
FNWI Colloquium, Radboud University
October 16, 2025

Brad Chamberlain

Productive Parallel Programming
from the Desktop to the Supercomputer
with Chapel

Q: What makes Chapel unique?

2

A: It’s one of the few programming
languages designed for scalable parallel
computing from the outset.

Parallel Computing: Using the processors and memories of multiple compute resources
• Why? To run a program…

…faster than we could otherwise
…and/or using larger problem sizes

Scalable Parallel Computing: As more processors and memory are added, benefits increase

HPC = High Performance Computing

3

What is [Scalable] Parallel Computing?

Compute
Node 0

Compute
Node 1

Compute
Node 2

Compute
Node 3

Processor Core

Memory

Parallel computing, historically:
• supercomputers
• commodity clusters

4

Parallel Computing has become Ubiquitous

Additional, ubiquitous parallelism today:
• multicore processors
• cloud computing
• GPUs

Compute
Node 0

Compute
Node 1

Compute
Node 2

Compute
Node 3

Processor Core

Memory

Parallel Computing has become Ubiquitous

Compute
Node 0

Compute
Node 1

Compute
Node 2

Compute
Node 3

5
GPU Core

Processor Core

Memory

Parallel computing, historically:
• supercomputers
• commodity clusters

Additional, ubiquitous parallelism today:
• multicore processors
• cloud computing
• GPUs

Highlights from HIPS 2025 Keynote:
“Reflections on 30 Years of HPC Programming”

6

Top 5 systems in the Top500, June 1995:
– Cores: 80–3680 cores
– Rmax: ~98.9–170 GFlop/s
– Systems: Fujitsu, Intel Paragon XP/S, Cray T3D
– Networks: crossbar, mesh, 3D torus

Top 5 systems in the Top 500, June 2025:
– Cores: 2,073,600–11,039,616 (~563x–138,000x)
– Rmax: ~477.9–1742.0 PFlop/s (~2,810,000x–17,600,000x)
– Systems: HPE Cray EX, Eviden Bullsequana, Microsoft Azure
– Networks: Slingshot-11, InfiniBand NDR

7

30 Years Ago vs. Today: Top HPC Systems

And complex!
• commodity vector processors
• multicore processors
• multi-socket compute nodes
• NUMA compute node architectures
• high-radix, low-diameter interconnects
• GPU computing

Top 5 systems in the Top500, June 1995:
– Cores: 80–3680 cores
– Rmax: ~98.9–170 GFlop/s
– Systems: Fujitsu, Intel Paragon XP/S, Cray T3D
– Networks: crossbar, mesh, 3D torus

Top 5 systems in the Top 500, June 2025:
– Cores: 2,073,600–11,039,616 (~563x–138,000x)
– Rmax: ~477.9–1742.0 PFlop/s (~2,810,000x–17,600,000x)
– Systems: HPE Cray EX, Eviden Bullsequana, Microsoft Azure
– Networks: Slingshot-11, InfiniBand NDR

8

30 Years Ago vs. Today: Top HPC Systems

And complex!
• commodity vector processors
• multicore processors
• multi-socket compute nodes
• NUMA compute node architectures
• high-radix, low-diameter interconnects
• GPU computing

(Often in ways that hurt programmability)

HPC HW has
become far more

capable…

Top 5 systems in the Top500, June 1995:
– Cores: 80–3680 cores
– Rmax: ~98.9–170 GFlop/s
– Systems: Fujitsu, Intel Paragon XP/S, Cray T3D
– Networks: crossbar, mesh, 3D torus

Broadly-adopted HPC programming notations:
– Languages: C, C++, Fortran
– Inter-node: MPI, SHMEM
– Intra-node: vendor-specific pragmas & intrinsics

– OpenMP on the horizon: 1997

– Scripting: Perl, [[t]c]sh

Top 5 systems in the Top 500, June 2025:
– Cores: 2,073,600–11,039,616 (~563x–138,000x)
– Rmax: ~477.9–1742.0 PFlop/s (~2,810,000x–17,600,000x)
– Systems: HPE Cray EX, Eviden Bullsequana, Microsoft Azure
– Networks: Slingshot-11, InfiniBand NDR

Broadly-adopted HPC programming notations:
– Languages: C, C++, Fortran
– Inter-node: MPI, SHMEM
– Intra-node: OpenMP, vendor-specific pragmas & intrinsics
– GPUs: CUDA, HIP, SYCL, Kokkos, OpenMP, OpenACC, …
– Scripting: Python, bash

9

30 Years Ago vs. Today: Top HPC Systems and Programming Notations

HPC HW has
become far more

capable…

Top 5 systems in the Top500, June 1995:
– Cores: 80–3680 cores
– Rmax: ~98.9–170 GFlop/s
– Systems: Fujitsu, Intel Paragon XP/S, Cray T3D
– Networks: crossbar, mesh, 3D torus

Broadly-adopted HPC programming notations:
– Languages: C, C++, Fortran
– Inter-node: MPI, SHMEM
– Intra-node: vendor-specific pragmas & intrinsics

– OpenMP on the horizon: 1997

– Scripting: Perl, [[t]c]sh

Top 5 systems in the Top 500, June 2025:
– Cores: 2,073,600–11,039,616 (~563x–138,000x)
– Rmax: ~477.9–1742.0 PFlop/s (~2,810,000x–17,600,000x)
– Systems: HPE Cray EX, Eviden Bullsequana, Microsoft Azure
– Networks: Slingshot-11, InfiniBand NDR

Broadly-adopted HPC programming notations:
– Languages: C, C++, Fortran
– Inter-node: MPI, SHMEM
– Intra-node: OpenMP, vendor-specific pragmas & intrinsics
– GPUs: CUDA, HIP, SYCL, Kokkos, OpenMP, OpenACC, …
– Scripting: Python, bash

10

30 Years Ago vs. Today: Top HPC Systems and Programming Notations

HPC HW has
become far more

capable…

…while HPC notations have
 largely stayed the same,
modulo GPU computing

• Consider all the currently relevant languages that emerged or rose to prominence during those 30 years:
• Java (~1995)
• Javascript (~1995)
• Python (~1989; v2.0 ~2000)
• C# (~2000)
• Go (~2009)
• Rust (~2012)
• Julia (~2012)
• Swift (~2014)

Such languages have become favorite day-to-day languages for many users across multiple disciplines

Why can’t HPC have nice things too? (Or maybe we can…?)

11

Meanwhile, in Mainstream Computing…

Recurring themes: productivity, safety, portability, performance

• Background & Motivation
• Introduction to Chapel
• Chapel Applications
• Wrap-up

12

Outline

Chapel: A modern parallel programming language
• Portable & scalable
• Open-source & collaborative

Goals:
• Support general parallel programming
• Make parallel programming at scale far more productive

What is Chapel?

13

Imagine a programming language for parallel computing that is as…
…readable and writeable as Python

…yet also as…
…fast as Fortran / C / C++
…scalable as MPI / SHMEM
…GPU-ready as CUDA / HIP / OpenMP / Kokkos / OpenCL / OpenACC / …
…portable as C
…fun as [your favorite programming language]

This is our motivation for Chapel

Productive Parallel Programming: One Definition

14

15

HPCC Stream Triad and RA in C + MPI + OpenMP vs. Chapel

72

HPCC RA: MPI KERNEL

/* Perform updates to main table. The scalar equivalent is:
*
* for (i=0; i<NUPDATE; i++) {
* Ran = (Ran << 1) ^ (((s64Int) Ran < 0) ? POLY : 0);
* Table[Ran & (TABSIZE-1)] ^= Ran;
* }
*/

MPI_Irecv(&LocalRecvBuffer, localBufferSize, tparams.dtype64,
MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &inreq);

while (i < SendCnt) {
/* receive messages */
do {
MPI_Test(&inreq, &have_done, &status);
if (have_done) {
if (status.MPI_TAG == UPDATE_TAG) {
MPI_Get_count(&status, tparams.dtype64, &recvUpdates);
bufferBase = 0;
for (j=0; j < recvUpdates; j ++) {
inmsg = LocalRecvBuffer[bufferBase+j];
LocalOffset = (inmsg & (tparams.TableSize - 1)) –

tparams.GlobalStartMyProc;
HPCC_Table[LocalOffset] ^= inmsg;

}
} else if (status.MPI_TAG == FINISHED_TAG) {
NumberReceiving--;

} else
MPI_Abort(MPI_COMM_WORLD, -1);

MPI_Irecv(&LocalRecvBuffer, localBufferSize, tparams.dtype64,
MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &inreq);

}
} while (have_done && NumberReceiving > 0);
if (pendingUpdates < maxPendingUpdates) {
Ran = (Ran << 1) ^ ((s64Int) Ran < ZERO64B ? POLY : ZERO64B);
GlobalOffset = Ran & (tparams.TableSize-1);
if (GlobalOffset < tparams.Top)
WhichPe = (GlobalOffset / (tparams.MinLocalTableSize + 1));

else
WhichPe = ((GlobalOffset - tparams.Remainder) /

tparams.MinLocalTableSize);
if (WhichPe == tparams.MyProc) {
LocalOffset = (Ran & (tparams.TableSize - 1)) –

tparams.GlobalStartMyProc;
HPCC_Table[LocalOffset] ^= Ran;

} else {
HPCC_InsertUpdate(Ran, WhichPe, Buckets);
pendingUpdates++;

}
i++;

}
else {
MPI_Test(&outreq, &have_done, MPI_STATUS_IGNORE);
if (have_done) {
outreq = MPI_REQUEST_NULL;
pe = HPCC_GetUpdates(Buckets, LocalSendBuffer, localBufferSize,

&peUpdates);
MPI_Isend(&LocalSendBuffer, peUpdates, tparams.dtype64, (int)pe,

UPDATE_TAG, MPI_COMM_WORLD, &outreq);
pendingUpdates -= peUpdates;

}
}

}
/* send remaining updates in buckets */
while (pendingUpdates > 0) {

/* receive messages */
do {
MPI_Test(&inreq, &have_done, &status);
if (have_done) {
if (status.MPI_TAG == UPDATE_TAG) {
MPI_Get_count(&status, tparams.dtype64, &recvUpdates);
bufferBase = 0;
for (j=0; j < recvUpdates; j ++) {
inmsg = LocalRecvBuffer[bufferBase+j];
LocalOffset = (inmsg & (tparams.TableSize - 1)) –

tparams.GlobalStartMyProc;
HPCC_Table[LocalOffset] ^= inmsg;

}
} else if (status.MPI_TAG == FINISHED_TAG) {

/* we got a done message. Thanks for playing... */
NumberReceiving--;

} else {
MPI_Abort(MPI_COMM_WORLD, -1);

}
MPI_Irecv(&LocalRecvBuffer, localBufferSize, tparams.dtype64,

MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &inreq);
}

} while (have_done && NumberReceiving > 0);

MPI_Test(&outreq, &have_done, MPI_STATUS_IGNORE);
if (have_done) {
outreq = MPI_REQUEST_NULL;
pe = HPCC_GetUpdates(Buckets, LocalSendBuffer, localBufferSize,

&peUpdates);
MPI_Isend(&LocalSendBuffer, peUpdates, tparams.dtype64, (int)pe,

UPDATE_TAG, MPI_COMM_WORLD, &outreq);
pendingUpdates -= peUpdates;

}
}
/* send our done messages */
for (proc_count = 0 ; proc_count < tparams.NumProcs ; ++proc_count) {
if (proc_count == tparams.MyProc) { tparams.finish_req[tparams.MyProc] =

MPI_REQUEST_NULL; continue; }
/* send garbage - who cares, no one will look at it */
MPI_Isend(&Ran, 0, tparams.dtype64, proc_count, FINISHED_TAG,

MPI_COMM_WORLD, tparams.finish_req + proc_count);
}
/* Finish everyone else up... */
while (NumberReceiving > 0) {
MPI_Wait(&inreq, &status);
if (status.MPI_TAG == UPDATE_TAG) {
MPI_Get_count(&status, tparams.dtype64, &recvUpdates);
bufferBase = 0;
for (j=0; j < recvUpdates; j ++) {
inmsg = LocalRecvBuffer[bufferBase+j];
LocalOffset = (inmsg & (tparams.TableSize - 1)) –

tparams.GlobalStartMyProc;
HPCC_Table[LocalOffset] ^= inmsg;

}
} else if (status.MPI_TAG == FINISHED_TAG) {

/* we got a done message. Thanks for playing... */
NumberReceiving--;

} else {
MPI_Abort(MPI_COMM_WORLD, -1);

}
MPI_Irecv(&LocalRecvBuffer, localBufferSize, tparams.dtype64,

MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &inreq);
}

MPI_Waitall(tparams.NumProcs, tparams.finish_req, tparams.finish_statuses);

#include <hpcc.h>
#ifdef _OPENMP
#include <omp.h>
#endif

static int VectorSize;
static double *a, *b, *c;

int HPCC_StarStream(HPCC_Params *params) {
int myRank, commSize;
int rv, errCount;
MPI_Comm comm = MPI_COMM_WORLD;

MPI_Comm_size(comm, &commSize);
MPI_Comm_rank(comm, &myRank);

rv = HPCC_Stream(params, 0 == myRank);
MPI_Reduce(&rv, &errCount, 1, MPI_INT, MPI_SUM, 0, comm);

return errCount;
}

int HPCC_Stream(HPCC_Params *params, int doIO) {
register int j;
double scalar;

VectorSize = HPCC_LocalVectorSize(params, 3, sizeof(double), 0);

a = HPCC_XMALLOC(double, VectorSize);
b = HPCC_XMALLOC(double, VectorSize);
c = HPCC_XMALLOC(double, VectorSize);

if (!a || !b || !c) {
if (c) HPCC_free(c);
if (b) HPCC_free(b);
if (a) HPCC_free(a);
if (doIO) {
fprintf(outFile, "Failed to allocate memory (%d).\n", VectorSize);
fclose(outFile);

}
return 1;

}

#ifdef _OPENMP
#pragma omp parallel for
#endif
for (j=0; j<VectorSize; j++) {
b[j] = 2.0;
c[j] = 1.0;

}
scalar = 3.0;

#ifdef _OPENMP
#pragma omp parallel for
#endif
for (j=0; j<VectorSize; j++)
a[j] = b[j]+scalar*c[j];

HPCC_free(c);
HPCC_free(b);
HPCC_free(a);

return 0;
}

63

STREAM TRIAD: C + MPI + OPENMP

0
5000
10000
15000
20000
25000
30000

16 32 64 128 256

G
B/
s

Locales (x 36 cores / locale)

MPI+OpenMP
Chapel EP

Chapel Global

STREAM Performance (GB/s)
use BlockDist;

config const n = 1_000_000,
 alpha = 0.01;
const Dom = blockDist.createDomain({1..n});
var A, B, C: [Dom] real;

B = 2.0;
C = 1.0;

A = B + alpha * C;

…
forall (_, r) in zip(Updates, RAStream()) do
 T[r & indexMask].xor(r);
…

1. parallelism: What computational tasks should run simultaneously?
2. locality: Where should tasks run? Where should data be allocated?

Key Concerns for Scalable Parallel Computing

Compute
Node 0

Compute
Node 1

Compute
Node 2

Compute
Node 3

16

Processor Core

Memory

• In Chapel, a locale refers to a compute resource with…
• processors, so it can run tasks
• memory, so it can store variables

• For now, think of each compute node as being a locale

17

Locales in Chapel

Processor Core

Memory

Compute
Node 0

Compute
Node 1

Compute
Node 2

Compute
Node 3

• Two built-in variables for referring to locales within Chapel:
•Locales: An array of locale values representing the system resources on which the program is running
•here: The locale on which the current task is executing

Built-In Locale Variables in Chapel

Locale 0 Locale 1 Locale 2 Locale 3

18

Processor Core

Memory

Localeshere

“Low-level” parallelism and locality in Chapel

19

Basic Features for Locality

writeln("Hello from locale ", here.id);

var A: [1..2, 1..2] real;

for loc in Locales {
 on loc {
 var B = A;
 }
}

on.chpl

20

All Chapel programs begin running
as a single task on locale 0

Variables are stored using the
memory local to the current task

on-clauses move tasks
to target locales

remote variables can be
 accessed directlyThis is a distributed, yet serial, computation

This loop will serially iterate over
the program’s locales

Locale 0 Locale 1 Locale 2 Locale 3

Mixing Locality with Task Parallelism

writeln("Hello from locale ", here.id);

var A: [1..2, 1..2] real;

coforall loc in Locales {
 on loc {
 var B = A;
 }
}

coforall.chpl

21

The coforall loop creates
a parallel task per iteration

(in this case, a task per locale)

Locale 0 Locale 1 Locale 2 Locale 3

This is a distributed parallel computation

Chapel pre-dates all of the architectural changes mentioned previously, apart from commodity vectors

Yet it supports all of these HW features
–Using essentially the same language features as ~20 years ago
–How? By expressing parallelism and locality independently from HW mechanisms

22

Chapel’s Adaptability

• commodity vector processors
• multicore processors
• multi-socket compute nodes
• NUMA compute node architectures
• high-radix, low-diameter interconnects
• GPU computing

• In Chapel, we represent GPUs as sub-locales
• Each top-level locale may have an array of locales called ‘gpus’
• We can then target them using Chapel’s traditional features for parallelism + locality

on here.gpus[0] { … } coforall gpu in here.gpus do on gpu { … }

Representing GPUs in Chapel

Locale 0 Locale 1 Locale 2 Locale 3

23

CPU Core

Memory

GPU Core

var A: [1..n, 1..n] real;
coforall l in Locales do on l {
 cobegin {
 {
 var B: [1..n, 1..n] real;
 B = 2;
 A = B;
 }
 coforall g in here.gpus do on g {
 var B: [1..n, 1..n] real;
 B = 2;
 A = B;
 }
 }
}
writeln(A);

24

Targeting CPUs and GPUs using Parallelism and Locality

GPU Core MemoryCPU Core

Locale 0

GPU 0

GPU 1

B

B

Locale 1

GPU 0

GPU 1

B

B

outer coforall across Locales

inner
coforall
across
GPUs

parallel statements
with cobegin

B
B

A

High-level parallelism and locality in Chapel

25

Data Parallelism

var A: [1..2, 1..2] real;

forall a in A {
 a += 1;
}

forall.chpl

26

Locale 0 Locale 1 Locale 2 Locale 3

This results in a local parallel computation

The forall loop’s iterand specifies
how parallelism is implemented

A ‘forall’ over a local array,
like ‘A’ here, creates a task per core,

dividing the work evenly

Data Parallelism using Domains

const D = {1..2, 1..2};
var A: [D] real;

forall a in A {
 a += 1;
}

forall-dom.chpl

27

This is equivalent to the previous slide

A domain is a named index set that
can be used to declare arrays…

Locale 0 Locale 1 Locale 2 Locale 3

Data Parallelism using Domains

const D = {1..2, 1..2};
var A: [D] real;

forall i in D {
A[i] += 1;

}

forall-dom-loop.chpl

28

This is also equivalent to the previous slides

A domain is a named index set that
can be used to declare arrays…

…and to drive loops
(using the same parallelization

as local arrays)

Locale 0 Locale 1 Locale 2 Locale 3

Data Parallelism using Distributed Domains

use BlockDist;
const D = blockDist.createDomain({1..2, 1..2});
var A: [D] real;

forall i in D {
 A[i] += 1;
}

forall-dist-dom.chpl

29

Distributed domains distribute their
indices—and their arrays’

elements—across the target locales

This results in a distributed parallel computation

Locale 0 Locale 1 Locale 2 Locale 3

Forall loops over distributed
domains use all the cores on all

locales owning a subdomain

Data Parallelism using Distributed Arrays

use BlockDist;
const D = blockDist.createDomain({1..2, 1..2});
var A: [D] real;

forall a in A {
a += 1;

}

forall-dist-arr.chpl

30

This is equivalent to the previous slide

Locale 0 Locale 1 Locale 2 Locale 3

Forall loops over distributed arrays
act similarly

Data Parallelism using Promotion over a Distributed Array

use BlockDist;
const D = blockDist.createDomain({1..2, 1..2});
var A: [D] real;

A += 1;

promotion-dist.chpl

31

This is also equivalent to the last few slides

Locale 0 Locale 1 Locale 2 Locale 3

Scalar functions and operators
(like += here)

can be called with array arguments

This has just been a small taste of Chapel… there’s much more
• atomic and sync types for synchronizing between tasks
• additional ways to create tasks and parallel loops
• object-oriented features
• iterators
• generics, polymorphism, overloading
• default arguments, keyword-based argument passing
• namespacing
• interoperability
• etc.

32

And much, much more…

Chapel Applications

Applications of Chapel

34[images provided by their respective teams and used with permission]

CHAMPS: 3D Unstructured CFD
Laurendeau, Bourgault-Côté, Parenteau, Plante, et al.

École Polytechnique Montréal

ChplUltra: Simulating Ultralight Dark Matter
Nikhil Padmanabhan, J. Luna Zagorac, et al.

Yale University et al.

Arkouda: Interactive Data Science at Massive Scale
Mike Merrill, Bill Reus, et al.

U.S. DoD

ChOp: Chapel-based Optimization
T. Carneiro, G. Helbecque, N. Melab, et al.

INRIA, IMEC, et al.

Chapel-based Hydrological Model Calibration
Marjan Asgari et al.

University of Guelph

Arachne Graph Analytics
Bader, Du, Rodriguez, et al.

New Jersey Institute of Technology

Modeling Ocean Carbon Dioxide Removal
Scott Bachman Brandon Neth, et al.

[C]Worthy

Lattice-Symmetries: a Quantum Many-Body Toolbox
Tom Westerhout

Radboud University

ChapQG: Layered Quasigeostrophic CFD
Ian Grooms and Scott Bachman

University of Colorado, Boulder et al.

Desk dot chpl: Utilities for Environmental Eng.
Nelson Luis Dias

The Federal University of Paraná, Brazil

RapidQ: Mapping Coral Biodiversity
Rebecca Green, Helen Fox, Scott Bachman, et al.

The Coral Reef Alliance

CrayAI HyperParameter Optimization (HPO)
Ben Albrecht et al.

Cray Inc. / HPE

35

Diversity in Application Scales (both in terms of code and systems)

Computation: Aircraft simulation / CFD
Code size: 100,000+ lines
Systems: Desktops, HPC systems

Computation: Coral reef image analysis
Code size: ~300 lines
Systems: Desktops, HPC systems w/ GPUs

Computation: Atmospheric data analysis
Code size: 5000+ lines
Systems: Desktops, sometimes w/ GPUs

What is it?
• 3D unstructured CFD framework for airplane simulation
• ~100+k lines of Chapel written since 2019

Who wrote it?
• Professor Éric Laurendeau’s students + postdocs at Polytechnique Montreal
•

Why Chapel?
• performance and scalability competitive with MPI + C++
• students found it far more productive to use
• enabled them to compete with more established CFD centers

CHAMPS Summary

(images provided by the CHAMPS team and used with permission) 36

HPC Lessons From 30 Years of Practice in CFD Towards Aircraft Design and Analysis (June 4, 2021)

“To show you what Chapel did in our lab... [our previous framework] ended up 120k lines.
And my students said, ‘We can't handle it anymore. It’s too complex, we lost track
of everything.’ And today, they went from 120k lines to 48k lines, so 3x less.

But the code is not 2D, it’s 3D. And it’s not structured, it’s unstructured, which is way
more complex. And it’s multi-physics… So, I’ve got industrial-type code in 48k lines.”

“[Chapel] promotes the programming efficiency … We ask students at the master’s
degree to do stuff that would take 2 years and they do it in 3 months. So, if you
want to take a summer internship and you say, ‘program a new turbulence model,’ well
they manage. And before, it was impossible to do.”

“So, for me, this is like the proof of the benefit of Chapel, plus the smiles I have on my students everyday in the lab
because they love Chapel as well. So that’s the key, that’s the takeaway.”

Talk available online: https://youtu.be/wD-a_KyB8aI?t=1904 (hyperlink jumps to the section quoted here)

CHAMPS: Excerpt from Éric’s CHIUW 2021 Keynote (transcript)

37(images provided by the CHAMPS team and used with permission)

https://youtu.be/wD-a_KyB8aI?t=1904
https://youtu.be/wD-a_KyB8aI?t=1904
https://youtu.be/wD-a_KyB8aI?t=1904

What is it?
• Measures coral reef diversity using high-res satellite image analysis
• ~230 lines of Chapel code written in late 2022

Who wrote it?
• Scott Bachman, NCAR/[C]Worthy

– with Rebecca Green, Helen Fox, Coral Reef Alliance

Why Chapel?
• easy transition from Matlab/Python, which were being used
• massive performance improvement:

previous ~10-day run finished in ~2 seconds using 360 cores

• enabled unexpected algorithmic improvements

RapidQ Coral Biodiversity Summary

38

From Scott Bachman’s CHIUW 2023 talk: https://youtu.be/lJhh9KLL2X0

https://youtu.be/lJhh9KLL2X0

Original algorithm: Habitat Diversity, O(M · N · P)

Improved algorithm: Spectral Diversity, O(M · N · P3)
• Chapel run was estimated to require ~4 weeks on 8-core desktop
• updated code to leverage GPUs

– required adding ~90 lines of code for a total of ~320

• ran in ~20 minutes on 64 nodes of Frontier
– 512 NVIDIA K20X Kepler GPUs

39

Coral Reef Spectral Biodiversity: Productivity and Performance

Applications of Chapel

40[images provided by their respective teams and used with permission]

CHAMPS: 3D Unstructured CFD
Laurendeau, Bourgault-Côté, Parenteau, Plante, et al.

École Polytechnique Montréal

ChplUltra: Simulating Ultralight Dark Matter
Nikhil Padmanabhan, J. Luna Zagorac, et al.

Yale University et al.

Arkouda: Interactive Data Science at Massive Scale
Mike Merrill, Bill Reus, et al.

U.S. DoD

ChOp: Chapel-based Optimization
T. Carneiro, G. Helbecque, N. Melab, et al.

INRIA, IMEC, et al.

Chapel-based Hydrological Model Calibration
Marjan Asgari et al.

University of Guelph

Arachne Graph Analytics
Bader, Du, Rodriguez, et al.

New Jersey Institute of Technology

Modeling Ocean Carbon Dioxide Removal
Scott Bachman Brandon Neth, et al.

[C]Worthy

Lattice-Symmetries: a Quantum Many-Body Toolbox
Tom Westerhout

Radboud University

ChapQG: Layered Quasigeostrophic CFD
Ian Grooms and Scott Bachman

University of Colorado, Boulder et al.

Desk dot chpl: Utilities for Environmental Eng.
Nelson Luis Dias

The Federal University of Paraná, Brazil

RapidQ: Mapping Coral Biodiversity
Rebecca Green, Helen Fox, Scott Bachman, et al.

The Coral Reef Alliance

CrayAI HyperParameter Optimization (HPO)
Ben Albrecht et al.

Cray Inc. / HPE

Q: “What is Arkouda?”

41

What is Arkouda?

Q: “What is Arkouda?”

A1: “A scalable version of NumPy / Pandas for data scientists”
A2: “A framework for using supercomputers interactively from Python”

42

What is Arkouda?

0
50
100
150
200
250
300
350
400
450
500

128 256 512 576
G
iB
/s

Nodes

HDR-100 IB May 2021, 128 GiB/node

Arkouda Argsort Performance

0
200
400
600
800
1000
1200

128 256 512 896
G
iB
/s

Nodes

Slingshot-11 April 2023, 32 GiB/node
HDR-100 IB May 2021, 128 GiB/node

Arkouda Argsort Performance

HPE Cray EX
• Slingshot-11 network (200 Gb/s)
• 8192 compute nodes
• 256 TiB of 8-byte values
• ~8500 GiB/s (~31 seconds)

HPE Cray EX
• Slingshot-11 network (200 Gb/s)
• 896 compute nodes
• 28 TiB of 8-byte values
• ~1200 GiB/s (~24 seconds)

HPE Apollo
• HDR-100 InfiniBand network (100 Gb/s)
• 576 compute nodes
• 72 TiB of 8-byte values
• ~480 GiB/s (~150 seconds)

Implemented using ~100 lines of Chapel

Performance and Productivity: Arkouda Argsort

43

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

1024 2048 4096 8192
G
iB
/s

Nodes

Slingshot-11 May 2023, 32 GiB/node
Slingshot-11 April 2023, 32 GiB/node
HDR-100 IB May 2021, 128 GiB/node

Arkouda Argsort Performance

be
tt

er

Arkouda website: https://arkouda-www.github.io/

For More Information on Arkouda

44

https://arkouda-www.github.io/
https://arkouda-www.github.io/
https://arkouda-www.github.io/

A good way to learn more about Chapel users’ apps and experiences
• https://chapel-lang.org/blog/series/7-questions-for-chapel-users/

45

“7 Questions for Chapel Users” Interview series

“Chapel allows me to use the
available CPU and GPU
power efficiently without
low-level programming of
data synchronization,
managing threads, etc.”

“With the coral reef program, I was
able to speed it up by a factor of
10,000. Some of that was
algorithmic, but Chapel had the
features that allowed me to do it.”

“Chapel worked as intended: the
code maintenance is very much
reduced, and its readability is
astonishing. This enables
undergraduate students to
contribute, something almost
impossible to think of when using
very complex software.”

“I was on the verge of resigning
myself to learning MPI when I first
encountered Chapel. After writing my
first Chapel program, I knew I had
found something much more
appealing.”

https://chapel-lang.org/blog/series/7-questions-for-chapel-users/
https://chapel-lang.org/blog/series/7-questions-for-chapel-users/
https://chapel-lang.org/blog/series/7-questions-for-chapel-users/
https://chapel-lang.org/blog/series/7-questions-for-chapel-users/
https://chapel-lang.org/blog/series/7-questions-for-chapel-users/
https://chapel-lang.org/blog/series/7-questions-for-chapel-users/
https://chapel-lang.org/blog/series/7-questions-for-chapel-users/
https://chapel-lang.org/blog/series/7-questions-for-chapel-users/
https://chapel-lang.org/blog/series/7-questions-for-chapel-users/
https://chapel-lang.org/blog/series/7-questions-for-chapel-users/
https://chapel-lang.org/blog/series/7-questions-for-chapel-users/
https://chapel-lang.org/blog/series/7-questions-for-chapel-users/

Wrap-up

Chapel is unique among programming languages
• supports first-class concepts for parallelism and locality
• ports and scales from laptops to supercomputers
• supports clean, concise code relative to conventional approaches
• supports GPUs in a vendor-neutral manner

Chapel is being used for productive parallel computing at all scales
• users are reaping its benefits in practical, cutting-edge applications
• applicable to domains as diverse as physical simulations and data science
• Arkouda is a notable case, supporting interactive HPC

Summary

47

0

5000

10000

15000

20000

25000

512 1024 2048 4096

G
B/
s

Nodes (128 cores / node)

Chapel
SHMEM Exstack
SHMEM Convey

Bale Indexgather Performance
HPE Cray EX (Slingshot-11)

• Chapel has been accepted into the Linux Foundation’s High Performance Software Foundation (HPSF)
• moves governance of the project from HPE to the community
• a logical next step in our open-source journey

• A renewed focus on sparse matrix/array computations
• e.g., sparse matrix-matrix multiplication

• Dyno compiler rework: Modernizing the Chapel compiler
• faster
• better error messages
• support for programmer coding tools

• Honeycomb: A next-generation evolution of Arkouda
• multi-lingual, including AI-based natural language interactions
• user-extensible to support arbitrary computations

48

What’s Cooking? What’s Next?

“Live” (Virtual) Community Events
• Project Meetings, weekly
• Deep Dive / Demo Sessions, weekly timeslot
• ChapelCon (formerly CHIUW), annually

Social Media Discussion Forums

Electronic Broadcasts
• Chapel Blog, typically ~2 articles per month
• Community Newsletter, quarterly
• Announcement Emails, around big events

 Ways to Use Chapel

49

Ways to interact with or follow the Chapel Community

(from the footer of chapel-lang.org)

https://github.com/chapel-lang/chapel/discussions/categories/weekly-meeting-topics?discussions_q=
https://github.com/chapel-lang/chapel/discussions/categories/weekly-meeting-topics?discussions_q=
https://github.com/chapel-lang/chapel/discussions/27247
https://github.com/chapel-lang/chapel/discussions/27247
https://chapel-lang.org/chapelcon25/
https://chapel-lang.org/chapelcon25/
https://chapel-lang.org/blog/
https://chapel-lang.org/blog/
https://chapel.discourse.group/c/newsletters/24
https://chapel.discourse.group/c/newsletters/24
https://chapel.discourse.group/c/announcements/8
https://chapel.discourse.group/c/announcements/8
https://chapel-lang.org/
https://chapel-lang.org/
https://chapel-lang.org/

50

Chapel Website

chapel-lang.org

https://chapel-lang.org/
https://chapel-lang.org/
https://chapel-lang.org/

Thank you
https://chapel-lang.org
@ChapelLanguage

