An Example-Based Introduction
to Global-view Programming in Chapel

Brad Chamberlain
Cray Inc.

User Experience and Advances in Bridging
Multicore’s Programmabllity Gap

November 16, 2009
SCQ09 -- Portland

What is Chapel?

= A new parallel language being developed by Cray Inc.

= Part of Cray’s entry in DARPA’s HPCS program

= Main Goal: Improve programmer productivity
Improve the programmability of parallel computers
Match or beat the performance of current programming models
Provide better portability than current programming models
Improve robustness of parallel codes

= Target architectures:
multicore desktop machines
clusters of commodity processors
Cray architectures
systems from other vendors

= A work in progress

Chapel (2)

Chapel’s Setting: HPCS

HPCS: High Productivity Computing Systems (DARPA et al.)
Goal: Raise productivity of high-end computing users by 10x
Productivity = Performance

+ Programmability
+ Portability
+ Robustness

= Phase Il Cray, IBM, Sun (July 2003 — June 2006)

Evaluated the entire system architecture’s impact on productivity...
= processors, memory, network, I/O, OS, runtime, compilers, tools, ...

= ...and new languages:
Cray: Chapel IBM: X10 Sun: Fortress

= Phase Ill: Cray, IBM (July 2006 —)

Implement the systems and technologies resulting from phase Il
(Sun also continues work on Fortress, without HPCS funding)

4pes

Chapel (3)

Chapel: Motivating Themes

1) general parallel programming

2) global-view abstractions

3) multiresolution design

4) control of locality/affinity

5) reduce gap between mainstream & parallel languages

Chapel (4)

CRANY

What | intend for this talk to do

= |l[lustrate Chapel’s feature set and design as motivated by
realistic computational kernels

What this talk will not do

= |llustrate that Chapel performs well for these codes today

° to date, our implementation has focused primarily on completeness
and correctness

° In many cases, our experiences with ZPL give us confidence that
compilers can achieve competitive performance for these codes

* In other cases, we have some research and work ahead of us

come to tomorrow’s HPC Challenge BOF (12:15pm) to get an up-to-date
report on Chapel performance for the HPCC benchmarks

Chapel (5)

4pes

Disclaimers

= some of these examples use slightly outdated syntax
« particularly when it comes to declaring distributions
= |n part because | got lazy last night at midnight
= in part because it’s still in a bit of flux

= other examples use features that aren’t fully implemented
- particularly cases that use arrays of arrays of varying size
* but | think it's important to show you Chapel’s motivators and future

Chapel (6)

Outline

v

» Chapel computations
1 your first Chapel program: STREAM Triad
1 the stencil ramp: from jacobi to finite element methods
1 graph-based computation in Chapel: SSCA #2
) task-parallelism: producer-consumer to MADNESS
1 GPU computing in Chapel: STREAM revisited and CP

 Status, Summary, and Future Work

Chapel (7) @ M

CRANY

Introduction to STREAM Triad

Given: m-element vectors A, B, C
Compute: Vi € 1..m, A, = B; + a-C,
Visually:

Chapel (8)1S3: Chapel (8)

Introduction to STREAM Triad

Given: m-element vectors A, B, C

Compute: Vi € 1..m, A, = B; + a-C,

Pictorially (in parallel):
|

B
+ | + | + | + | +
C
* ' * '
| |
| |
alpha | |
| |
| |
| |

||
s\

Chapel (9)1S3: Chapel (9)

STREAM Triad in Chapel

const BlockDist = new BlocklD (bbox=[1..m], tasksPerLocale=..);
1 1 1

const ProblemSpace: domain(l, int(64)) distributed BlockDist
= [1..m];

1 I I I m

var A, B, C: [Pro@lemSpace] rea};

forall (a, b, ¢) in (A, B, C) do
a = b + alpha * c;

Chapel (10)Chapel (10)

GB/s

Chapel (11)

STREAM Performance, Cray XT4 (April 2009)

2000

EO00

5000

4000

3000

2000

1000

STREAM Triad Performance: Cray XT4 (v0.9 pre-release)

T | T
MPI: 4 procsf/locale {extrapolated - . 4 MPI tasks
MPI+0OpenMP: 1 x 4 tasks/locale {(extrapolated) ---------- 7
MPI: 1 proc/locale {(extrapolated - | 1MPI+4
Chapel: 4 tasks/locale —= | OpenMP tasks
Thapel: 3 tasks/locale —— —]
Chapel: 2 tasks/locale — EZJLChapd
Chapel: 1 task/locale — e
tasks
|

_-1 1 MPI task

B 41 Chapel task
;| | I |

1 3264 128 256 512 1024

Number of Locales

Chapel Domains and Arrays

Chapel supports several domain and array types...

] |] |] |] |] |]
0 O O O O O EiE
0 O O O O O -
0 O O O O O
p o oooood HH A
i
dense strided sparse
“steve”
“Iee”
graphs o “sung”
associative «david”
l‘jacob”
“albert”
“brad”

Chapel (12)

Chapel Distributions

)

Distributions: “Recipes for parallel, distributed arrays’
help the compiler map from the computation’s global view...

...down to the fragmented, per-processor implementation

L+ [l i1

| | HEEEEEER N I I I
I A I e | | -

+ 1]
—— -

+ 1]
—— -
—— -

Chapel (13)

Domain Distributions

= Any domain type may be distributed

= Distributions do not affect program semantics
° only implementation details and therefore performance

| | | | |
T EEEEE| - ETEERETTE
0 b b b b B _'___I_L'____.
H B B P P F
b pppp Rl A
“steve
“lee”
B “sung’
_ david”
“jacob”
_ “albert”
“brad”

Chapel (14)

Distributions: Goals & Research

= Advanced users can write their own distributions
specified in Chapel using lower-level language features

= Chapel will provide a standard library of distributions
written using the same user-defined distribution mechanism

(Draft paper describing user-defined distribution strategy
available by request)

Chapel (15)

Outline

v

» Chapel computations
1 your first Chapel program: STREAM Triad
1 the stencil ramp: from jacobi to finite element methods
1 graph-based computation in Chapel: SSCA #2
) task-parallelism: producer-consumer to MADNESS
1 GPU computing in Chapel: STREAM revisited and CP

O Status, Summary, and Future Work

Chapel (16) @ M

Stencil 1: Jacobi Iteration

n

A::

repeat until max

change <¢
"
(3
D + 4 i
\ J

Chapel (17) M

_ CRANY

Jacobi Iteration in Chapel

config const n = ¢,
epsilon = 1.0e-5;

const BigD: domain(2) = [0..n+1, O0..n+1],
D: subdomain (BigD) = [l1..n, 1l..n],
LastRow: subdomain (BigD) = D.exterior(1,0);
var A, Temp : [BigD] real;
A[LastRow] = 1.0;
do {
[(1,3) in D] Temp(i,3j) = (A(i-1,3) + A(i+1,3)

const delta = max reduce abs (A[D] - Temp[D]);
A[D] = Temp[D];
} while (delta > epsilon);

writeln (A) ;

Chapel (18) M

CRANY

Jacobi Iteration in Chapel

config const n = ¢,
epsilon = 1.0e-5;

Declare program parameters

const = can’t change values after initialization

config = can be set on executable command-line
prompt> jacobi -sn=10000 —-sepsilon=0.0001

note that no types are given; inferred from initializer
n = integer (current default, 32 bits)
epsilon = floating-point (current default, 64 bits)

Chapel (19) M

,] — P g

Jacobi Iteration in Chapel

const BigD: domain(2) = [0..n+1, O0..n+1],
D: subdomain (BigD) = [l..n, 1l..n],
LastRow: subdomain (BigD) = D.exterior(1,0);

Declare domains (first class index sets)

domain(2) = 2D arithmetic domain, indices are integer 2-tuples

subdomain(P) = a domain of the same type as P whose indices
are guaranteed to be a subset of P’s

0 +

n+1 il
BigD D LastRow

exterior = one of several built-in domain generators
Chapel (20)

CRANY

Jacobi Iteration in Chapel

var A, Temp : [BigD] real;

Declare arrays

var = can be modified throughout its lifetime

: T = declares variable to be of type T

. [D] T = array of size D with elements of type T

(no initializer) = values initialized to default value (0.0 for reals)

BigD A Temp

Chapel (21)

CRANY

Jacobi Iteration in Chapel

A[LastRow] = 1.0;

Set Explicit Boundary Condition

indexing by domain = slicing mechanism
array expressions = parallel evaluation

Chapel (22) M

CRANY

Jacobi Iteration in Chapel

Compute 5-point stencil

[(i,)) in D] = parallel forall expression over D’s indices, binding them
to new variables i and j

Note: since (i,j)) e D and D < BigD and Temp: [BigD]
= no bounds check required for Temp(i,j)
with compiler analysis, same can be proven for A's accesses

Z[+ 4 [

[(1,]J) in D] Temp(i,3j) = (A(i-1,3) + A(i+1,])
+ A(llj_l) + A(l,j+l)) / 4;

Chapel (23) M

CRANY

Jacobi Iteration in Chapel

Compute maximum change

op reduce = collapse aggregate expression to scalar using op

Promotion: abs() and — are scalar operators, automatically promoted to
work with array operands

const delta = max reduce abs (A[D] - Temp|[D]Yy;

Chapel (24) M

CRANY

Jacobi Iteration in Chapel

Copy data back & Repeat until done

A [L4 uses slicing and whole array assignment
standard do...while loop construct

A[D] = Temp[D];
} while (delta > epsilon);

Chapel (25) M

CRANY

Jacobi Iteration in Chapel

A[LastRow] = 1.0;

Write array to console

If written to a file, parallel 1/O could be used

Chapel (26) M

CRANY

Jacobi Iteration in Chapel

config const n = ¢,
epsilon = 1.0e-5;

const BigD: domain (2) distributed Block = [0..n+1, O..n+1],
D: subdomain (BigD) = [1l..n, I.-Try
LastRow: subdomain (BigD) = D.exterior(1,0);
var A, Temp : [BigD] real;

With this change, same code runs in a distributed manner

Domain distribution maps indices to locales
— decomposition of arrays & default location of iterations over locales
Subdomains inherit parent domain’s distribution

BigD D LastRow A Temp

Chapel (27)

CRANY

Jacobi Iteration in Chapel

config const n = ¢,
epsilon = 1.0e-5;

const BigD: domain (2) distributed Block = [0..n+1, O..n+1],
D: subdomain (BigD) = [l1..n, 1l..n],
LastRow: subdomain (BigD) = D.exterior(1,0);
var A, Temp : [BigD] real;
A[LastRow] = 1.0;
do {
[(1,3) in D] Temp(i,3j) = (A(i-1,3) + A(i+1,3)

const delta = max reduce abs (A[D] - Temp[D]);
A[D] = Temp[D];
} while (delta > epsilon);

writeln (A) ;

Chapel (28) M

CRANY

Stencil 2: Multigrid

Input array

=

=

> hierarchical work arrays

n 1

numLevels

Chapel (29) M

CRANY

Hierarchical Arrays

level O level 1 level 2 level 3

conceptually:

. T
dense

Indexing:
(1:8,1:8) (1:4,1:4) (1:2,1:2) (1:1,1:1)
HEEN H N O
strided HE NN
iIndexing: NN H B
HEEN

(1:8:1,1:8:1) (1:8:2,1:8:2) (1:8:4,1:8:4) (1:8:8,1:8:8)

Chapel (30) M

CRANY

Hierarchical Arrays

level O level 1 level 2 level 3
conceptually: .
| |
dense_ ' '
Indexing:
(1: 8 1:8) (1:4,1:4) (1:2,1:2) (1:1,1:1)
| | |
| EEEN : :
strided AEEN E_E '
. . - - - ---RB_ -
indexing: O i H E | |
HENN E B g

(1:8:1,1:8:1) (2:8:2'2:8:2) (4a:8:4'4:8:4) (8:8:8'8:8:8)

Chapel (31) M

CRANY

Hierarchical Array Declarations in Chapel

config const n = 1024,
numLevels = 1g2(n);

const Levels = [0..#numlLevels];
const ProblemSpace: domain(l) distributed Block = [1l..n]**3;

var V: [ProblemSpace] real;

const HierSpace: [1lvl in Levels] subdomain (ProblemSpace)

= ProblemSpace by -2**1vl;

var U, R: [1lvl in Levels] [HierSpace(lvl)] real;

Chapel (32) M

CRANY

Overview of NAS MG

run V-cycle

. output norms & tlmlngs
||‘ ||~

NN
1]
| 1
H B

initialize V
I—

Chapel (33) T E M

CRANY

MG’s projection/interpolation cycle

resid
II-

! interp

II-
psinv

. reSid. .
I1— I1—
psinv

I interp

Chapel (34) M

CRANY

Multigrid: 27-Point Stencils

Chapel (35) M

, (e — P

Multigrid: Stencils in Chapel

= Can write them out explicitly...

def rprj3(S, R) {
param w: [0..3] real = (,
const Rstr = R.stride;

0.25,

forall 1jk in S.domain do
S(ijk) = * R(ijk)

+ w(l) * ((ijk+Rstr* (
R(ijk+Rstr™* (
R(ijk+Rstr™* (
(ijk+Rstr* (
(ijk+Rstr* (
(ijk+Rstr* (
(ijk+Rstr* (
(ijk+Rstr* (
((
((
((
((-
(1 (

+ 4+ + +

+ w(2) * (

|

)
|

+ + + 4+ +

)
)
)
)
))
)
)
)
)

1ijk+Rstr*
1ijk+Rstr*
1ijk+Rstr*
1jk+Rstr*

+v

R
R
R
R
R
R
+ w(3) * (R
R
R
R

I
I
I

Chapel (36)

0.125,

+ R(ijkt+Rstr
+ R(ijkt+Rstr

+ R(ijk+Rstr*

+ R(ijk+Rstr* (-

0.0625) ;
R(1jJk+Rstr*(-1,0,0))
R(1jJk+Rstr*(0,-1,0))
R(1jJk+Rstr*(0,0,-1)))
R(1ijk+Rstr* —l,O))

R(1jk+Rstr*

—~ Ot~ O~~~ ~

R(1jJk+Rstr*

(ijk+Rstr* (1,
R(ijk+Rstr* (1,-1,-
R(ijk+Rstr* (-1,1, -
1,-1,-1)));

4pes

CRANY

Multigrid: Stencils in Chapel

..or, note that a stencil is simply a reduction over a small
subarray leading to a “syntactically scalable” version:

def rprj3 (S

R) |
const Stencil = [-1..1, -1..1, -1..1]
3] = 0.25, 0.125, 0.0625),

w: [0 real ,
w3d = [(i,j,k) in Stencil] w((i!=0) + (3!=0) + (k!=O));.

forall 1ijk in S.domain do

S(ijk) = + reduce [offset in Stencil]
(w3d (offset) * R(ijk + offset*R.stride));

Our previous work in ZPL showed that compact,
global-view codes like these can result in performance
that matches or beats hand-coded Fortran+MPI
while also supporting more runtime flexibility

T upes

Chapel (37)

Fortran+MPIl NAS MG rprj3 stencil

subroutine comm3 (u,nl,n2,n3,kk)
use caf_intrinsics

implicit none

include 'cafnpb.h'
include 'globals.h'

integer nl, n2, n3,
double precision u(nl n2 ,n3)
integer axis

if(.not. dead(kk)) then
do =
xf(nprocs .me. 1) then
call sync_all()
call give3(axis, +1, u, nl, n2, n3, kk)
call give3(axis, -1, u, nl, n2, n3, kk)
call sync_all()
call take3(axis, -1, u, nl, n2, n3)
call take3(axis, +1, u, nl, n2, n3)

call commlp(axis, u, nl, n2, n3, kk)

do axis = 1
call sync_all()
call sync_all()

enddo
call zero3(u,nl,n2,n3)
if

endi:
return
end

subroutine give3(axis, dir, u, nl, n2, n3, k)
use caf_intrinsics
implicit none

include 'cafnpb.h'
include 'globals.h'

integer axis, dir, nl, n2, n3, k, ierr
double precision u(nl, n2, n3)

integer i3, i2, il, buff_len,buff_id

buff_id = 2 + dir
buff_len = 0

if(axis .eq. 1)then
if(dir .eq. -1)then

buff_len = buff_len + 1
bufi(bufi len,buff_id) = u(2, i2,i3)

uff_len,buff_id+l) [nbr(axis,dir k)] =
> buff (1:buff_len,buff_id)

else if(dir .eq. +1) then

;ns-1
i2=2,n2-1
buff len = bu +
Duff (buff_: 1en buff m) = u(nl-1, i2,i3)
enddo
enddo
buff (1:buff_len,buff_id+l) [nbr (axis,dir,k)
> buff (1:buff_len,buff_id)
endif
endif

if(axis .eq. 2)then
if(dir .eq. -1)then
do i

do il=1,nl
buff_len = buff_len +
buff (buff_len, buff 1d) =u(il, 2,i3)
enddo
enddo

buff(l buff len,buff_id+l) [nbr(axis,dizr k)] =
£ (17buff_len,buff_id)

Chapel (38)

else if (dir .eq. +1) then

do i3=2,n3-1
do il=1,nl
buff_len = buff_len + 1
buff (buff_len, buff_id)= u(il,n2-1,i3)

buff (1:buff_len,buff_id+l) [nbr (axis,dir, k)] =

> buff (1:buff_len,buff_id)

endif
endif

if(axis .eq. 3)then
if(dir .eq. -1)then

1,n1
huff len = bu: +
buff (buff_: len buss xd) =u(i1,i2,2)
enddo
enddo

buff (1:buff_len,buff xd+1)[nhx(uxxs dir, k)] =

> buff (1:buff_len,buff_id)

else if (dir .eq. +1) then

=1,n1
huff len = bu: +
buff (buff_: len buss xd) =wu(il,i2,n3-1
enddo
enddo

buff (1:buff_len,buff 1d+1)[nhr(axls dir, k)] =

> buff (1:buff_len,buff_id)

endif
endif

return

end

subroutine take3(axis, dir, u, nl, n2, n3)
use caf_intrinsics

implicit none

include 'cafnpb.h'
include 'globals.h'

integer axis, dir, nl,
double precision u(nl, n2, n3)

integer buff_id, indx
integer i3, i2, il
buff_id = 3 + dir
indx = 0

if(axis .eq. 1)then
if(dir .eq. -1)then

+1
= buff (indx, buff_id)

else if(dir .eq. +1) then

i
indx = indx + 1
u(l i2,i3) = buff(indx, buff_id

endif
endif

if(axis .eq. 2)then
if(dir .eq. -1)then

do i3=2,n3-1

do il=1,nl
indx = indx + 1
u(il,n2,i3) = buff (indx, buff_id)
enddo
enddo

else if (dir .eq. +1) then

do i3=2,n3-1
do il=1,nl
indx = indx + 1
u(xl 1,i3) = buff (indx, buff_id

endif
endif

if(axis .eq. 3)then
if(dir .eq. -1)then

do i2=1,n2
do il=1,nl
indx = indx + 1
u(xl i2,n3) = buff (indx, buff_id

else if (dir .eq. +1) then

do i2=1,n2
do il=1,nl
indx

indx + 1
u(il,i2,l) = buff (indx, buff_id
do

endif
endif

return
end

subroutine commlp(axis, u, nl, n2, n3, kk)
use caf_intrinsics
implicit none

include 'cafnpb.h'
include 'globals.h'

integer axis, dir, nl, n2, n3
double precision u(nl, n2, n3)

integer i3, i2, il, buff_len,buff_id
integer i, kk, indx

dir =

buff_id = 3 + dir
buff_len = nm2

do i=1
buff(1 buff_id) = 0.0D0
enddo

dir = +1

buff_id = 3 + dir
buff_len = nm2

do i=1,nm2
buff (i, buff_id) = 0.0D0

enddo

dir = +1

buff_id = 2 + dir
0

buff_len
if(axis 1)then
i3
do

2-1
= buff +
ruff(buff len, buff 1d) =u(nl-1,

- len = buff_len +
4y PUEE(bute_len, Tbuff_: xd)= u(il,n2-

if(axis .eq. 3)then
do i2=1,n2
do il=l,nl
buff_len = buff
buff (buff_len, buff xd) =u(il,i2,n3-

enddo
enddo

endif

dir = -1

buff_id = 2 + dir
buff_len = 0

buff_len = buff len + 1
buff (buff_len buff_id) = u(2, i2,i3)

_len = buff_len + 1
3)buEE(buEE_len, buff_id) = u(il,

buff_len = buff_len + 1
buff (buff_len, buff_id) = u(il,i2,2)
enddo
enddo
endif

do i=1,nm2

buff (i,4) = buff(i,3)
buff (i,2) = buff(i,1)
enddo
dir = -1

buff_id = 3 + dir
indx

u(nl,i2,i3) = buff (indx, buff_id)

indx = indx + 1
u(il,n2,i3) = buff (indx, buff_id)

enddo
enddo
endif
if(axis 3)then
do
1,n1
indx + 1
u(il,i2,n3) = buff (indx, buff_id)
enddo
enddo
endif
dir = +1

buff_id = 3 + dir
i 0

indx
if(axis 1)then
do i3
do ,n2-1
indx + 1
u(1,i2,i3) = buff(indx, buff_id)
enddo
enddo

endif

CRANY

if (axis .eq. 2)then
do i3=2,n3-1
do il=1,nl
indx = indx + 1
u(il,1,i3) = buff(indx, buff_id)
enddo
enddo
endif

if(axis .eq. 3)then
do i2=1,n2
do il=1,nl
indx = indx + 1
u(il,i2,1) = buff(indx, buff_id)
enddo
enddo
endif

return
end

subroutine rprj3(r,mlk,m2k,m3k,s,mlj,m23,m3j k)
implicit none

include 'cafnpb.h'

include 'globals.h'

integer mlk, m2k, m3k, mlj, m2j, m33,k

double precision r(mlk,m2k,m3k), s(mlj,m2j,m33)
integer 33, j2, 31, i3, i2, i1, dl, d2, d3, j
double precision x1(m), yl(m), x2,y2
if (mlk.eq.3) then

d1 =
else

dl =1
endif

if (m2k.eq.3) then
a2 =
else

a2 =1
endif

if (m3k.eq.3) then

x1(il-1) = r(il-1,i2-1,i3) + r(il-1,i2+1,i3)
> 4 r(il-1,i2, i3-1) + r(il-1,i2, i3+1)
y1(il-1) = r(il-1,i2-1,i3-1) + r(il-1,i2-1,i3+1
> 4 r(il-1,i2+41,i3-1) + r(il-1,i2+1,i3+1)
enddo
do j1=2,mlj-1
i1'= 2%j1-d1
y2 = r(il, i2-1,i3-1) + r(il, i2-1,i3+1)
4 r(il, 1241,i3-1) + r(il, i2+1,i3+1)
x2 = r(il, i2-1,i3) + r(il, i2+1,i3)
+r(il, 12, i3-1) + r(il, i2, i3+1
s(31,32,33) =
> 0.5D0 * r(il,i2,i3)
> +0.25D0 * (r(il-1,i2,i3) + r(il+l,i2,i3) + x2)
> +0.125D0 * (x1(il-1) + x1(il+l) + y2
> + 0.0625D0 * (yl(il-1) + yl(il+l)
enddo
enddo
enddo
= k-
call comm3(s,mlj,m2j,m33,3)
return
end

Stencil 3: Fast Multipole Method (FMM)

var OSgfn, ISgfn: [lvl in Levels] [SpsCubes(lvl)] [Sgfns(lvl)] [1..3] complex;

1D array over levels
of the hierarchy

Chapel (39) M

Stencil 3: Fast Multipole Method (FMM)

var OSgfn, ISgfn: [lvl in Levels] [SpsCubes(lvl)] [Sgfns(lvl)] [1..3] complex;
1D array over levels ..of 3D sparse
of the hierarchy arrays of cubes ...of 1D vectors

(per level)

...of 2D discretizations ...of
of spherical functions, complex
(sized by level) values

OORR0O0OC Q-1 @
_ = o eee
L L
[| [| . . ‘ '
[| [|
HEE N NN
0Sgfn (1) 0Sgfn (2) 0Sgfn (3)

Chapel (40) M

FMM: Supporting Declarations

var OSgfn, ISgfn: [lvl in Levels] [SpsCubes(lvl)] [Sgfns(lvl)] [1..3] complex;

previous definitions:

var n: int = ..;
var numLevels: int = ..;
var lLevels: domain(l) = [1l..numlLevels];
var scale: [lvl in Levels] int = 2**(1lvl-1);
var SgFnSize: [lvl in Levels] int = computeSgFnSize (lvl);
var LevelBox: [lvl in Levels] domain(3) = [(1,1,1)..(n,n,n)] by scale(lvl);
var SpsCubes: [1lvl in Levels] sparse subdomain (LevelBox) = ..;
var Sgfns: [lvl in Levels] domain(2) = [1..SgFnSize(lvl), 1..2*SgFnSize(lvl)];
HiE
HEE N . . ' '
HE HENE
= = A% AR AR |
HiE HiE
|| || . . ' '
|| | |
HEENENDRE
0Sgfn (1) 0Sgfn (2) 0Sgfn

(3)
Chapel (41) @ M

FMM: Computation

var O0Sgfn, ISgfn: [lvl in Levels] [SpsCubes(lvl)] [Sgfns(lvl)] [1..3] complex;

outer-to-inner translation:

for 1vl in 1. .numlLevels-1 by -1 {
forall cube in SpsCubes (lvl) {
forall sib in out2inSiblings(lvl, cube) {

const Trans = lookupXlateTab (cube, sib);

atomic ISgfn(lvl) (cube) += 0Sgfn(lvl) (sib) * Trans;

aluialn e o | o
S o/s0 e
p 0 a4
(E..\\\ : &‘ . O '
S AI000 ® .‘.l
0Sgfn (1) 0Sgfn (2) 0Sgfn (3)

Chapel (42) @ M

Fast Multipole Method: Summary

= Chapel code captures structure of data and computation
far better than sequential Fortran/C versions (to say

nothing of the MPI versions)
cleaner, more succinct, more informative
rich domain/array support plays a big role in this

= Parallelism shifts at different levels of hierarchy
Aided by global-view programming and nested parallelism

= Boeing FMM expert was able to find bugs in my
Implementation when seeing Chapel for the first time

= Yet, I've elided some non-trivial code (the distributions)

4pes

Chapel (43)

; CRANY

Stencil 4: Stencils on Unstructured Grids
= e.g., Finite Element Methods (FEM)

Chapel (44) @ M

CRANY

FEM Declarations

config param numdims = 2;

const facesPerElem = numdims+1,
vertsPerFace = 3,
vertsPerElem = numdims+1;

O
var Elements: domain (opaque),
Faces: domain (opaque), OOO
Vertices: domain (opaque) ; O

var element: index (Elements),
face: index (Faces),
vertex: index (Vertices);

var elementFaces: [Elements] [1l..facesPerElem] face,
elemVertices: [Elements] [l..vertsPerElem] vertex,
faceVertices: [Faces] [1l..vertsPerFace] vertex;
O @

C%gf) ONNO;
Chapel (45) O O O M

FEM Computation

= Sample Idioms:

var a, b, ¢, f: [Vertices] real;
var p: [1..2, Vertices] real;

function PoissonComputeA {
forall e in Elements {
const ¢ = 0.10 * volume (e);
for v in elemVertices(e) {
a(vl) += c*f(vl);
for v2 in elemVertices (e) do
if (vl '= v2) then
a(v2) += 0.5*c*f(v2);

function computePressure (pressure: [Vertices] real) {
pressure = (a - b) / c;

}
Chapel (46) M

Outline

v

» Chapel computations
1 your first Chapel program: STREAM Triad
1 the stencil ramp: from jacobi to finite element methods
1 graph-based computation in Chapel: SSCA #2
) task-parallelism: producer-consumer to MADNESS
1 GPU computing in Chapel: STREAM revisited and CP

O Status, Summary, and Future Work

Chapel (47) @ M

CRANY

HPCS SSCA #2, kernel 2

Definition: Given a set of heavy root edges (HeavyEdges) in a
directed graph G, find the subgraphs formed by outgoing
paths with length < maxPathLength

B HeavyEdges 61

76

Chapel (48)

HPCS SSCA #2, kernel 2

Definition: Given a set of heavy root edges (HeavyEdges) in a
directed graph G, find the subgraphs formed by outgoing
paths with length < maxPathLength

B HeavyEdges

Chapel (49)

HPCS SSCA #2, kernel 2

Definition: Given a set of heavy root edges (HeavyEdges) in a
directed graph G, find the subgraphs formed by outgoing
paths with length < maxPathLength

B HeavyEdges
B maxPathLength = 1

Chapel (50)

HPCS SSCA #2, kernel 2

Definition: Given a set of heavy root edges (HeavyEdges) in a
directed graph G, find the subgraphs formed by outgoing
paths with length < maxPathLength

B HeavyEdges
B maxPathLength = 1
B maxPathLength = 2

Chapel (51)

HPCS SSCA #2, kernel 2

def rootedHeavySubgraphs (

G,
type vertexSet; for pathLength in 1..maxPathLength ({
HeavyEdges : domain, var NextlLevel: vertexSet;
HeavyEdgeSubG S I forall v in Activelevel do
in maxPathLength: int) { forall w in G.Neighbors(v) do
atomic {
forall (e, subgraph) if !subgraph.nodes.member (w) {
in (HeavyEdges, HeavyEdgeSubG) { NextLevel += w;
subgraph.nodes += w;
const (x,y) = e; subgraph.edges += (v, w);
var ActivelLevel: vertexSet; }
}

Activelevel += y;
if (pathlLength < maxPathlLength) then

subgraph.edges += e; Activelevel = NextLevel;
subgraph.nodes += x; }
subgraph.nodes += vy; }

Chapel (52) Original code courtesy of John Lewis, Cray Inc. M

HPCS SSCA #2, kernel 2

forall w in G.Neighbors(v) do

Generic Implementation of Graph G

G.Vertices: a domain whose indices represent the vertices
- for toroidal graphs, a domain(d), so vertices are d-tuples
- for other graphs, a domain(1), so vertices are integers

G.Neighbors: an array over G.Vertices

- for toroidal graphs, a fixed-size array over the domain [1..2*d]

« for other graphs...
...an associative domain with indices of type index(G.vertices)
...a sparse subdomain of G.Vertices

This kernel and the others are generic w.r.t. these decisions!

Chapel (53) Original code courtesy of John Lewis, Cray Inc.

HPCS SSCA #2, kernel 2

def rootedHeavySubgraphs (

type vertexSet;

var Nextlevel: vertexSet;

forall v in Activelevel do\|

vertexSet: a type argument specifying how to NextLevel += w;
represent vertex subsets

Generic with respect to vertex sets

Requirements:
 parallel iteration
« ability to add members, test for membership

Options:
* an associative domain over vertices
domain (index (G.vertices))

» a sparse subdomain of the vertices
sparse subdomain (G.vertices)

Activelevel = NextlLevel;

Chapel (54) Original code courtesy of John Lewis, Cray Inc. M

HPCS SSCA #2, kernel 2

def rootedHeavySubgraphs (

HeavyEdgeSubG : [,

forall (e, subgraph) if !subgraph.nodes.member (w) {
in (HeavyEdges, HeavyEdgeSubG) {
subgraph.nodes += w;

subgraph.edges += (v, w);

Ditto for Subgraphs

subgraph.edges += e;
subgraph.nodes += x;

subgraph.nodes += y;

Chapel (55) Original code courtesy of John Lewis, Cray Inc. D M

HPCS SSCA #2, kernel 2

def rootedHeavySubgraphs (

G,
type vertexSet; for pathLength in 1..maxPathLength ({
HeavyEdges : domain, var NextlLevel: vertexSet;
HeavyEdgeSubG S I forall v in Activelevel do
in maxPathLength: int) { forall w in G.Neighbors(v) do
atomic {
forall (e, subgraph) if !subgraph.nodes.member (w) {
in (HeavyEdges, HeavyEdgeSubG) { NextLevel += w;
subgraph.nodes += w;
const (x,y) = e; subgraph.edges += (v, w);
var ActivelLevel: vertexSet; }
}

Activelevel += y;
if (pathlLength < maxPathlLength) then

subgraph.edges += e; Activelevel = NextLevel;
subgraph.nodes += x; }
subgraph.nodes += vy; }

Chapel (56) Original code courtesy of John Lewis, Cray Inc. M

Outline

v

» Chapel computations
1 your first Chapel program: STREAM Triad
1 the stencil ramp: from jacobi to finite element methods
1 graph-based computation in Chapel: SSCA #2
) task-parallelism: producer-consumer to MADNESS
1 GPU computing in Chapel: STREAM revisited and CP

O Status, Summary, and Future Work

Chapel (57) @ M

_ CRANY

Task Parallelism: Producer/Consumer

var buffS: [0..buffersize-1] sync int;

cobegin {
producer () ;
consumer () ;

}

def producer () {
var i = 0O;

{
i = (1+1) % buffersize;
$ (1)

def consumer () {
var 1 = 0;
while {
i = (1+1) % buffersize;
LouffsS (i) ...;
}
}

Chapel (58) M

Task Parallelism: Producer/Consumer

var buff$S: [0..buffersize-1] sync int;

Synchronization Variables

Store full/lempty state along with value

By default...
...reads block until full, leave empty
...writes block until empty, leave full

buffsS (i) = ..;

methods provide other forms of read/write
e.g., buff$[0].readXX(); => read, ignoring state

Chapel also has single-assignment variables
DUFES (1) .: write once, read many times

Chapel (59)

Task Parallelism: Producer/Consumer

cobegin {
producer () ;
consumer () ;

}

Cobegins

« Spawn a task for each component statement
« Original task waits until the tasks have finished

» Chapel also supports other flavors of structured
& unstructured task creation

Chapel (60)

_ CRANY

Task Parallelism: Producer/Consumer

var buffS: [0..buffersize-1] sync int;

cobegin {
producer () ;
consumer () ;

}

def producer () {
var i = 0O;

{
i = (1+1) % buffersize;
$ (1)

def consumer () {
var 1 = 0;
while {
i = (1+1) % buffersize;
LouffsS (i) ...;
}
}

Chapel (61) M

MADNESS

= MADNESS:

* Multiresolution ADaptive NumErical Scientific Simulation

* a framework for scientific simulation in many dimensions using
adaptive multiresolution methods in multiwavelet bases

= People:

* Gregory Beylkin (University of Colorado), George Fann (Oak Ridge National
Laboratory), Zhenting Gan (CCSG), Robert Harrison (CCSG), Martin
Mohlenkamp (Ohio University), Fernando Perez (University of Colorado),

P. Sadayappan (The Ohio State University), Takeshi Yanai (CCSG)

Chapel (62) contents adapted from James Dinan, the Ohio State University w@ﬂ;

What does Madness do?

= Think of Madness as a math library

= Numerical representations for analytic functions

Stored in the scaling function (Gauss Legendre Polynomial) and
Multiwavelet bases

Operations on functions become fast with guaranteed precision

Differential and Integral operators become O(n) in numerical
representation

= Applications that can benefit from Madness include:
Density Functional Theory (DFT) (Quantum chemistry domain)
= Explore electronic structure of many-body systems
Fluid dynamics
Climate modeling
Etc ...

Chapel (63) contents adapted from James Dinan, the Ohio State University p@’ﬂ;

| e — P

Numerical Representation for Functions

= Analytic function is projected into
the numerical representation

= Approximate the function using
basis functions

° Similar to Fourier, but basis
functions have compact support

° Approximation is over a closed
interval of interest

= Recursively subdivide the analytic
function spatially to achieve
desired accuracy

= Avoid extra computation in
uninteresting areas

= Store the result in a Function Tree
° 1d: Binary Tree
* 2d: Quad Tree
* 3d: Oct Tree

T upeé

Chapel (64) contents adapted from James Dinan, the Ohio State University @(

CRANY

The 1d Function Tree of a Gaussian

/\
0 1 L
i & n=1

Finer
>
I
w

k=8 /\ \ \ n=>5

Chapel (65) contents adapted from James Dinan, the Ohio State University p@v(M

_ CRANY

Function Evaluation in the Numerical Representation

/7*@\\

4
2 .
. 2] 1=3
| 1=2] {\
i=0 J] 4, 0E A i J g 02 V” 13 08
! o [o4f . 0B [1 2
. -1
-
E 05 i -3 a2

‘\‘\ //’
Chapel (66) contents adapted from James Dinan, the Ohio State University p@(M

o
o
-
Il
—
e ~

CRANY

Core Algorithm: Differentiation

= Perform: df = f£.diff ()

= Walk down the tree and everywhere that we have
coefficients, perform differentiation

= Performing differentiation involves getting our left and right
neighbors and applying the derivative operator

Chapel (67) contents adapted from James Dinan, the Ohio State University w@ﬂ;

CRANY

Differentiation: | have neighbors

/\ -1

AN
\ LA

Chapel (68) contents adapted from James Dinan, the Ohio State University @(@ M

| AN

Differentiation: I’'m too fine

IVAVANAVANES
VA AN

Chapel (69) contents adapted from James Dinan, the Ohio State University @(@ M

| AN

Differentiation: I’'m too coarse

IVAVANAVANES
VA AN

Chapel (70) contents adapted from James Dinan, the Ohio State University @(@ M

Serial Differentiation Code

def diff (n =0, 1 = 0, result) {
if !s.has coeffs(n, 1) {
// Run down tree until we hit scaling function coefficients

diff (n+l, 2*1 , result);
diff (n+l, 2*1+1, result);

} else {
var sm = get coeffs(n, 1-1);

var sp = get coeffs(n, 1+1);
var s0 = s[n, 11;

// We have s0, check i1f we found sm and sp at this level
if !isNone(sm) && !isNone (sp) {

var r = rp*sm + r0*s0 + rm*sp;
result.s[n, 1] = r * 2.0*%*n;
} else {

recur down(n, 1);

diff (n+l1, 2*1 , result);
diff (n+l, 2*1+1, result);

Chapel (72) contents adapted from James Dinan, the Ohio State University p@m M

Parallel Differentiation Code

def diff (n =0, 1 = 0, result) {
if !s.has coeffs(n, 1) {
// Run down tree until we hit scaling function coefficients
cobegin {
diff (n+l, 2*1 , result); : :
Giff(nil, 24141, result). Perform recursive calls in parallel
}
} else {
cobegin {
var sm = get coeffs(n, 1-1);
var sp = get coeffs(n, 1+1);
var sO = s[n, 1];

Get neighboring coefficients in parallel

}

// We have s0, check i1f we found sm and sp at this level
if !isNone(sm) && !isNone (sp) {

var r = rp*sm + r0*s0 + rm*sp;
result.s[n, 1] = r * 2.0*%*n;
} else {

recur down(n, 1);
cobegin {

diff(n+1l, 2*1 , result); L parform recursive calls in parallel
diff (n+l, 2*1+1, result);

Chapel (73) contents adapted from James Dinan, the Ohio State University p@m M

Outline

v

» Chapel computations
1 your first Chapel program: STREAM Triad
1 the stencil ramp: from jacobi to finite element methods
1 graph-based computation in Chapel: SSCA #2
) task-parallelism: producer-consumer to MADNESS
1 GPU computing in Chapel: STREAM revisited and CP

O Status, Summary, and Future Work

Chapel (74) @ M

CRANY

Current Parallel Models and GPUs

= MPI, Co-Array Fortran, Unified Parallel C
* SPMD model is too coarse-grain and heavy-weight for GPUs

= Java, C#, pthreads
* Thread fork/join models not a good match for SIMD nature of GPUs

= CUDA (C or API), OpenCL

* Low-level models impact productivity
° Better suited as a compiler/library target

= directive-based approaches (OpenMP, PGI, CAPS)
° Probably the most sensible evolutionary approach
° But potentially a blunt tool -- lots of reliance on the compiler
* Can’t we do better?

Chapel (75)

GPU Programming Wishlist

= general parallelism
° task parallelism to fire kernels off to the accelerator
* data parallelism to express SIMD/SIMT computations
° nested parallelism to handle inter-/intra-node parallelism (many kinds)

= |ocality control: the ability to say where things are run/stored:
° one node vs. another
* CPU vs. GPU
° individual thread blocks
° types of memory within the GPU

= multiresolution design: the ability to...
...use high-level abstractions when convenient/appropriate
...get as close to the hardware as necessary within the language
...interoperate with other programming models

Conventional solutions will likely result in a notational mash-up
Chapel’s concepts/themes already support all these goals

4pes

Chapel (76)

Traditional STREAM (single-node version)

By default, domains and arrays are implemented using the
current locale

Default problem size; user can override
_ on executable’s command-line
config const m = 1000;

const alpha = / Domain representing the problem space

const ProbSpace: domain (

var A, B, C: [ProbSpace] real;/l Three vectors of floating point values
forall (a,b,c) in (A,B,C) do/l Parallel loop specifying the computation

a = b + alpha * c;

0 A A A
CLLLLLTT T T T T T T T TITTTTTTTT]+
o CLLLLIIII I I T I I T T T I T T ITITTITIITTITII O

Chapel (77)

CPU+GPU STREAM

config const m = 1000, tpb = 256;
const alpha = 3.0;

const gpuDist = new GPUDist (rank=1l, tpb);

const ProbSpace: domain(l) = [1..m];
const GPUProbSpace: domain(l) distributed gpuDist = ProbSpace;

var hostA, hostB, hostC: [ProbSpace] real; Create vectors on both
var gpul, gpuB, gpuC: [GPUProbSpace] real; host (CPU) and GPU

hostB = M Perform vector initializations on the host
hostC = ..;

YW 4

gpuB = hostB; Assignments between host and GPU arrays
gpuC = hostC; implemented using CUDA's memcpy
forall (a, b, c¢) in (gpuA, gpuB, gpuC) do

a = b + alpha * c¢; | Computation executed by GPU

hostA = gpuA;

Copy result back from GPU to host memory

Chapel (78) M

Experimental results (NVIDIA GTX 280)

GPU Stream Results

121
111
101
91
81
71
61
51
41
31
21
11

m Single Precision

Bandwidth GB/s

M Double Precision

Zippered lteration Iteration over CUDA Reference
Domain

Targeting Accelerators with Chapel 18

Chapel (79) @ M

CRANY

Case Study: STREAM (current practice)

#define N 2000000
int main() { CUDA
float *d a, *d b, *d c;

float scalar;

cudaMalloc ((void**) &d a,
cudaMalloc ((void**) &d b,
cudaMalloc ((void**) &d c,

sizeof (float) *N) ;
sizeof (float) *N) ;
sizeof (float) *N) ;

dim3 dimBlock (128) ;
dim3 dimGrid (N/dimBlock.x);

if(N % dimBlock.x != 0) dimGrid.x+=1;
set array<<<dimGrid,dimBlock>>>(d b, .5f, N)
set array<<<dimGrid,dimBlock>>>(d c, .5f, N)

scalar=3.0f;
STREAM Triad<<<dimGrid,dimBlock>>>(d b, d c,
cudaThreadSynchronize () ;

cudaFree(d a);

cudaFree(d b);

cudaFree(d c);

~e

d a, scalar, N);

int len) {

float *c,

int len) {

}

__global void set array(float *a, float wvalue,
int idx = threadIldx.x + blockIdx.x * blockDim.x;
if (idx < len) al[idx] = value;

}

__global void STREAM Triad(float *a, float *b,

float scalar,
int idx = threadIldx.x + blockIdx.x * blockDim.x;
if (idx < len) c[idx] = a[idx]+scalar*b[idx];

}

Chapel (80)

#include <hpcc.h>
#ifdef _OPENMP
#include <omp.h>
#endif

MPI + OpenMP

static int VectorSize;
static double *a, *b, *c;

int HPCC_StarStream(HPCC_Params *params) {
int myRank, commSize;
int rv, errCount;
MPI_Comm comm = MPI_COMM WORLD;

&commSize) ;
&myRank) ;

MPI_Comm_size(comm,
MPI_Comm_rank (comm,

rv = HPCC_Stream(params, 0 == myRank);

MPI_Reduce(&rv, &errCount, 1, MPI_INT, MPI_SUM, O, comm);

return errCount;

}

int HPCC_Stream (HPCC_Params *params, int doIO) {
register int j;
double scalar;
VectorSize = HPCC_LocalVectorSize(params, 3, sizeof (double), 0);

a = HPCC_XMALLOC(double, VectorSize);
b = HPCC_XMALLOC (double, VectorSize);
c = HPCC_XMALLOC(double, VectorSize);

if (la || !'b || 'c) |
if (c) HPCC_free(c);
if (b) HPCC_free (b);
if (a) HPCC_free(a);
if (doIO) {
fprintf (outFile,
fclose(outFile);

"Failed to allocate memory (%d).\n", VectorSize);

}
return 1;

}

#ifdef _OPENMP
#pragma omp parallel for

#endif
for (j=0; j<VectorSize; j++) {
b[j] = 2.0;
c[j] = 0.0;
}
scalar = 3.0;
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (j=0; j<VectorSize; j++)
a[j] = b[jl+scalar*c(jl;

HPCC_free(c);
HPCC_free(b);
HPCC_free(a);

return 0;

’ HMPEE

Case Study: STREAM (current practice)

#define N 2000000
. . CUDA
int main() {

float *d a, *d b, *d c;

float scalar;

Chapel (today)

config const m = 1000,
tpb = 256;
const alpha = 3.0;

const gpuDist = new GPUDist (rank=1l, tpb);
const ProbSpace: domain(l) =

const GPUProbSpace: domain (1)

[1..m];
distributed gpuDist

#include <hpcc.h>
#ifdef _OPENMP
#include <omp.h>
#endif

MPI + OpenMP

int HPCC_StarStream(HPCC_Params *params) {
int myRank, commSize;
int rv, errCount;
MPI_Comm comm = MPI_COMM WORLD;

static int VectorSize;
static double *a, *b, *c;

MPI_Comm_size(comm,

MPI_Comm rank(comm

&commSize) ;
&myRank)

config const m =

const alpha = 3.

Chapel (ultimate goal)

1000,
tpl = here.numCores,
tpb = 256;

0;

Rl B 1| const ProbDist = new BlockCPUGPU (rank=1, tpl, tpb);

T2 hogitn; MedEE; hesEt: [Prebipecel Rl const ProbSpace: domain(l) distributed ProbDist

var gpul, gpuB, gpuC: [GPUProbSpace] real; — 9 s .

hostB = .; var A, B, C: [ProbSpace] real;

hostC = ..;
J B = ..;

gpuB = hostB; € = ¢
__{ gpuC = hostcC; IXS

. forall (a,b,c) in (A,B,C) do

forall (a, b, c) in (gpuA, gpuB, gpuC) do a = b + alpha © @

} a = b + alpha * c;
#ifdef _OPENMP

hostA = gpuA; It *C, #pragma omp parallel for

____ #endif
14 efor (§j=0; j<VectorSize; j++)
int idx = threadIdx.x + blockIdx.x * blockDim.x; al3] = bl3ltscalar*e[3l;
if (idx < len) clidx] = alidx]+scalar*b[idx]; oo
} HPCC_free(a);
return 0;
} CAY

Chapel (81) NARPA M

D=

Chapel Parboil Benchmark Suite Study

Parboil Benchmark Suite: GPU-oriented benchmarks from

Wen-Mei Hwu (UIUC) with CPU and GPU (CUDA) versions
http://impact.crhc.illinois.edu/parboil.php

This study: Rewrite the suite in Chapel to compare
performance and programmability relative to CUDA

One benchmark: Coulombic Potential (CP)

computes the Coulombic potential over a discretized plane within a
3D space of randomly-placed charges

adapted from the cionize benchmark in VMD.

Team: Albert Sidelnik, David Padua, Maria Garzaran

Chapel (82)

http://impact.crhc.illinois.edu/parboil.php

CP Excerpts: Declarations

const GPUMem = distributionValue (new GPUDist (rank=2,
tbSi1izeX=BLOCKSIZEX, tbSizeY=BLOCKSIZEY))
const space: domain (2, int(64)) distributed GPUMem
= [0..#VOLSIZEY, O..#VOLSIZEX];

const atomspace host = [0..#MAXATOMS];

var atominfo host: [atomspace host] float4;

const atomspace gpu: domain(l, int (64)) distributed GPUMem
= atomspace host;

var atominfo gpu: [atomspace gpu] float4;

const energyspace cpu = [0..#volmemsz];

var energy host: [energyspace cpu] real (32);

const energyspace gpu: domain(l, int(64)) distributed GPUMem
= energyspace cpu;

var energy gpu: [energyspace gpu] real (32);

Chapel (83) Original code courtesy of Albert Sidelnik, UIUC D M

CP Excerpts: Computation

atominfo gpu = atominfo host;

energy gpu = energy host;

forall (xindex, yindex) in space {
const coorx = gridspacing * xindex,
coory = gridspacing * yindex;
var energyval: real (32);
for atomid in 0..#runatoms {
const dx = coorx - atominfo gpu(atomid) .x,
dy = coory - atominfo gpu(atomid) .y;
const r 1 = 1.0 : real(32)
/ sgrt(dx * dx + dy * dy + atominfo gpu(atomid).z);
energyval += atominfo gpu(atomid).w * r 1;
}

energy gpu(rowSizeX * yindex + xindex) += energyval;

energy host = energy gpu;

Chapel (84) Original code courtesy of Albert Sidelnik, UIUC D M

CRANY

Coulombic Potential: Execution Time

0.9

0.8

0.7

0.6

0.5

0.4

Time (seconds)

0.3

0.2

0.1

Chapel Chapel CUDA CUDA CUDA
(currently) (hand-modified (no constant (with unrolling)
to use padded, memory)
aligned vectors)

Chapel (85) Results courtesy of Albert Sidelnik, UIUC D M

CRANY

Chapel and GPUs: Next Steps

= CP Benchmark:

provide access to padded, aligned vector using external types

add support for using constant memory
= explicitly via Chapel’s on-clauses
= automatically via compiler analysis

explore loop unrolling via Chapel’s iterator functions and full unrolling
= |f infeasible look into adding language support or unrolling

= GPU Programming in Chapel:
continue studying additional benchmarks, Parboil and otherwise
create a distribution that spans CPU and GPU resources
= to avoid duplicated declarations
= to pipeline data between CPU and GPU to hide 1/O latencies
combine CPU/GPU distributions with Block, Cyclic, ... distributions
= to target a cluster of CPU+GPU resources

4pes

Chapel (86)

Candidate CPU/GPU Distribution Concept

const CPUGPU = distributionValue (new CPUGPUDist (rank=2,
tbSizeX=BLOCKSIZEX, tbSizeY=BLOCKSIZEY))

const atomspace: domain(l, int(64)) distributed CPUGPU
= [0..#MAXATOMS]; ;

var atominfo: [atomspace] float4;

// 1init on host
atominfo.setMode (gpu=true) ;
// compute on GPU;

atominfo.setMode (gpu=false);

Chapel (87) M

Outline

v

» Chapel computations
1 your first Chapel program: STREAM Triad
1 the stencil ramp: from jacobi to finite element methods
1 graph-based computation in Chapel: SSCA #2
) task-parallelism: producer-consumer to MADNESS
1 GPU computing in Chapel: STREAM revisited and CP

O Status, Summary, and Future Work

Chapel (88) @ M

Outline

v

v

1 your first Chapel program: STREAM Triad

1 the stencil ramp: from jacobi to finite element methods
1 graph-based computation in Chapel: SSCA #2

) task-parallelism: producer-consumer to MADNESS

1 GPU computing in Chapel: STREAM revisited and CP

» Status, Summary, and Future Work

Chapel (89) @ M

- = |nterns

= Jacob Nelson (09 — UW)

* Albert Sidelnik ('09 — UIUC)
Andy Stone (‘08 — Colorado St)
James Dinan ('07 — Ohio State)
Robert Bocchino (06 — UIUC)
Mackale Joyner ('05 — Rice)

R " Alumni
Y * David Callahan
* Roxana Diaconescu
* Samuel Figueroa
* Shannon Hoffswell
° Mary Beth Hribar
* Mark James
* John Plevyak
* Wayne Wong
* Hans Zima

Sung-Eun Choi, David Iten, Lee Prokowich,
Steve Deitz, Brad Chamberlain

Chapel (90) M

Chapel Release

= Current release: version 1.02 (November 12, 2009)
= Supported environments: UNIX/Linux, Mac OS X, Cygwin

= How to get started.:
1. Download from: http://sourceforge.net/projects/chapel
2. Unpack tar.gz file

3. See top-level README
= for quick-start instructions
= for pointers to next steps with the release

= Your feedback desired!

= Remember: a work-in-progress
= it’s likely that you will find problems with the implementation
= this is still a good time to influence the language’s design

Chapel (91)

Chapel Implementation Status (v1.02)

= Base language: stable

= Task parallel:
* stable multi-threaded implementation of tasks, sync variables
° atomic sections are an area of ongoing research with U. Notre Dame

= Data parallel:
* stable multi-threaded data parallelism for dense domains/arrays

= Locality:
* stable locale types and arrays
* stable task parallelism across multiple locales

= Performance:
* has received much attention in designing the language
° yet very little implementation effort to date

Chapel (92) @ M

Chapel Collaborations

Notre Dame/ORNL (Peter Kogge, Srinivas Sridharan, Jeff Vetter):
Asynchronous STM over distributed memory

UIUC (David Padua, Albert Sidelnik, Maria Garzaran):
Chapel for hybrid CPU-GPU computing
OSU (Gagan Agrawal, Bin Ren):
Data-intensive computing using Chapel’s user-defined reductions

PNNL/CASS-MT (John Feo, Daniel Chavarria): Chapel extensions for
nybrid computation; performance tuning for the Cray XMT; ARMCI port

Universitat Politecnica de Catalunya (Alex Duran): Chapel over Nanos

Universidad de Malaga (Rafael Asenjo, Angeles Navarro, et al.):
Parallel 1/0, sparse distributions, ...

ORNL (David Bernholdt et al.; Steve Poole et al.): Chapel code studies —
Fock matrix computations, MADNESS, Sweep3D, coupled models, ...

Berkeley (Dan Bonachea et al.): Chapel over GASNet; collectives
(Your name here?)

Chapel (93) M

Collaboration Opportunities

" memory management policies/mechanisms

= exceptions

= dynamic load balancing: task throttling and stealing

= parallel I/O and checkpointing

= language interoperability

= application studies and performance optimizations

= ndex/subdomain semantics and optimizations

= targeting different back-end compilers/runtimes (LLVM, MS CLR, ...)
= dynamic compilation

= |ibrary support

= tools
correctness debugging, visualizations, algorithm animations
performance debugging
IDE support
Chapel interpreter

Chapel (94)

Chapel: For More Information

chapel info@cray.com

http://chapel.cray.com
http://sourceforge.net/projects/chapel/

SCO08 tutorial slides

Parallel Programmability and the Chapel Language;
Chamberlain, Callahan, Zima; International Journal of High
Performance Computing Applications, August 2007,
21(3):291-312.

4pes

Chapel (95)

