dtype64, (int)pe,
UPDATE_TAG, MPI_COMM WORLD, &outreq);
pendingUpdates -= peUpdates;

MPI_Irecv(sLocalRecvBuffer, localBufferSize, tparams.dtype6d,
MPI_ANY SOURCE, MPI_ANY TAG, MPI_COMM WORLD, &inreq);
while (i < SendCnt) {
/* receive messages */
do {
MPI_Test (&inreq, &have_done, &status);
if (have_done) {
if (status.MPI_TAG == UPDATE_TAG) {)
MPI_Get_count (&status, tparams.dtype64, &recvUpdates);)
bufferBase = 0;)
for (j=0; j < recvUpdates; j ++) { /* send remaining updates in buckets */
inmsg = LocalRecvBuffer [bufferBase+j]; while (pendingUpdates > 0)
LocalOffset = (inmsg & (tparams.TableSize - 1)) - /* receive messages */
tparams.GlobalStartMyProc; do {
HPCC_Table[LocalOffset] "= inmsg; MPI_Test (s¢inreq, s&have_done, &status);
) if (have_done) (
} else if (status.MPI_TAG == FINISHED_TAG) f{ if (status.MPI_TAG == UPDATE_TAG) {
NumberReceiving--; MPI_Get_count (&status, tparams.dtype64, &recvUpdates);
} else bufferBase = 0;
MPI_Abort(MPI_COMM WORLD, -1); for (j=0; j < recvUpdates; j ++) {
MPI_Irecv(sLocalRecvBuffer, localBufferSize, tparams.dtype6d, inmsg = LocalRecvBuffer[bufferBase+j];
MPI_ANY SOURCE, MPI_ANY TAG, MPI_COMM WORLD, &inreq); LocalOffset = (inmsg & (tparams.TableSize - 1)) -
} tparams.GlobalStartMyProc;
HPCC_Table[LocalOffset] "= inmsg;

} while (have_done && NumberReceiving > 0);
if (pendingUpdates < maxPendingUpdates) { }

Ran = (Ran << 1) ((s64Int) Ran < ZERO64B ? POLY : ZEROG4B);) else if (status.MPI_TAG == FINISHED TAG) {
GlobalOffset = Ran & (tparams.TableSize-1); /* we got a done message. Thanks for playing... */
if (GlobalOffset < tparams.Top) NumberReceiving--;
WhichPe = (GlobalOffset / (tparams.MinLocalTableSize + 1));) else {
else MPI_Abort (MPI_COMM WORLD, -1);
WhichPe = ((GlobalOffset - tparams.Remainder) /)

tparams.MinLocalTableSize); MPI_Irecv(sLocalRecvBuffer, localBufferSize, tparams.dtype64,
{ MPI_ANY SOURCE, MPI_ANY TAG, MPI_COMM WORLD, &inreq);

if (WhichPe == tparams.MyProc)
LocalOffset = (Ran & (tparams.TableSize - 1)) -)
tparams.GlobalStartMyProc; } while (have done && NumberReceiving > 0);

HPCC_Table[LocalOffset] "= Ran;

©2019 Cray Inc. C

CRANY

MPI_Test (soutreq, &have done, MPI_STATUS_IGNORE) ;
if (have_done) {
outreq = MPI_REQUEST_NULL;
pe = HPCC_GetUpdates (Buckets, LocalSendBuffer, localBufferSize,
speUpdates) ;
MPI_Isend(&LocalSendBuffer, peUpdates, tparams.dtype64, (int)pe,
UPDATE_TAG, MPI_COMM WORLD, &outreq);
pendingUpdates -= peUpdates;

)
/* send our done messages */

for (proc_count = 0 ; proc_count < tparams.NumProcs ; ++proc_count) {
if (proc_count == tparams.MyProc) { tparams.finish_req[tparams.MyProc] =
MPI_REQUEST NULL; continue; }
/* send garbage - who cares, no one will look at it */

MPI_Isend(&Ran, 0, tparams.dtype6d, proc_count, FINISHED TAG,
MPI_COMM WORLD, tparams.finish_req + proc_count);
)
/* Finish everyone else up... */
while (NumberReceiving > 0) {
MPI_Wait (&inreq, &status);
if (status.MPI_TAG == UPDATE_TAG) {
MPI_Get_count (&status, tparams.dtype64, &recvUpdates);
bufferBase = 0;
for (j=0; j < recvUpdates; j ++) {
inmsg = LocalRecvBuffer[bufferBase+j];
LocalOffset = (inmsg & (tparams.TableSize - 1)) -
tparams.GlobalStartMyProc;
HPCC_Table[LocalOffset] "= inmsg;
)

} else if (status.MPI_TAG == FINISHED_TAG) {
/* we got a done message. Thanks for playing... */
NumberReceiving--;

) else {

MPI_Abort (MPI_COMM WORLD, -1);

)
MPI_Irecv(sLocalRecvBuffer, localBufferSize, tparams.dtype64,
MPI_ANY SOURCE, MPI_ANY TAG, MPI_COMM WORLD, &inreq);

MPI Waitall(tparams.NumProcs, tparams.finish req, tparams.finish statuses);

26

HPCC RA: MPI kernel comment vs. Chapel SR

/* Perform updates to main table. The scalar equivalent is: C h a pel Ke rnel

* for (i=0; i<NUPDATE; i++) {

e g e =0 7 POLY 0 forall (, r) in zip(Updates, RAStream()) do
- _
! Tl[r & 1ndexMask].xor(r);

MPI Comment

/* Perform updates to main table. The scalar equivalent 1is:
*

* for (1=0; i<NUPDATE,; 1i++) {

& Ran = (Ran << 1) * (((s64Int) Ran < 0) 2 POLY : 0);
4 Table[Ran & (TABSIZE-1)] ”“= Ran;

* }

*/

© 2019 Cray Inc. C 27

HPCC RA: Chapel translation cma~

« Given the Chapel code:
forall (, r) in zip(Updates, RAStream()) do

Tlr & indexMask].xor (r);

« An approximate translation of this code is:
coforall tid in 0..#nTasks do on .. do // create a number of distributed tasks

for r in chunk (RAStream(), tid, nTasks) do // loop over each task’s iterations...

T[r & indexMask].xor (r); // ...computing each atomic op serially

©2019 Cray Inc. (@ 28

HPCC RA: Chapel translation cma~

« Given the Chapel code:

forall (, r) in zip(Updates, RAStream()) do

Tlr & indexMask].xor (r);

« An approximate translation of this code is:

T[r & indexMask].xor (r); // ...computing each atomic op serially

Note an opportunity for optimization:
« forall-loops imply iterations can execute simultaneously / in any order

T[] is obviously not read again within this loop’s body
* therefore, there’s no need to serially execute each atomic op

© 2019 Cray Inc. C

coforall tid in 0. .#nTasks do on .. do // create a number of distributed tasks

for r in chunk (RAStream(), tid, nTasks) do // loop over each task’s iterations...

HPCC RA: Chapel translation, optimized Smas

« Given the Chapel code:
forall (, r) in zip(Updates, RAStream()) do

Tlr & indexMask].xor (r);

* An approximate translation of this code, when optimized, is:

coforall tid in 0..#nTasks do on .. do // create a number of distributed tasks
for r in chunk (RAStream(), tid, nTasks) do // loop over each task’s iterations...
T[r & indexMask].xor async(r); // ...computing each atomic op asynchronously
// tasks wait for asynchronous atomics to complete before terminating

© 2019 Cray Inc. C 30

HPCC RA: MPI vs. Chapel Smas

RA Performance (GUPS)

6 B e e e e e 2 T
5 __
4 e — o e R L L L L o e e e T e e e e e e -
w
Q- 3 __
8 MPI buffering + exchange
2
5> or Chapel without network atomics
O -------------------------- Qeeeeesmmnnnnmnsasssesnessseosnmaaa et T T T :
32 64 128 256 512

Locales (x 36 cores / locale)

©2019 Cray Inc. C 31

HPCC RA: MPI vs. Chapel vs. Chapel optimized ==~

RA Performance (GUPS)

25 e oo _______LChapelusing optimized network atomics
20 el i - - ‘“““‘————’.:_:.o*";':. -------
& |5 -“‘"‘""“‘"""""‘:-:_.‘--"':.:- “““““““““
e .
O |0 -'____'____"";:,.7"": -------------------------
pa Chapel using network atomics
5-“""‘,.-‘-“‘ “““““““““““““““““ .
,,,,, - MPI buffering + exchange
0 g —— X [
32 64 128 256 512

Locales (x 36 cores / locale)

©2019 Cray Inc. (@ 32

Notes on this optimization cmas

Of course, a human programmer could write our optimized version as well...
...but at what level of effort?

...and with what impact on performance portability?

Eventually, such comparisons become an arms race in which you have to decide
where you stand in the “assembly vs. Fortran” style tradeoffs

HPCC RA: MPI kernel comment vs. Chapel e HPCC RA: MPI vs. Chapel vs. Chapel optimized = ===~
RA Performance (GUPS)
N " . __________________Cnhapelusing optimized network atomics
forall (, r) in zip(Updates, RAStream()) do

T[r & indexMask].xor (r);

GUPS

ommen
/* Perform updates to main table. The scalar equivalent is:
*

for (i=0; i<NUPDATE; i++) {
Ran = (Ran << 1) "~ (((s64Int) Ran < 0) ? POLY : 0);
Table[Ran & (TABSIZE-1)] “= Ran; 1
}

*/ 32 64 128 256 512

Chapel using network atomics

MPI buffering + exchange
J

Locales (x 36 cores / locale)

© 2019 Cray Inc. 33

Notes on this optimization: Next Steps

Next Steps: similarly optimize no-network-atomics case

 goal: close gap with respect to performance of MPI version

© 2019 Cray Inc.

HPCC RA: buffering vs. network atomics cmas

GUPS

RA Performance (GUPS)
with network atomics

via buffering and exchanging

1]
32 64 128 256 512

Locales (x 36 cores / locale)

CRANY

34

Typical arguments against languages for HPC cmas

* “It's too difficult for new languages to get adopted”

« “We’re too small of a community to be able to support a language”
« “HPC programmers are happy with current programming methods”
« “HPC is so performance-oriented that productivity doesn’t matter”
* “It's challenging to get performance from parallel languages”

| think there are counterarguments to each of these, the overarching one being:
“Scalable parallel programming is deserving of first-class language support”

©2019 Cray Inc. C 35

Why Consider New Languages at all?

Performance

Algorithms

High level, elegant syntax

CRANY

HPCC RA: kernel of buffered MPI version e

Improve programmer productivity

Static analysis can help with correctness

We need a compiler (front-end)

Language defines what is easy and hard
Influences algorithmic thinking

If optimizations are needed to get
performance

We need a compiler (back-end)

lllustrating Example: HPCC Random Access (RA) ==~

RA Performance (GUPS)
Chapel using optimized network atomics

I
32 64 128 256 512

Locales (x 36 cores / locale)

[Source: Kathy Yelick,
CHIUW 2018 keynote:
Why Languages Matter

More Than Ever]

© 2019 Cray Inc.

(\Q:\

36

Chapel’'s approach to performance portability Smas

Language Design:
» Support direct expression of parallelism and locality
« Support abstraction of key high-level parallel idioms
(e.g., parallel loops, distributed arrays)
» Support dropping to lower levels when necessary, including interoperation
Compiler Optimization:
» Map features to performance-oriented hardware features when available
* make best effort translations when not
« Automatically optimize code based on semantics
Runtime Architecture:
* Runtime interfaces architected to support switching between implementations
(e.g., communication over uGNIl, ofi / libfabric, GASNet-EX)

©2019 Cray Inc. C 37

What about numerical libraries? cmas

* | haven’t touched much on the “library” aspect of this minisymposium’s theme

« My opinion is that parallel / distributed numerical libraries should be written in
parallel / distributed languages, like Chapel

* In addition, Chapel has many features designed to help with engineering libraries
» type inference / generic programming

object-orientation

rich procedure call support

managed memory

error-handling

©2019 Cray Inc. (@) %

.v.v.v .

The Chapel Team at Cray (May 2018) S

l) baed ~13 full-time employees + ~2 summer interns

© 2019 Cray Inc. C 39

Summary =R

True performance portability is challenging without giving up performance

Programming languages can significantly help with performance portability by
raising the level of abstraction

 simplifying coding and algorithmic exploration for users
* mapping to the best-available mechanisms on the target architecture

* enabling automatic optimizations

HPC is overdue for its “assembly-to-Fortran” conversion moment

» we believe Chapel is a key contender in support of such a switch

© 2019 Cray Inc. C 40

Chapel Resources

© 2019 Cray Inc.

Chapel Central

https://chapel-lang.orqg
e downloads

e presentations

papers

resources

e documentation

© 2019 Cray Inc.

The Chapel Parallel Programmin

age

What is Chapel?

Chapel is @ modern programming language that is...

« parallel: contains first-class concepts for concurrent and parallel computation
productive: designed with programmability and performance in mind
portable: runs on laptops, clusters, the cloud, and HPC systems

scalable: supports locality-oriented features for distributed memory systems
open-source: hosted on GitHub, permissively licensed

Job Opportunities

How Can | Learn Chapel?
Contributing to Chapel

.
Upcoming Events -
.
.

Documentation New to Chapel?

Dx Il h |

r;'::‘:o.: - As an introduction to Chapel, you may want to...
Release Notes

« read a blog_article or book chapter
o) « watch an overview talk or browse its slides
Developer Resources + download the release
« browse sample programs
Pm‘ Media / Blog Posts « view other resources to learn how to trivially write distributed programs like this:

use CyclicDist; // use the Cyclic distribution Library
Publications and Papers config const n « 109; // use --ne<val> when executing to override this defoult
CHIUW forall {1 in {1..n) dmapped Cyclic(startldx=1) do

CHUG writeln("Hello from iteration *, i, " of “, n, ™ running on node *, here.id);

Contributors / Credits
Research / Collaborations

What's Hot?

f:’::,_“:':ggg,y com « Chapel 1.17 is now available—download a copy or browse its release notes

The advance program for CHIUW 2018 is now available—hope to see you there!

(v}) T + Chapel is proud to be a Rails Girls Summer of Code 2018 organization
ivo « Watch talks from ACCU 2017, CHIUW 2017, and ATPESC 2016 on YouTube
« Browse slides from SIAM PP18, NWCPP, SealLang, SC17, and other recent talks

* Also see: What's New?

CRANY

42

https://chapel-lang.org/

Chapel Social Media (no account required cRas

W Home

G Moments

Password

Emall o Phone
Likes Go to Facebook Home
200 ficenook P ——

 Chapel highlights

Following

48

Fallowors

278

— 74 76

Tweets Tueessrtes Mo | 22, ——
Chapel Language N
@ChapelLanguage # Poned Tweet -] =
. Sio Chapel Language ©ChapelLangu 0 L
Crmnr e e) o (\ , Unfamiiar with Chapet? Road a new int e N -
programming language designed = - Home. =
productive parallel kanguage on the *This is -/ @ ?hapel Parallel Programming Language
development is being led by Gcray inc tamonadtutodeloon — & Trending 72 subscribers
S Interview with Brad Cha} Programming e — T
3 256 Photos and videos productive parallel pro Language AL =4+ (3 - 0.5 /m)
S called Chapel @ChapelLanguage _-m.um, D Haory A playast of festured Chape presentations

Home P || e | @D ® Vchivier CHIUW 2017 keynote: Chapel's Home in the New Landscape of
Scientific Frameworks, Jonathan Dursi

e - 348 views 10m

Posts SUBSCRIPTIONS

Photos Posts

Q searel © Popularon YouTu
About
7% Chapel Programming Language Chapel B O e
i . Community Kt/ July 133t 10:14 AM - @ Software
http://twitter.com/ChapelLanguage | s wasc il Compuing Py PoerSound @ =
Programming Python User Group) meet-up, we'll be giving an Gaming
Info and Ads introduction to the Chapel language. Join us! Commul O
meetup. 19582/ e 228p

MORE FROM YOUTUBE

O YouTubeRed

Il Movies & Shows
0 Semigs -
™ Report history

https://www.youtube.com/channel/UCHmMmM27bYjhknKEmU7ZzPGsQ/

© 2019 Cray Inc. @ 4

http://twitter.com/ChapelLanguage
http://facebook.com/ChapelLanguage
https://www.youtube.com/channel/UCHmm27bYjhknK5mU7ZzPGsQ/

Chapel Community cmas

S Questions DeveloperJobs Tags Users [chapel] vz O 9B 0 S

Tagged Questions votns

Chapel is a portable, open-source parallel programming language. Use this tag o ask questions about the Chapel
language of its implementaton
Leam more . improve tag #lo Top Users Synonyms

chapel-lang | chapel

6 Tuple Concatenation in Chapel Coce @ Issues 292 Pull requests 26 Projects © Settings Insights «
— Let's say tuples and | want theen as they come. How do | do this? The followings
does slemant-wise additon: If ts = (Yo", "cat’), = ("bar", "dog”) 1s += 1 pives ts =
Filters « iscissue is:open Labels Milestones Chaoe! sromararnis s [Fesk
tuples concaleraion addtion hpc chapel asked Jan 2 x apel programming language | Peal
Tahi
7 385 @ 2020pen v 77 Closed Author « Labels « Projects - Brian Dolan
\\/ h e what is the syntax for making a copy (not a reference] to an array?
T - oforall” for remote coforalls s Comper VWIICIC
6 Is there a way to use non-scalar values in functions with where clauses in Chapel? ‘type: Pertormance oy W Michael Ferguson
vorms T've beon trying out Chapel off and on over 1he past year or 50. | have used C and C++ briey in the past, bul #6257 cpened 13 hours ago by renswho ymmu ﬂltleS R new variable?
most of my experience is with dynamic languages such as Python, Ruby, and Erlang more . X -
D Consider using processor atomics for remote coforalls EndCount area: Comgiler th rive
chapel mshed Apr 23 8t 23:18 type: Pertormance Vs
ﬁ,"‘ g #6368 opaned 13 hours ago by romewho B0
=® 3303
7 v 1 make uninstall s BTR e Feture Regusst - Brian Dolan @buddt
#6353 cpened 14 hours ags by mop! oh, got it, thanks!
Is there any writef{) format specifier for a bool?
6 1 make check doe Michael Ferguson

't work with jconfigure sme 0TR

spened 16 hours &g

-

e 1locked at the writed() documentasion for any bool specifier and there didn't seem 10 be any. In a Chapel .
E program | have: .. config const veriy = false; /* that works but | want 1o use writef()

- . N L N () p.“iﬂﬂ variable via in intent to a forall loop seems to create an iteration-private variable,
Spel D Mo ain ot a task-private one ses: Compier

pened a day ago by cassela

https://stackoverflow.com/questions/tagged/chapel

Remove chpl_comm_make_progress ams: Runtime easy fpe Design

#6349 ooened & day o

Brian Dolan 314
isn'tthere a proc f(ref arr) {} aswell?

D Runtime error after make on Linux Mint amai8TR user issue

#6348 opaned 3 day o5 cians

Michael Ferguson
yes. The default intent for array is ref’ or ‘const ref” depending on if the function body modifies
it. S0 that's effectively the default.

m o
https://qitter.im/chapel-lang/chapel

read-only mailing list: chapel-announce@lists.sourceforge.net (~15 mails / year)

https://github.com/chapel-lang/chapel/issues

©2019 Cray Inc. (@ 44

=

https://stackoverflow.com/questions/tagged/chapel
https://github.com/chapel-lang/chapel/issues
https://gitter.im/chapel-lang/chapel

Suggested Reading: Chapel history and overview ===~

Chapel chapter from Programming Models for Parallel Computing

» a detailed overview of Chapel’s history, motivating themes, features
 published by MIT Press, November 2015
« edited by Pavan Balaji (Argonne)

» chapter is also available online

© 2019 Cray Inc. C 45

https://mitpress.mit.edu/books/programming-models-parallel-computing
https://chapel-lang.org/publications/PMfPC-Chapel.pdf

Suggested Rea

IN

Chapel Comes of Age: Making

Progr ing P i

Bradford L. Chamberlain, Elliot Ronaghan, Ben Albrecht, Lydia Duncan, Michael Ferguson,
Ben Harshbarger, David Iten, David Keaton, Vassily Litvinov, Preston Sahabu, and Greg Titus
Chapel Team

Cray Inc.
Seattle, WA, USA
chapel_info@cray.com

Abmw_cmpd h 3 progrumming language whoeo goo
to support general-purpose parallel computing.
s ch-pel" lnvmd: can be thought of as combining
the strengths of Python, Fortran, C/C++, and MPI in a
single language. Five years ago, the DARPA High Productivity
Computing mmm (HPCS) program that launched Chapel
wnpvped p, the team embarked on a five-year effort
to improve peﬁnppu.lmendnnn ‘This paper follows
up on our CUG 2013 paper by summarizing the progress
made by the Chapel project since that time. Specifically,
Chapel’s performance now competes with or beats hand-coded
C+MPUSHMEM+OpenMP:; its suite of standard libraries has
grown to include FFTW, BLAS, LAPACK, MPI, ZMQ, and
other key technologies; its documentation has been modernized
and fleshed out; and the set of tools available to Chapel users
has grown. This paper also characterizes the experiences of
early adopters from communities as diverse as astrophysics
and artificial intelligence.

Keywords-Parallel programming; Computer languages
1. INTRODUCTION

Chapel is a programming language designed to support
productive, general-purpose parallel computing at scale.
Chapel’s approach can be thought of as striving to create
a language whose code is as attractive to read and write as
Python, yet which supports the performance of Fortran and
the scalability of MPL Chapel also aims to compete with C
in terms of portability, and with C++ in terms of flexibility
and extensibility. Chapel is designed to be general-purpose
in the sense that when you have a parallel algorithm in mind
and a parallel system on which you wish to run it, Chapel
should be able to handle that scenario.

Chapel’s design and implementation are led by Cray Inc.
with feedback and code contributed by users and the open-
source community. Though developed by Cray, Chapel’s
design and implementation are portable, permitting its pro-
grams o scale up from multicore laptops to commaodity
clusters to Cray systems. In addition, Chapel programs can
be run on cloud-computing platforms and HPC systems
from other vendors. Chapel is being developed in an open-
source manner under the Apache 2.0 license and is hosted
at GitHub.!

" hutps:/github.convchapel-lang/chapel

The development of the Chapel language was undertaken
by Cray Inc. as part of its participation in the DARPA High
Productivity Computing Systems program (HPCS). HPCS

up in late 2012, at which point Chapel was a com-
pelling prototype, having successfully demonstrated several
key research challenges that the project had undertaken.
Chief among these was supporting data- and task-parallelism
in a unified manner within a single language. This was
accomplished by supporting the creation of high-level data-
parallel abstractions like parallel loops and arrays in terms
of lower-level Chapel features such as classes, iterators, and

tasks.

Under HPCS, Chapel also successfully supported the ex-
pression of parallelism using distinct language features from
those used to control locality and affinity—that is, Chapel

programmers specify which computations should run in
parallel distinetly from specifying where those computations
should be run. This permits Chapel programs to support
multicore, multi-node, and heterogeneous computing within
a single unified language.

Chapel’s implementation under HPCS demonstrated that
the language could be implemented portably while still being
optimized for HPC-specific features such as the RDMA
support available in Cray® Gemini™ and Aries™ net-
works. This allows Chapel to take advantage of native
hardware support for remote puts, gets, and atomic memory
operations.

Despite these successes, at the close of HPCS, Chapel was
not at all ready to support production codes in the field. This
was not surprising given the language’s aggressive design
and modest-sized research team. However, reactions from
potential users were sufficiently positive that, in early 2013,
Cray embarked on a follow-up effort to improve Chapel
and move it towards being a production-ready language.
Colloquially, we refer to this effort as “the five-year push.”

‘This paper’s contribution is to describe the results of this
five-year effort, providing readers with an understanding of
Chapel’s progress and achievements since the end of the
HPCS program. In doing so, we directly compare the status
of Chapel version 1.17, released last month, with Chapel
version 1.7, which was released five years ago in April 2013.

Recent Progress (CUG 2018) ===~

available at chapel-lang.org

CRANY

Chapel Comes of Age:
Productive Parallelism at Scale
CUG 2018

Brad Chamberlain, Chapel Team, Cray Inc.

© 2019 Cray Inc.

=

€

46

https://chapel-lang.org/publications/cug2018-chapel.pdf
https://chapel-lang.org/publications/ChapelForCUG2018.pdf

et |

Y, / : T o
SAFE HARBOR <.'%éf€” SR
STATEMENT it :

This presentation may contain forward-looking
statements that are based on our current
expectations. Forward looking statements may
include statements about our financial
guidance and expected operating results, our
opportunities and future potential, our product
development and new product introduction
plans, our ability to expand and penetrate our
addressable markets and other statements
that are not historical facts.

These statements are only predictions and
actual results may materially vary from those
projected. Please refer to Cray's documents
filed with the SEC from time to time
concerning factors that could affect the
Company and these forward-looking
statements.

© 2019 Cray Inc.

Wapel-lang.

QUESTIONS?

cray.com

@cray_inc

linkedin.com/company/cray-inc-

5 ¢ &

