S~

Hewlett Packard
Enterprise

Productive Parallel Programming
from the Desktop to the Supercomputer
with Chapel

Brad Chamberlain

FNWI Colloguium, Radboud University
October 16, 2025

Q: What makes Chapel unique?

A: It’s one of the few programming
languages designed for scalable parallel
computing from the outset.

What is [Scalable] Parallel Computing?

Parallel Computing: Using the processors and memories of multiple compute resources

e Why? To run a program...
...faster than we could otherwise
...and/or using larger problem sizes

Compute Compute Compute Compute
Node O Node 1 Node 2 Node 3
o3k e o Xk e e Xk o3k
o 2R e, o X e GO G o
Processor Core
Memory

Scalable Parallel Computing: As more processors and memory are added, benefits increase

HPC = High Performance Computing

—

Parallel Computing has become Ubiquitous

Additional, ubiquitous parallelism today:
e multicore processors

Parallel computing, historically:
 supercomputers

o commodity clusters cloud computing

e GPUs
Compute Compute Compute Compute
Node O Node 1 Node 2 Node 3

B

b

B

. Memory

Processor Core

Parallel Computing has become Ubiquitous

Parallel computing, historically: Additional, ubiquitous parallelism today:
e supercomputers « multicore processors
o commodity clusters e cloud computing
e GPUs
Compute Compute Compute Compute
Node O Node 1 Node 2 Node 3
Processor Core
. Memory

: GPU Core

Highlights from HIPS 2025 Keynote:
“Reflections on 30 Years of HPC Programming”

30 Years Ago vs. Today: Top HPC Systems

Top 5 systems in the Top500, June 1995:

- Cores:
- Rmax:

80-3680 cores

~98.9-170 GFlop/s

- Systems: Fujitsu, Intel Paragon XP/S, Cray T3D
— Networks: crossbar, mesh, 3D torus

TOP500 LIST - JUNE 1995

Rmax and Rpeak values are in GFlop/s. For more details about other fields, check the TOP500 description.

Rpeak values are calculated using the advertised clock rate of the CPU. For the efficiency of the systems you should take into
account the Turbo CPU clock rate where it applies.

&«

Rank

1-100 101-200

201-300 301-400

System

Numerical Wind Tunnel, Fujitsu
National Aerospace Laboratory of Japan
Japan

XP/S140, Intel
Sandia National Laboratories
United States

XP/S-MP 150, Intel
DOE/SC/Oak Ridge National Laboratory
United States

T3D MC1024-8, Cray/HPE
Government
United States

VPP500/80, Fujitsu
National Lab. for High Energy Physics
Japan

>

Cores

140

3,680

3,072

1,024

80

Rmax
(GFlop/s)

170.00

143.40

127.10

100.50

98.90

Rpeak Power
(GFlop/s) (kW)

235.79

184.00

154.00

153.60

128.00

Top 5 systems in the Top 500, June 2025:

- Cores: 2,073,600-11,039,616 (~563x-138,000x)

- Rmax: ~477.9-1742.0 PFlop/s (~2,810,000x-17,600,000x)
- Systems: HPE Cray EX, Eviden Bullsequana, Microsoft Azure

- Networks: Slingshot-11, InfiniBand NDR

TOPS500 LIST - JUNE 2025

Rmax and Rpeak values are in PFlop/s. For more details about other fields, check the TOP500 description.

Rpeak values are calculated using the advertised clock rate of the CPU. For the efficiency of the systems you should take into

account the Turbo CPU clock rate where it applies.

<«

Rank

1-100 101-200 201-300 301-400 401-500 >

System

El Capitan - HPE Cray EX255a, AMD 4th Gen EPYC 24C
1.8GHz, AMD Instinct MI300A, Slingshot-11, TOSS, HPE
DOE/NNSA/LLNL

United States

Frontier - HPE Cray EX235a, AMD Optimized 3rd
Generation EPYC 64C 2GHz, AMD Instinct MI250X,
11, HPE Cray 0S, HPE

C/0ak Ridge National Laboratory

United States

Aurora - HPE Cray EX - Intel Exascale Compute Blade,
Xeon CPU Max 9470 52C 2.4GHz, Intel Data Center GPU
ngshot-11, Intel

/Argonne National Laboratory
United States

JUPITER Booster - BullSequana XH3000, GH Superchip
72C 3GHz, NVIDIA GH200 Superchip, Quad-Rail NVIDIA
and NDR200, RedHat Enterprise Linux, EVIDEN
EuroHPC/FZJ

Germany

nfin

Eagle - Microsoft NDv5, Xeon Platinum 8480C 48C 2GHz,

NVIDIA H100, NVIDIA Infiniband NDR, Microsoft Azure
Microsoft Azure
United States

Cores

11,039,616

9,066,176

9,264,128

4,801,344

2,073,600

Rmax
(PFlop/s)

1,742.00

1,353.00

1,012.00

793.40

561.20

Rpeak
(PFlop/s)

2,746.38

2,055.72

1,980.01

930.00

846.84

Power
(kW)

29,581

24,607

38,698

13,088

30 Years Ago vs. Today: Top HPC Systems

Top 5 systems in the Top500, June 1995:
- Cores: 80-3680 cores
- Rmax: ~98.9-170 GFlop/s
- Systems: Fujitsu, Intel Paragon XP/S, Cray T3D
- Networks: crossbar, mesh, 3D torus

Top 5 systems in the Top 500, June 2025:

- Cores: 2,073,600-11,039,616 (~563x-138,000x)

- Rmax: ~477.9-1742.0 PFlop/s (~2,810,000x-17,600,000x)
- Systems: HPE Cray EX, Eviden Bullsequana, Microsoft Azure
- Networks: Slingshot-11, InfiniBand NDR

TOP500 LIST - JUNE 1995

Rmax and Rpeak values are in GFlop/s. For more details about other fields, check the TOP500 description.

TOPS500 LIST - JUNE 2025

Rmax and Rpeak Values are in PFlop/s. For more details about other fields, check the TOP500 description.

Rpeak values are calculated using the advertised clock rate of the CPU. For the efficiency of the systems you should take into
account the Turbo CPU clock rate where it applies.

Rpeak values are calculated using the advertised clock rate of the CPU. For the efficiency of the systems you should take into
account the Turbo CPU clock rate where it applies.

< 1-100 101-200 201-300 301-400 401-500 >

&« 1-100 101-200 201-300 301-400 401-500 >
Rmax Rpeak Power
Cores (PFlop/s) (PFlop/s) (kW)
1 n - HPE Cray EX255a, AMD 4th Gen EPYC 24C 11,039,616 174200 274638 29,581
Rank System And Complex. D Instinct MI300A, Slingshot-11, TOSS, HPE
1 Numerical Wind Tunnel, Fujitsu * commodity vector processors
National Aerospace Laboratory of Japan . 35a, AMD Optimized 3rd 9,066,176 135300 208572 24,607
Japan ® mul‘l'ICOI"e pl"OCGSSOI"S . AMD Instinct MI250X,
o \ prator
2 XP/S140, Intel * multi-socket compute nodes v
Sandia National Laboratories .
United States * NUMA compute node architectures fcaleComputeBlade, 9264128 101200 198001 38498
- . . ° P'GHz, Intel Data Center GPU
- * high-radix, low-diameter interconnects A
DOE/SC/Oak Ridge National Laboratory °
United States * GPU computing
° oge Poster - BullSequana XH3000, GH Superchip 4,801,344 793.40 930.00 13,088
Often in ways that hurt programmabilit T NVIDIA GH20D Superchip, Quad-RailNVIDIA
4 T3D MC1024-8, Cray/HPE (y p g Y> Pland NDR200, RedHat Enterprise Linux, EVIDEN
Government oHPC/FZJ
United States ermany
» Eagle - Microsoft NDv5, Xeon Platinum 8480C 48C 2GHz, 2,073,600 561.20 846.84
b) VPP500/80, Fujitsu 80 98.90 128.00

National Lab. for High Energy Physics
Japan

NVIDIA H100, NVIDIA Infiniband NDR, Microsoft Azure
Microsoft Azure
United States

30 Years Ago vs. Today: Top HPC Systems and Programming Notations

Top 5 systems in the Top 500, June 2025:

- Cores: 2,073,600-11,039,616 (~563x-138,000x)

- Rmax: ~477.9-1742.0 PFlop/s (~2,810,000x-17,600,000x)
- Systems: HPE Cray EX, Eviden Bullsequana, Microsoft Azure

Top 5 systems in the Top500, June 1995:
- Cores: 80-3680 cores
- Rmax: ~98.9-170 GFlop/s
- Systems: Fujitsu, Intel Paragon XP/S, Cray T3D

- Networks: crossbar, mesh, 3D torus - Networks: Slingshot-11, InfiniBand NDR
Broadly-adopted HPC programming notations: Broadly-adopted HPC programming notations:
- Languages: C, C++, Fortran - Languages: C, C++, Fortran
- Inter-node: MPI, SHMEM - Inter-node: MP|, SHMEM
- Intra-node: vendor-specific pragmas & intrinsics - Intra-node: OpenMP, vendor-specific pragmas & intrinsics
- OpenMP on the horizon: 1997 - GPUs: CUDA, HIP, SYCL, Kokkos, OpenMP, OpenACC, ...
- Scripting: Perl, [[t]c]sh - Scripting: Python, bash

30 Years Ago vs. Today: Top HPC Systems and Programming Notations

Top 5 systems in the Top 500, June 2025:

- Cores: 2,073,600-11,039,616 (~563x-138,000x)

- Rmax: ~477.9-1742.0 PFlop/s (~2,810,000x-17,600,000x)
- Systems: HPE Cray EX, Eviden Bullsequana, Microsoft Azure

Top 5 systems in the Top500, June 1995:
- Cores: 80-3680 cores
- Rmax: ~98.9-170 GFlop/s
- Systems: Fujitsu, Intel Paragon XP/S, Cray T3D

- Networks: crossbar, mesh, 3D torus - Networks: Slingshot-11, InfiniBand NDR
Broadly-adopted HPC programming notations: Broadly-adopted HPC programming notations:

- Languages: C, C++, Fortran - Languages: C, C++, Fortran

- Inter-node: MPI, SHMEM - Inter-node: MP|, SHMEM

- Intra-node: vendor-specific pragmas & intrinsics - Intra-node: OpenMP, vendor-specific pragmas & intfrinsics

— OpenMP on the horizon: 1997
- Scripting: Perl, [[t]c]sh

- GPUs: CUDA, HIP, SYCL, Kokkos, OpenMP, OpenACC, ...
- Scripting: Python, bash

...while HPC notations have
largely stayed the same,

modulo GPU computing

10

Meanwhile, in Mainstream Computing...

e Consider all the currently relevant languages that emerged or rose to prominence during those 30 years:
« Java (~1995)
« Javascript (~1995)
e Python (~1989; v2.0 ~2000)
« C# (~2000)
« Go (~2009)
 Rust (~2012)
e Julia (~2012)
o Swift (~2014)

Recurring themes: productivity, safety, portability, performance

Such languages have become favorite day-to-day languages for many users across multiple disciplines

Why can’t HPC have nice things too? (Or maybe we can...?)

Outline

o Background & Motivation
e Introduction to Chapel

o Chapel Applications

» Wrap-up

12

What is Chapel?

Chapel: A modern parallel programming language
« Portable & scalable
e Open-source & collaborative

Goals:
e Support general parallel programming
« Make parallel programming at scale far more productive

\
g CHAPEL
=

13

Productive Parallel Programming: One Definition

Imagine a programming language for parallel computing that is as...
...readable and writeable as Python

..yet also as...
..fast as Fortran / C / C++

...scalable as MP| / SHMEM

...GPU-ready as CUDA / HIP / OpenMP / Kokkos / OpenCL / OpenACC/ ...
...portable as C
...fun as [your favorite programming language]

This is our motivation for Chapel

14

HPCC Stream Triad and RA in C + MPI + OpenMP vs. Chapel

|
1
TAMTRIAD'“MPHOPENMP use BlockDist; STREAM Performance (GB/s)
config const n = 1 000 000, S0000 e
alpha = 0.01; 25000 f Cha%g?%elggz—_—:—_— 7777777777777777777777777
const Dom = blockDist.createDomain({l..n}); | o el
var A, B, C: [Dom] real; % S e
—SUM, 0, comm) 7 10000 ,,
B=2.0; 5000 - e
e = W5 oceectorstoe peaes, 3, sasa ewlel 0) cC = 1. O; 0
1632 64 128 256
— A =B + alpha * C; Locales (x 36 cores / locale)
]
]
HPCC RA: MPI KERNEL
forall (, r) in zip(Updates, RAStream()) do RA Performance (GUPS)
Tlr & indexMask].xor(r):; 14 - SRR
12
10
2 8
o 6
4
2
O L
16 32 64 128 256
'72 Locales (x 36 cores / locale)

Key Concerns for Scalable Parallel Computing

1. parallelism: What computational tasks should run simultaneously?
2. locality: Where should tasks run? Where should data be allocated?

Compute Compute Compute Compute
Node O Node 1 Node 2 Node 3
o3k e GO oo oo
o dR e, ‘ \ o X e ‘ \ oo ‘ \ o3k

Processor Core

. Memory

16

Locales in Chapel

e In Chapel, a locale refers to a compute resource with...
e processors, so it can run ftasks

e memory, so it can store variables
e For now, think of each compute node as being a locale

Compute
Node O

_mm

Compute Compute

Node 1

Node 2

b

B

Compute

Node 3

Processor Core

. Memory

17

Built-In Locale Variables in Chapel

e Two built-in variables for referring to locales within Chapel:

« Locales: An array of locale values representing the system resources on which the program is running

 here:

The locale on which the current task is executing

Locale O

Locale 1

Locale 2

il

B

Locale 3

/ |

here Locales

. Memory

Processor Core

18

“Low-level” parallelism and locality in Chapel

19

Basic Features for Locality

on.chpl

All Chapel programs begin running
as a single task on locale O

writeln ("Hello from locale

var A: [1.

for loc in Locales

on loc {
var B

2, 1..2]

real;

, here.id);

Locale O

Variables are stored using the
memory local to the current task

This loop will serially iterate over
the program’s locales

on-clauses move tasks
to target locales

remote variables can be

accessed directly

Locale 2 Locale 3

I | ™ |

aE al;

r

20

Mixing Locality with Task Parallelism

coforall.chpl

writeln ("Hello from locale ", here.id);
var A: [1l..2, 1..2] real;
coforall loc in Locales {

on loc {
var B = A;

Locale O Locale 1

Locale 2

O

|

s

r

The coforall loop creates

a parallel task per iteration
(in this case, a task per locale)

21

Chapel’s Adaptability

Chapel pre-dates all of the architectural changes mentioned previously, apart from commodity vectors

commodity vector processors

9000

N\ * multicore processors 8000

* multi-socket compute nodes 2 2000

CHAPEL | . yuMa compute node architectures ° §§§§
— * high-radix, low-diameter interconnects 1000

GPU computing

Yet it supports all of these HW features
—Using essentially the same language features as ~20 years ago
—-How? By expressing parallelism and locality independently from HW mechanisms

—

Arkouda Argsort Performance

- Slingshot-11 May 2023, 32 GiB/node —*—
Slingshot-11 April 2023, 32 GiB/node —e—
"~ HDR-100 IB May 2021, 128 GiB/node —»— ~~~_~—~" ~~ "~~~ "~~~

1024 2048 4096 8192

Nodes

Representing GPUs in Chapel

 In Chapel, we represent GPUs as sub-locales
« Each top-level locale may have an array of locales called ‘gpus’

o We can then target them using Chapel’s traditional features for parallelism + locality
on here.gpus|[0]

{ .

}

Locale O

GPUO

GPU1

coforall gpu in here.gpus do on gpu { ..

Locale 1

GPUO

GPU1

CPU Core

. Memory
GPU Core

Locale 2

GPUO

GPU1

Locale 3

GPUO

GPU1

23

Targeting CPUs and GPUs using Parallelism and Locality

var A: [l1..n, 1..n] real;
coforall 1 in Locales do on 1 {

CPU Core GPU Core . Memory

parallel statements cobegin {
with cobegin Locale O Locale 1 {

inner I

coforall

var B: [l1..n, 1..n] real;

B = 2;
A = B;

}
coforall g in here.gpus do on g f{
var B: [l1..n, 1..n] real;

B = 2;

across A B = Bf

GPUs }
e AR - 2K
§(Gem
e BE-2K- }

T ' writeln (A) ;

: outer coforall across Locales | oL

o oo

High-level parallelism and locality in Chapel

25

Data Parallelism

forall.chpl

var A: [1l..2, 1..2] real;

The forall loop’s iterand specifies

forall a in A
{ how parallelism is implemented

a += 1;

A ‘forall’ over a local array,
like ‘A’ here, creates a task per core,
dividing the work evenly

This results in a local parallel computation

Locale O Locale 1 Locale 2 Locale 3

O O

oo {1

Data Parallelism using Domains

forall-dom.chpl

const D = {1..2, 1..2}; A domain is a named index set that
var A: [D] real; can be used to declare arrays...

forall a in A {
a += 1;

}

This is equivalent to the previous slide

Locale O Locale 1 Locale 2 Locale 3

O O

com— L H— 0D

Data Parallelism using Domains

forall-dom-loop.chpl

const D = {1..2, 1..2}; A domain is a named index set that
var A: [D] real; can be used to declare arrays...

forall 1 in D {

...and to drive loops
A[i1] += 1;

(using the same parallelization
as local arrays)

This is also equivalent to the previous slides

Locale O Locale 1 Locale 2 Locale 3

oo

soll— 1 W1 B

Data Parallelism using Distributed Domains

forall-dist-dom.chpl

use BlockDist;
const D = blockDist.createDomain ({1.
var A: [D] real;

Distributed domains distribute their

2, 1..2}); indices—and their arrays’
elements—across the target locales

forall i in D {

Forall loops over distributed
Al[1] += 1;

domains use all the cores on all
locales owning a subdomain

}

This results in a distributed parallel computation

Locale O Locale 1 Locale 2 Locale 3

oo dhe OO dhe

slo/ [e (el |

Data Parallelism using Distributed Arrays

forall-dist-arr.chpl

use BlockDist;

const D = blockDist.createDomain({1l..2, 1..2});
var A: [D] real;

forall a in A {

alb =1

}

This is equivalent to the previous slide

Locale O

o

o

O

o

Locale 1

E—

o

o

O

O

Forall loops over distributed arrays

Locale 2

B—

o

o

o

o

act similarly

i

Locale 3

oo
dho

30

Data Parallelism using Promotion over a Distributed Array

promotion-dist.chpl

use BlockDist;
const D = blockDist.createDomain({1l..2, 1..2});

var A: [D] real;

Scalar functions and operators

A d= g (like += here)
can be called with array arguments

This is also equivalent to the last few slides

Locale O Locale 1 Locale 2 Locale 3

oo dhe dhe

oo
ooi\ \aai\ \oa'\ \ool

And much, much more...

This has just been a small taste of Chapel... there’s much more
« atomic and sync types for synchronizing between tasks
 additional ways to create tasks and parallel loops
» object-oriented features
e iterators
 generics, polymorphism, overloading
 default arguments, keyword-based argument passing
e namespacing
« inferoperability
e efc.

Applications of Chapel

Python3 Client m™ma Chapel Server
& . Socket
*HE
Code Modules [3
2
t Distributed
ﬁ Object Store
Platform MPP, SMP, Cluster, Laptop, etc. 23] |

Arkouda: Interactive Data Science at Massive Scale
Mike Merrill, Bill Reus, et al.
U.S. DoD

ChOp: Chapel-based Optimization
T. Carneiro, G. Helbecque, N. Melab, et al.
INRIA, IMEC, et al.

CHAMPS: 3D Unstructured CFD
Laurendeau, Bourgault-Coté, Parenteau, Plante, et al.
Ecole Polytechnique Montréal

Low-pass filter with LOWESS (intrinsically parallel)

RH (%) at Lake Mead

ChplUltra: Simulating Ultralight Dark Matter
Nikhil Padmanabhan, J. Luna Zagorac, et al.
Yale University et al.

Lattice-Symmetries: a Quantum Many-Body Toolbox Desk dot chpl: Utilities for Environmental Eng. RapidQ: Mapping Coral Biodiversity
Tom Westerhout Nelson Luis Dias

Radboud University The Federal University of Parand, Brazil The Coral Reef Alliance

Modeling Ocean Carbon Dioxide Removal
Scott Bachman Brandon Neth, et al.
[C]Worthy

Chapel-based Hydrological Model Calibration
Marjan Asgari et al.
University of Guelph

—

Arachne Graph Analytics
Bader, Du, Rodriguez, et al.
New Jersey Institute of Technology

[images provided by their respective teams and used with permission]

Rebecca Green, Helen Fox, Scott Bachman, et al.

ChapQG: Layered Quasigeostrophic CFD
lan Grooms and Scott Bachman
University of Colorado, Boulder et al.

FEATURES ENSEMBLES
EXPI.ORATIONUPARAMETEMATIONALE

CrayAl HyperParameter Optimization (HPO)
Ben Albrecht et al.
Cray Inc. / HPE

Diversity in Application Scales (both in terms of code and systems)

2 £
i 7 % 75 g ?n date

Computation: Aircraft simulation / CFD Computation: Coral reef image analysis Computation: Atmospheric data analysis
Code size: 100,000+ lines Code size: ~300 lines Code size: 5000+ lines
Systems: Desktops, HPC systems Systems: Desktops, HPC systems w/ GPUs Systems: Desktops, sometimes w/ GPUs

CHAMPS Summary

What is it?
e 3D unstructured CFD framework for airplane simulation
e ~100+k lines of Chapel written since 2019

Who wrote it? :
« Professor Eric Laurendeau’s students + postdocs at Polytechnique Montreal I
S /%% POLYTECHNIQUE I
m -« MONTREAL

Why Chapel?
« performance and scalability competitive with MPI + C++
« students found it far more productive to use

« enabled them to compete with more established CFD centers

43
11

e
i

5 a2
4

I

: (images provided by the CHAMPS team and used with permission) I 36

CHAMPS: Excerpt from Eric’s CHIUW 2021 Keynote (transcript)

HPC Lessons From 30 Years of Practice in CFD Towards Aircraft Design and Analysis (June 4, 2021)

“To show you what Chapel did in our lab... [our previous framework] ended up 120k lines.
And my students said, ‘We can't handle it anymore. It’s too complex, we lost track
of everything.” And today, they went from 120k lines to 48k lines, so 3x less.

But the code is not 2D, it’s 3D. And it’s not structured, it’s unstructured, which is way
more complex. And it’s multi-physics... So, Pve got industrial-type code in 48k lines.”

“[Chapel] promotes the programming efficiency ... We ask students at the master’s A 1 Ty
degree to do stuff that would take 2 years and they do it in 3 months. So, if you o .

want to take a summer internship and you say, ‘program a new turbulence model,” well m fwi POLYT Ep HNIQUE
they manage. And before, it was impossible to do.” B MONTREAL

“So, for me, this is like the proof of the benefit of Chapel, plus the smiles | have on my students everyday in the lab
because they love Chapel as well. So that’s the key, that’s the takeaway.”

Talk available online: https://youtu.be/wD-a KyB8al?t=1904 (hyperlink jumps to the section quoted here)

: (images provided by the CHAMPS team and used with permission) I 37

https://youtu.be/wD-a_KyB8aI?t=1904
https://youtu.be/wD-a_KyB8aI?t=1904
https://youtu.be/wD-a_KyB8aI?t=1904

RapidQ Coral Biodiversity Summary

P
What is it? f r 1

» Measures coral reef diversity using high-res satellite image analysis ;
e ~230 lines of Chapel code written in late 2022 L J
N

Who wrote it? By P
I~y
o Scott Bachman, NCAR/[C]Worthy ‘NCAR [V] \'\ or Lh\'

—with Rebecca Green, Helen Fox, Coral Reef Alliance @ CORAL

REEF ALLIANCE

Why Chapel?
 easy transition from Matlab/Python, which were being used
e massive performance improvement:
previous ~10-day run finished in ~2 seconds using 360 cores
« enabled unexpected algorithmic improvements

Previous performance (serial, MATLAB): ~ 10 days

Current performance (360x cores, Chapel): ~ 2 seconds

Roughly 5 orders of magnitude improvement

From Scott Bachman’s CHIUW 2023 talk: https://youtu.be/IJhh9KLL2XO0

: | 38

https://youtu.be/lJhh9KLL2X0

Coral Reef Spectral Biodiversity: Productivity and Performance

Original algorithm: Habitat Diversity, O(M - N - P)

Previous performance (serial, MATLAB): ~ 10 days

Current performance (360x cores, Chapel): ~ 2 seconds

Roughly 5 orders of magnitude improvement

Improved algorithm: Spectral Diversity, O(M - N - P3)
o Chapel run was estimated to require ~4 weeks on 8-core desktop
« updated code to leverage GPUs
- required adding ~90 lines of code for a total of ~320
e ranin ~20 minutes on 64 nodes of Frontier
- 512 NVIDIA K20X Kepler GPUs

—

39

Applications of Chapel

CHAMPS: 3D Unstructured CFD
Laurendeau, Bourgault-Coté, Parenteau, Plante, et al.
Ecole Polytechnique Montréal

Lattice-Symmetries: a Quantum Many-Body Toolbox
Tom Westerhout
Radboud University

Chapel-based Hydrological Model Calibration
Marjan Asgari et al.
University of Guelph

—

apel Server

d
Socket

e E I E

Python3 Client

Arithmetic

Distributed
Object Store

Platform MPP, SMP, Cluster, Laptop, etc.

Arkouda: Interactive Data Science at Massive Scale

Mike Merrill, Bill Reus, et al.
U.S. DoD

Low-pass filter with LOWESS (intrinsically parallel)

100

80 .

60 -

RH (%) at Lake Mead

Desk dot chpl: Utilities for Environmental Eng.
Nelson Luis Dias
The Federal University of Parand, Brazil

Arachne Graph Analytics
Bader, Du, Rodriguez, et al.
New Jersey Institute of Technology

ChOp: Chapel-based Optimization
T. Carneiro, G. Helbecque, N. Melab, et al.
INRIA, IMEC, et al.

T

RapidQ: Mapping Coral Biodiversity

Rebecca Green, Helen Fox, Scott Bachman, et al.
The Coral Reef Alliance

Modeling Ocean Carbon Dioxide Removal
Scott Bachman Brandon Neth, et al.
[C]Worthy

[images provided by their respective teams and used with permission]

ChplUltra: Simulating Ultralight Dark Matter

Nikhil Padmanabhan, J. Luna Zagorac, et al.
Yale University et al.

[

ChapQG: Layered Quasigeostrophic CFD
lan Grooms and Scott Bachman
University of Colorado, Boulder et al.

FEATURES ENSEMBLES
EXPI.ORATIONUPARAMETEMATIONALE

CrayAl HyperParameter Optimization (HPO)
Ben Albrecht et al.
Cray Inc. / HPE

What is Arkouda?

Q: “What is Arkouda?”

Arkouda Client
(written in Python)

big_add_Sum st cizrs 16 e 5 e

O User writes Python code
ﬂ making familiar NumPy/Pandas calls

41

What is Arkouda?

Q: “What is Arkouda?”

Arkouda Client Arkouda Server
_(written in Python) (written in Chapel)

e big_add_Sum st Cwpore 16 mtes s s

o [1): iaport arkooda as ak

™

O User writes Python code
ﬂ making familiar NumPy/Pandas calls

A1l: “A scalable version of NumPy / Pandas for data scientists”
A2: “A framework for using supercomputers interactively from Python”

—

Performance and Productivity: Arkouda Argsort

HPE Cray EX =g
o Slingshot-11 network (200 Gb/s)
e 8192 compute nodes
o 256 TiB of 8-byte values
« ~8500 GiB/s (~31 seconds)

HPE Cray EX @@
o Slingshot-11 network (200 Gb/s)
« 896 compute nodes
o 28 TiB of 8-byte values
e ~1200 GiB/s (~24 seconds)

HPE Apollo =3¢
e HDR-100 InfiniBand network (100 Gb/s)
o 576 compute nodes
o 72 TiB of 8-byte values
o ~480 GiB/s (~150 seconds)

GiB/s

9000
8000
/7000
6000
5000
4000
3000
2000
1000

Arkouda Argsort Performance

= Slingshot-11 May 2023, 32 GiB/node —¢— - - - - - - - - - - _ _——"_
Slingshot-11 April 2023, 32 GiB/node —eo—
~ HDR-100 IB May 2021, 128 GiB/node —— ~~~_~— ~~ "~~~ 7 °

Implemented using ~100 lines of Chapel

—

For More Information on Arkouda

Arkouda website: htfps://arkouda-www.github.io/

github documentation gitter

Massive-scale data science,
from the comfort of your laptop

° Arkouda
Ready for supercomputers

NumPy
Industry standard

import arkouda as ak

ak.connect(" localhost', 5555)

ak. rando. randint (0, 24x32, 24x38)
b = ak. randon. randint (0, 2#k32, 24k38) #

¢ = ak.sort(c)
print(cle:10])

Tutorial Video [Chat on Gitter

Arkouda v2024.12.06 released!

The new release includes a refactored server making it easier to add new features, more Sparse Matrix fucntionality, new pdarray
manipulation functions, and bug fixes.

Read the release notes —+

Arkouda is...

Fast

Arkouda is powered by Chapel, a
programming language builtfrom the
ground up to support parallelism and
distributed computing. Make the most
out of every core and every node in
your system.

Powered by Chapel

Interactive Extensible
By distributing your data across One can expand on Arkouda’s
multiple nodes, Arkouda allows you to capabilties, thus enabling arbitrary
rapidly transform and wrangle datasets scalable computations to be performed
in real time that are simply intractable from Python.

for a laptop or deskiop.

Arkouda’s backend is in Chapel, an op parallel

language. Chapel is unique among mainstream languages as it puts parallelism and locality N
in the forefront, while not sacrificing productivity or portability. Chapel enables Arkouda to
perform well and scale on many different architectures, from multicore laptops to cloud CHAPEL

systems to world's fastest supercomputers.

To learn more about Chapel, check out its blog, presentations, tutorials and demos, and the

How Can | Learn Chapel? page.

Arkouda users are saying...

...solving problems in a matter of seconds, as opposed to days...

— Tess Hayes, Bytoa

11 . . . _—
[I’'m] working with more data than | ever thought possible as a data scientist!

— Jake Trookman, Erias

VA

https://arkouda-www.github.io/
https://arkouda-www.github.io/
https://arkouda-www.github.io/

“7 Questions for Chapel Users” Interview series

(. Chapel Language Blog

A gOOd Way TO Iea rn more abOUT Cha pel userS’ apps and experiences About Chapel Website Featured Series Tags Authors All Posts
. _ . _ . _ _ _ : 7 Questions for Eric Laurendeau: Computing
* https://chapel-lang.org/blog/series/7-questions-for-chapel-users/ @ Aircraft Acrodynamics in Chapel
: : Lo .
7 Questions for David Bader: Graph 7 Questions fo.r Scott Bachman: Analyzing “Cha pe | worked as intended: the
Analytics at Scale with Arkouda and Chapel Coral Resis with Chiapel code maintenance is very much

Posted on November 6, 2024.

reduced, and its readability is

“With the coral reef program, | was g ,
astonishing. This enables

able to speed it up by a factor of

Tags: User Experiences | Interviews | Graph Analytics = Arkouda

By: Engin Kayraklioglu, Brad Chamberlain

10,000. Some of that was under.graduare sTudenTs to
algorithmic, but Chapel had the gonrrlb yTe, somerfhmg almost)
7 Questions for Tiago Carneiro and features that allowed me to do it.” impossible fo think of Mf,hen using
= Guillaume Helbecque: Combinatorial very complex software.
: @ Optimization in Chapel
‘ Posted on July 30, 2025, | 7 Questions for Bill Reus: Interactive 7 Questions for Nelson Luis Dias:
Tagst| UserExperences || Intorviews Supercomputing with Chapel for Cybersecurity Atmospheric Turbulence in Chapel
By: Engin Kayraklioglu, Brad Chamberlain
“l was on the verge of resigning “Chapel allows me to use the
myself to learning MPIl when | first available CPU and GPU
7 Questions for Marjan Asgari: Optimizing encountered Chapel. After writing my power efficiently without
Hydrological Models with Chapel first Chapel program, | knew | had low-level programming of
:"Ste“:“ 5:‘“‘*”_‘“”5' 2‘72? o found something much more data synchronization,
: By?Engin Kayr:klioglu. Brad Chamberlain app ealmg' ” managing Threads, etc.”

https://chapel-lang.org/blog/series/7-questions-for-chapel-users/
https://chapel-lang.org/blog/series/7-questions-for-chapel-users/
https://chapel-lang.org/blog/series/7-questions-for-chapel-users/
https://chapel-lang.org/blog/series/7-questions-for-chapel-users/
https://chapel-lang.org/blog/series/7-questions-for-chapel-users/
https://chapel-lang.org/blog/series/7-questions-for-chapel-users/
https://chapel-lang.org/blog/series/7-questions-for-chapel-users/
https://chapel-lang.org/blog/series/7-questions-for-chapel-users/
https://chapel-lang.org/blog/series/7-questions-for-chapel-users/
https://chapel-lang.org/blog/series/7-questions-for-chapel-users/
https://chapel-lang.org/blog/series/7-questions-for-chapel-users/
https://chapel-lang.org/blog/series/7-questions-for-chapel-users/

Summary

Chapel is unique among programming languages
« supports first-class concepts for parallelism and locality L e

s . SHMEM C
DstInds = blockDist.createDomain (0. .<m) ; onvey

« ports and scales from laptops to supercomputers S— I B

e supports clean, concise code relative to conventional approaches ... «. . i siooer, e

d = Src[i];

N 2 2)
512 1024 2048 4096

e supports GPUs in a vendor-neutral manner

Chapel is being used for productive parallel computing at all scales
e users are reaping its benefits in practical, cutting-edge applications

« applicable to domains as diverse as physical simulations and data science .
 Arkouda is a notable case, supporting interactive HPC

What’s Cooking? What’s Next?

e Chapel has been accepted into the Linux Foundation’s High Performance Software Foundation (HPSF)

« moves governance of the project from HPE to the community [H PSF

« alogical next step in our open-source journey | m— mn o PerroRMANCE
m SOFTWARE FOUNDATION

e A renewed focus on sparse matrix/array computations [Ercs

° e.g., Sparse ma-l-rix_ma-l-rix mul-l-iplica-l-ion . -:é;:;-ﬁ;;;é-z-;.;-‘\i:: = =mam --.---. T -----.--.---- amms mmma ------- ------ ¥ ' : --.---.-- .

e Dyno compiler rework: Modernizing the Chapel compiler e oo
[
o faster

Current
area of
focus

« better error messages | -

« support for programmer coding tools

Messaging Interface
Message Registration

e Honeycomb: A next-generation evolution of Arkouda
o multi-lingual, including Al-based natural language interactions
« user-extensible to support arbitrary computations

— | s

Ways to interact with or follow the Chapel Community

“Live” (Virtual) Community Events

e Project Meetings, weekly

e Deep Dive / Demo Sessions, weekly tfimeslot

e ChapelCon (formerly CHIUW), annually

Social Media

FOLLOW US
BlueSky
Facebook
LinkedIn
Mastodon
Reddit

X (Twitter)
YouTube

UADBEHIK

—

Discussion Forums

GET IN TOUCH
@ Discord

D Discourse
[_] Email

O GitHub Issues

3 citter

Stack Overflow

Electronic Broadcasts

e Chapel Blog, typically ~2 articles per month

e Community Newsletter, quarterly
e Announcement Emails, around big events

Ways to Use Chapel

GET STARTED

gl Attempt This Online
@ Docker

ES E4S

Q GitHub Releases

"0 Homebrew

@ Spack

(from the footer of chapel-lang.org)

49

https://github.com/chapel-lang/chapel/discussions/categories/weekly-meeting-topics?discussions_q=
https://github.com/chapel-lang/chapel/discussions/categories/weekly-meeting-topics?discussions_q=
https://github.com/chapel-lang/chapel/discussions/27247
https://github.com/chapel-lang/chapel/discussions/27247
https://chapel-lang.org/chapelcon25/
https://chapel-lang.org/chapelcon25/
https://chapel-lang.org/blog/
https://chapel-lang.org/blog/
https://chapel.discourse.group/c/newsletters/24
https://chapel.discourse.group/c/newsletters/24
https://chapel.discourse.group/c/announcements/8
https://chapel.discourse.group/c/announcements/8
https://chapel-lang.org/
https://chapel-lang.org/
https://chapel-lang.org/

Chapel Website

The Chapel Programming Language

Productive parallel computing at every scale.

| @ Hello World writeln("Hello, world!");

// create a parallel task per processor core

coforall tid in 0..<here.maxTaskPar do
writeln("Hello from task ", tid);

Q Distributed Hello World

Q Parallel File 10

// print these 1,000 messages in parallel using all cores
forall i in 1..1000 do

7S
(E;AEEI. DOWNLOAD DOCS ~ LEARN RESOURCES ~ COMMUNITY BLOG
=

ChapelCon ‘25

ChapelCon '25 CFP Released!
on June 26, 2025

ChapelCon 25 is coming this fall. Check out the webpage and the newly released CFP today.

CONTINUE READING

O 1D Heat Diffusion writeln("Hello from iteration ", i);
O GPU Kernel
TRY CHAPEL GET CHAPEL LEARN C

PRODUCTIVE PARALLEL

Concise and readable without
compromising speed or expressive
power. Consistent concepts for parallel

computing make it easier to learn.

Built from the ground up to implement
parallel algorithms at your desired level of
abstraction. No need to trade low-level
control for convenience.

Chapel is a comp
generating efficient]
meets or beats the pe
languaj

SCALABLE GPU-ENABLED

Chapel enables application performance
at any scale, from laptops to clusters, the
cloud, and the largest supercomputers in
the world.

Chapel supports vendor-neutral GPU Entirely open-source u:
programming with the same language license. Built by a grf
features used for distributed execution. developers)]
No boilerplate. No cryptic APls.

chapel-lang.org

USERS LOVE IT

10 Myths About Scalable Parallel Progr Languages (Redux), Part 3: New
h "

vs. L Ex

By Brad Chamberlain on June 25, 2025

A third archival post from the 2012 IEEE TCSC blog series with a current reflection on it

CONTINUE READING

The use of Chapel worked as intended: the code maintenance is very
1t reduced, and its readability is astonishing. This enables undergraduat
students to contribute to its development, something almost impossilf
think of when using very complex software.

- Eric Laurendeau, Professor, Polytd uJQc [5

Announcing Chapel 2.5!

By Brad Chamberlain, Michael Ferguson, Lydia Duncan, Jade Abraham, Ben Harshbarger, Daniel Fedorin on June
12,2025

Highlights from the June 2025 release of Chapel 2.5

[CONTINUE READING

A lot of the nitty gritty is hidden from you until you need to know it. ...

like the complexity grows as you get more comfortable - rather than
with everything at once.

- Tess Hayes] =

Paper and Presentation Refresh
on June 10, 2025

We've just completed a long-overdue refresh of Chapel-related papers and presentations from the past year or so

CONTINUE READING

CHAPEL IN PRODUCTION

AMPS

World-class multiphysics simulation

Written by students and post-docs in Eric Laurendeau's lab at Polytechnique Montreal.

its C/OpenMP using far fewer lines of code. Dramatically
accelerated the progress of grad students while also supporting contributions from
undergrads for the first time.

| L s —)
£

(Chapel Doep Dive & Demo meoting

Public Weekly Deep-Dive / Demo Meeting Launched
on May 20, 2025

In additi

demos

[onal FOLLOW US GET IN TOUCH GET STARTED

CONT
¢ Bluesky @ Dpiscord ﬂ Attempt This Online
0 Facebook D Discourse & Docker
[Linkedin] Email ES E4s
@ Mastodon ©) GitHub Issues ©) GitHub Releases
=

@ Reddit M citter %) Homebrew
X X (Twitter) 2 Stack Overflow @ spack
D YouTube

https://chapel-lang.org/
https://chapel-lang.org/
https://chapel-lang.org/

Thank you

https://chapel-lang.org
@ChapelLanguage

