X bradc@cray.com
@ chapel-lang.org
¥ @ChapelLanguage

Cray-1: A Pioneering Supercomputer (1975) S

64-bit processor @ 80 MHz!"]

8 Memory 8.39 Megabytes (up to 1 048 576

words)! "]
Storage 303 Megabytes (DD19 Unit)!"!
FLOPS 160 MFLOPS

© 2018 Cray Inc. 2

https://en.wikipedia.org/wiki/Cray-1

Piz Daint: One of Today’s Most Powerful Supercomputers ===~

© 2018 Cray Inc. 3

https://www.cscs.ch/computers/piz-daint/

Piz Daint: One of Today’'s Most Powerful Supercomputers ===~

Model Cray XC40/Cray XC50

Number of Hybrid Compute Nodes 5704

Number of Multicore Compute Nodes 1431

Peak Floataing-point Performance per Hybrid Node 4761 Teraflops Intel Xeon E5-2690 v3/Nvidia Tesla P100

Peak Floating-point Performance per Multicore Node 1.210 Teraflops Intel Xeon E5-2695 v4

Hybrid Peak Performance 27.154 Petaflops

Muliticore Peak Performance 1.731 Petaflops

Hybrid Memory Capacity per Node 64 GB; 16 GB CoWoS HBM2

Multicore Memory Capacity per Node 64 GB, 128 GB

Total System Memory 43797TB;83.1TB

System Interconnect Cray Aries routing and communications ASIC, and Dragonfly
network topology

Sonexion 3000 Storage Capacity 8.8PB

Sonexion 3000 Parallel File System Theoretical Peak Performance 112 GB/s

Sonexion 1600 Storage Capacity 2.5PB

Sonexion 1600 Parallel File System Theoretcal Peak Performance 138 GB/s

\

- https://www.cscs.ch/computers/piz-daint/
©2018 Cray Inc. C 4

https://www.cscs.ch/computers/piz-daint/

Cray: The Supercomputer Company

. ANy PRODUCTS SOLUTIONS RESOURCES COMPANY SUPPORT CONTACT

RN N\ \
\\\

X

.
-y
o ~ N

N

THE NEW STANDARD

https://www.cray.com
© 2018 Cray Inc. - 5

https://www.cray.com/

Cray: The Supercomputer Company e

o (== P PRODUCTS SOLUTIONS RESOURCES COMPANY SUPPORT CONTACT

£

©
<
g

https://www.cray.com/

What is Chapel? cman

Chapel: A productive parallel programming language
» portable & scalable

» open-source & collaborative

Goals:

» Support general parallel programming

 “any parallel algorithm on any parallel hardware”

» Make parallel programming at scale far more productive

©2018 Cray Inc. C 7

Why might a PUPPy member care about Chapel? ===~

» Chapel is not Python...
...yet many Python programmers have found it attractive and approachable
* You may want to consider Chapel in order to...
...get good performance without resorting to C
...easily express multi-core parallelism on your laptop / desktop
...do distributed programming on a personal cluster or cloud resource
...scale up from your laptop to the largest supercomputers
...get static typing benefits in a type-inferred language
« Chapel is increasingly interoperable with Python

© 2018 Cray Inc. (@ 8

Outline

v

» Productivity and Chapel

» Overview of Chapel Features
» Chapel Results and Resources

© 2018 Cray Inc.

What does "Productivity” mean to you®? e

Recent Graduates:
“something similar to what | used in school: Python, Matlab, Java, ...”

Seasoned HPC Programmers:
“that sugary stuff that | don’t need because | was-borato-suffer”
want full control to ensure performance”
Computational Scientists:
“something that lets me express my parallel computations without having to wrestle
with architecture-specific details”

Chapel Team:
“something that lets computational scientists express what they want,
without taking away the control that HPC programmers want,
implemented in a language as attractive as recent graduates want.”

© 2018 Cray Inc. (@ 10

Chapel and Productivity e~

Chapel aims to be as...
...programmable as Python
...fast as Fortran
...scalable as MPI, SHMEM, or UPC
...portable as C
...flexible as C++
...fun as [your favorite programming language]

© 2018 Cray Inc. 1"

Computer Language Benchmarks Game (cLgG) cRas

The Computer Language
Benchmarks Game

Which programs are faster?

Will your toy benchmark program be faster if you write it in

a different programming language? It depends how you write
it!

égi C Chapel C# C++ Dart

Erlang F# Fortran Go Hack

Haskell Java JavaScript Lisp Lua

OCaml Pascal Perl PHP Python

Racket Ruby Rust Smalltalk Swift

TypeScript

Which are fast? Trust, and verify

{ for researchers }

© 2018 Cray Inc.

Website supporting cross-language comparisons

10 toy benchmark programs

x ~27 languages

x several implementations
 exercise key computational idioms
* specific approach prescribed

CLBG: Website cmas

Can sort results by various metrics: execution time, code size, memory use, CPU use:

The computer Language The computer Language
Benchmarks Game Benchmarks Game
pidigits pidigits
description description
program source code, command-line and program source code, command-line and
measurements measurements
X source secs mem gz cpu cpu load X source secs mem g9z cpu cpu load
1.0 Chapel #2 1.62 6,484 423 1.63 99% 1% 1%2% 1.0 Perl #4 3.50 7,348 261°\3.50 100% 1% 1% 1%
1.0 Chapel 1.62 6488 501 1.63 99% 1% 1% 1% 1.5 Python 3 #2 3.51 10,500 386 3. 1% 1% 0% 100%
1.1 Free Pascal #3 1.73 2,428 530 1.72 0% 2% 100% 1% 1.5 PHP #4 2,12 10,512 389
1.1 Rust #3 1.74 4,488 1366 1.74 1% 100% 1% 0% 1.5 Perl #2 3.83 7,320 389
1.1 Rust 1.74 4,616 1420 1.74 1% 100% 1% 0% 1.5 PHP #5 2,12 10,664 399
1.1 Rust #2 1.74 4,636 1306 1.74 1% 100% 0% 0% 1.6 Chapel #2 1.62 6,484 423 . .
11 Cgee 175 2,728 452 174 1% 2% 0% 100% 1.7 Cgee 175 2,728 452 1. | gz == code size metric
1.1 Ada 2012 GNAT #2 1.75 4,312 1068 1.75 1% 0% 100% 0% 1.7 Racket 27.58 124,156 453 27. strip comments and extra
11 Swift #2 176 8,492 601 1.76 1% 100% 1% 0% 1.8 OCaml #5 672 19,83 458 6. i whitespace, then gzip
1.1 Lisp SBCL #4 1.79 20,196 940 1.79 1% 2% 1% 100% 1.8 Perl 15.45 10,876 463 31% 19% 1%
1.2 C++g++ #4 1.89 4,284 513 1.88 5% 0% 1% 100% 1.9 Ruby #5 3.29 277,496 485 6.58 8% 63% 32% 100%
1.3 Go #3 2.04 8,976 603 2.04 1% 0% 100% 0% 1.9 Lisp SBCL #3 11.99 325,776 493 11.96 0% 1% 100% 0%
1.3 PHP #5 2.12 10,664 399 2.11 100% 0% 1% 1% 1.9 Chapel 1.62 6,488 501 1.63 99% 1% 1% 1%
1.3 PHP #4 2.12 10,512 389 2.12 100% 0% 0% 2% 1.9 PHP #3 2.14 10,672 504 2.14 1% 0% 0% 100%

© 2018 Cray Inc. C 13

CLBG Cross-Language Summary
(September 21, 2018 standings)

CRANY

B chapel
Bl csharpcore
. dart

W fpascal
. fsharp
N gcc

N ghc

N gnat

.
.
.
.
.
AR
O
.Lua
Lua
TS,

\\
JRuby
\\ go
N . pp
B hack
B hipe
ifc
Bl java
N jruby
L___IRUE]
node

Ruby- .
g Pythemn =

\\\P l'| \\\~\ \\‘\ - perl
e . Smalltalk == m
HaCk] S~ N racket

\\' .\\ o ® . rust
n_ *~._Erlang i
~=-.Racket-. swift
PHP ‘~~\ “.\ W typescript
. S =t
. i t. N .- CO— S S— E[...pe:n.ual.las:..-..
:.-_-::_.__Q’_!Scala :

(O egmean-fastest

python3

Execution Time
(normalized to fastest entry)
o

©2018 Cray Inc. C 14

CLBG Cross-Language Summary
(September 21, 2018 standings, zoomed in)

Typescript ® . . .
i > .\ e Racket

Javaseript © . mScala

\.~OCaml| Haskell
® Pascal . - dava

Execution Time
(normalized to fastest entry)

~
~
~
.‘
~ <
~
~
.

Compressed Code Size (normalized to smallest entry)

© 2018 Cray Inc. C

B chapel
Bl csharpcore
. dart
M fpascal
W fsharp
. gcc
. ghc
N gnat
e go
. gpp
B hack
ifc
. java
B jruby
- lua
node
B ocaml
. perl
= php
python3
BN racket
N rust

sbel Lngp

B scala
swift

~ N .
® ‘\\._\ .-;:r?

< [[] emean-smallest

~ ~— Rust () gmean-fastest
TTTeCH++ e

. .F# Q ’\‘\ c#- typescript

CRANY

15

CLBG Cross-Language Summary
(September 21, 2018 standings, zoomed in)

Typescript ® . . .
i > .\ e Racket

Javaseript © . mScala

\.~OCaml| Haskell
® Pascal . - dava
u .. 2Go

Execution Time
(normalized to fastest entry)

.‘
~ <
~
~
.

Compressed Code Size (normalized to smallest entry)

© 2018 Cray Inc. C

B chapel
Bl csharpcore
. dart
M fpascal
W fsharp
. gcc
. ghc
N gnat
e go
. gpp
B hack
ifc
. java
B jruby
- lua
node
B ocaml
. perl
= php
python3
BN racket
N rust

sbel Lngp

B scala
swift

L mFf O N G m e
.. - O yarv
Chape' ® : "\ “~. [] egmean-smallest

~ ~— Rust () gmean-fastest
TTTeCH++ e

CRANY

16

CLBG Cross-Language Summary o
(September 21, 2018 standings)

B chapel
Bl csharpcore
. dart
W fpascal
m fsharp
N gcc
N ghc
N gnat
e go
. epp
B hack
B hipe
ifc
Bl java
N jruby
L___IRUE]
node
~ B ocaml
\‘\ . perl
*~. Smalltalk m—php
Hack ® S e
\. Bl racket
.\ O N rust
<

SN sbcl

Su El'lang . scala

Racket switt
PHP ‘.\ W typescript

Dal't '. LI

. yarv

J@V@@@ﬂm D. Wpes?pt _____ C}_”Sca|a [] gmean-smallest

() gmean-fastest

- O’ =3: !:i-:-:-: B f‘o P -C# JaviILﬂgpQ

.
.
.
.
.
AR
3.
.Lua
Lua
T

“JRuby

Ruby- .
N, | Python

Execution Time
(normalized to fastest entry)
o

©2018 Cray Inc. C 17

cCRANY

CLBG: Qualitative Code Comparisons

Can also browse program source code (but this requires actual thought!):

© 2018 Cray Inc. C

proc main() {
printColorEquations();

const groupl = (i in 1..popSizel) new Chameneos(i, ((i-1)%3):Color);
const group2 = (i in l..popSize2) new Chameneos(i, colorslO[i));

cobegin {
holdMeetings(groupl, n);
holdMeetings(group2, n);
}

print(groupl);
print(group2);

for ¢ in groupl do delete c;
for ¢ in group2 do delete c;

//
// Print the results of getNewColor() for all color pairs.
/7
proc printColorEquations() {

for cl in Color do

for c2 in Color do
writeln(ecl, " + ", €2, " -> ", getNewColor(cl, c2));
writeln();

//
// Bold meetings among the population by creating a shared meeting
// place, and then creating per-chameneos tasks to have meetings.
//
proc holdMeetings(population, numMeetings) {(

const place = new MeetingPlace(numMeetings);

coforall ¢ in population do // create a task per chameneos
c.haveMeetings(place, population);

delete place;

excerpt from 1210 gz Chapel entry

void get_affinity(int* is_smp, cpu_set_t* affinityl, cpu_set_t* affinity2)
{

cpu_set_t
FILE*
char

char const*
int

int

int

int

int
size_t
size_t

char const*
size_t
char const*
size_t
char const*
size_t
char const*
size_t

CPU_ZERO(&active_cpus);

active_cpus;
£;

buf [2048);
pos;
cpu_idx;
physical_id;
core_id;
cpu_cores;
apic_id;
cpu_count;
i;
processor_str “processor”;
strlen(processor_str);
“"physical id";
strlen(physical_id_str);
“core id";
strlen(core_id_str);
“cpu cores”;
strlen(cpu_cores_str);

physical_id str
physical_id_str_len
core_id_str
core_id_str_len

sched_getaffinity(0, sizeof(active_cpus), &active_cpus);

cpu_count = 0;

for (i = 0; i != CPU_SETSIZE; i += 1)

if (CPU_ISSET(i, &active_cpus))
{

cpu_count += 1;
}
if (cpu_count == 1)
¢ is_smp(0) = 0;
return;

}

is_smp(0) = 1;
CPU_ZERO(affinityl);

excerpt from 2863 gz C gcc entry

18

CLBG: Qualitative Code Comparisons S

Can also browse program source code (but this requires actual thought!):

proc main() { xoid get affinitviinte 5 Sgp, cpu set_t* affinityl, cpu_set_t* affinity2)

printColorEquations(); L esset
const groupl = [i im L ps&‘&'o'lll‘-::;‘::;:‘n:l:noo-(i . gotive_cpus;
con-u_t_;.x-qq:a---ﬂ"f;ll";psueu new Chameneos(i, d c°begln { ;;f (2048);
cobega holdMeetings(groupl, n); opo. ddx;

) etings(groupl, n); . physical_id;
y Reluestisgs(growd, 2); holdMeetings(group2, n); core_td;
;':;H!.'(mmu;__. } :::‘_:E;:r;:t;
print(group2); "tTttreeean,, i
for ¢ in groupl do delete c; o TtTtersan..., pr _str = “processor”;
for ¢ in group2 do delete c; size_t processor_str_len = strlen(processor_str);

} char const* physical_id_str = "physical id";
size_t phyucal_xd_nr_len = strlen(physical_id_str);
char const* core_id str = “core id";
o) n(corftidintr) F)
""""" proc holdMeetings(population, numMeetings) { (epu cores str);
proc printColorEquations() { RN . . - -

for cl inColordo . const place = new MeetingPlace(numMeetings);

writeln(cl, " + *, c2, -“‘,“‘ getNewColor(cl,
writeln();

coforall c in population do // creaf
c.haveMeetings(place, population);

const place -qnw MeetingPlace(numMeetings); delete place;
coforall ¢ in population do creatp a t }

c.haveMeetings(place, population);

delete place; [eesssessssssssnanmnnnnanERney 13
—— ey TEIUTLEL L L =t LI L

excerpt from 1210 gz Chapel entry excerpt from 2863 gz C gcc entry

© 2018 Cray Inc. « 19

CLBG: Qualitative Code Comparisons S

Can also browse program source code (but this requires actual thought!):

proc main() { void get_affinity(int* is_smp, cpu_set_t* affinityl, cpu_set_t* affinity2)

N . {
char const* core_id_str = "core id"} cpu_set_t active_cpus;
. S . £;
size_t core_id_str_len = strlen(cof char bat 1204813
char const~* cpu_cores_str = "cpu coreq : har const o0 dx;
= K i hysical_id;
size_t cpu_cores_str_len = strlen(cpy * - Pore. 14
% int cpu_cores;
. int apic_id;
CPU_ZERO(&active_cpus); Y sise s SPa_count;
- s sa size_ H
sched getaffinity(0, sizeof(active cpus), &active cpus); s
. - - char const* processor_str = "processor”;
cpu_count = O; % size_t processor_str_len = strlen(processor_str);
R = s 4 - . 1 — s cha t hysical_id st = "physical id";
for (i = 0; i != CPU_SETSIZE, i+=1) . :n:_?“ :nz:xz:x_id_:::_un- l‘:ri’::(:;t:y:icnl_id_-t:);
{ size_t core id str len = strlen(lo:a id_str);
s . . h - 'y o - v~ - " .';‘ - ’
if (CPU_ISSET(i, &active_cpus)) resien Cre Soree ptr Jem = stelea(lzn soree SEe)s

{ CPU_ZERO(&active_cpus);
cpu count += 1; sched_getaffinity(0, sizeof(active_cpus), &active_cpus);
- cpu_count = 0;
} for (i = 0; i != CPU_SETSIZE; i += 1)

{
} if (CPU_ISSET(i, &active_cpus))
{
cpu_count += 1;
if (cpu_count == 1) ; }
{ . if (cpu_count == 1)
is_smp[0] = 0; is_smp(0] = 0;
return; return;
} }
‘,.-"' is_smp(0) = 1;
. CPU_ZERO(affinityl);

excerpt from 1210 gz Chapel entry excerpt from 2863 gz C gcc entry

©2018 Cray Inc. C 20

Overview of
Chapel Features

Chapel Feature Areas

© 2018 Cray Inc.

Chapel language concepts

Domain Maps

Task Parallelism

Base Language
Locality Control

Target Machine

R ANY

22

Base Language SRase

C Domain Maps
Data Parallelism
Task Parallelism

1 Base Language
Locality Control

Target Machine

Lower-level Chapel

© 2018 Cray Inc. 23

Base Language Features, by example cRas

iter fib(n) { config const n = 10;
var current = 0,
next = 1; for £ in fib(n) do

writeln (f);

for i in 1..n {
yield current;
current += next;
current <=> next;

Base Language Features, by example

Configuration declarations

(support command-line overrides)

./fib --n=1000000

iter fib(n) {
var current =
next = 1;

for i in 1..n {
yield current;
current += next;
current <=> next;

’ -
config const n

for £ in fib(n)
writeln (£f) ;

10;

do

R ANY

Base Language Features, by example cRas

iter fib(n) { onfig const n = 10;

var current = 0,
next = 1; for f in fib(n) do

writeln (£f) ;

for i in 1..n {
yield current;
current += next;
current <=> next;

Base Language Features, by example cRas

Static type inference for:

* arguments
* return types
» variables

iter fib(n)' \ config cénst n = 10;
var current = 0,
next = 1; for f ‘in fib(n) do
writeln (£f) ;

for i in 1..n {
yield current;
current += next;
current <=> next;

Base Language Features, by example cRas

Explicit types also
supported

iter fib(n: int): int {)config const n: int = 10;

var current: int = O,
next: int = 1; for £ in fib(n) do

writeln (f);

for i in 1..n {
yield current;
current += next;
current <=> next;

Base Language Features, by example cRas

iter fib(n) { config const n = 10;
var current = 0,
next = 1; for £ in fib(n) do

writeln (f);

for i in 1..n {
yield current;
current += next;
current <=> next;

iter fib(n) {
var current = 0,
next = 1;

for i in 1..n {
yield current;
current += next;
current <=> next;

Base Language Features, by example

Zippered iteration

config const n =[10;
for (i,f) in zip(0..#n, fib(n)) do
writeln("fib #", i, " is ", f);

R ANY

iter fib(n) {
var current = A0,
next = 1;

for i in 1..n {
yield current;
current += next;
current <=> next;

Base Language Features, by example

Range types and

operators

config const n =

for (i,f)
writeln ("fib #",

1\3;

in zip (0. .#n,

i,

R ANY

Base Language Features, by example cRas

iter fib(n) { config const n = 10;
var current = 0,
next = 1; for (i,f) in zip(0..#n, fib(n)) do
writeln("fib #", i, " is ", f);

for i in 1..n {
yield current;
current += next;
current <=> next;

Base Language Features, by example cRas

iter fib(n) { config const n = 10;
var current = 0,
next = 1; for (i,f) in zip(0..#n, fib(n)) do
writeln (, 1, , f);

for i in 1..n {
yield current;
current += next;
current <=> next;

Other Base Language Features =mas

* Object-oriented features

* Generic programming / polymorphism

* Procedure overloading / filtering

« Arguments: default values, intents, name-based matching, type queries
« Compile-time meta-programming

* Modules (namespaces)

« Managed objects and lifetime checking

* Error-handling

« and more...

© 2018 Cray Inc. - 34

Task Parallelism and Locality Control Smas

C Domain Maps D

Data Parallelism
 ammd Task Parallelism
Base Language

b md Locality Control

Target Machine

© 2018 Cray Inc. 35

Locales, briefly cmas

» Locales can run tasks and store variables
* Think “compute node”
* Number of locales specified on execution command-line

> ./myProgram --numLocales=4

Locales:
Iocale\ locale locale locale

0 1 2 3

User’s main() executes on locale #0

© 2018 Cray Inc. i 36

Task Parallelism and Locality, by example cmas

taskParallel.chpl

const numTasks = here.numPUs () ;
coforall tid in 1..numTasks do
writef ("Hello from task %$n of %n "+
"running on %s\n",

tid, numTasks, here.name);

prompt> chpl taskParallel.chpl
prompt> ./taskParallel
Hello from task 2 of 2 running on nl032

Hello from task 1 of 2 running on nl032

Task Parallelism and Locality, by example cmas

taskParallel.chpl

. const numTasks = here.numPUs () ;
Abstraction of _ -
coforall tid in 1..numTasks do
System Resources

tef ("Hello from task %n of %$n "+

on %s\n",

tid, numTasks, here.name);

prompt> chpl taskParallel.chpl
prompt> ./taskParallel
Hello from task 2 of 2 running on nl032

Hello from task 1 of 2 running on nl032

© 2018 Cray Inc. 38

Task Parallelism and Locality, by example

© 2018 Cray Inc.

High-Level

Task Parallelism

taskParallel.chpl

const numTasks = here.numPUs () ;
\\\"coforall tid in 1..numTasks do

writef ("Hello from task %$n of

"running on %s\n",

o)

sn

tid, numTasks, here.name);

”+

prompt> chpl taskParallel.chpl
prompt> ./taskParallel
Hello from task 2 of 2 running on nl032

Hello from task 1 of 2 running on nl032

R ANY

39

Task Parallelism and Locality, by example =Rasr

taskParallel.chpl

const numTasks = here.numPUs () ;
coforall tid in 1..numTasks do

This is a shared memory program

writef ("Hello from task %n of %n "+
Nothing has referred to remote

"running on %s\n",
locales, explicitly or implicitly

tid, numTasks, here.name);

prompt> chpl taskParallel.chpl
prompt> ./taskParallel
Hello from task 2 of 2 running on nl032

Hello from task 1 of 2 running on nl032

© 2018 Cray Inc. 40

Task Parallelism and Locality, by example cmas

taskParallel.chpl

coforall loc in Locales do
on loc {
const numTasks = here.numPUs () ;
coforall tid in 1..numTasks do
writef ("Hello from task %$n of %n "+
"running on %s\n",

tid, numTasks, here.name);

prompt> chpl taskParallel.chpl

prompt> ./taskParallel --numLocales=2

Hello from task 1 of 2 running on nl033
Hello from task 2 of 2 running on nl032
Hello from task 2 of 2 running on nl033
Hello from task 1 of 2 running on nl032

Task Parallelism and Locality, by example

High-Level
Task Parallelism

taskParallel.chpl

~-coforall loc in Locales do

on loc {

coforall tid in 1..numTasks
writef ("Hello from task
"running on %s\n",

tid, numTasks,

const numTasks = here.numPUs () ;

do

sn of

SN

here.name) ;

”+

prompt> chpl taskParallel.chpl

./taskParallel --numLocales=2
of 2 nl0
of 2 nl0
of 2 nl0
of 2 nl0

prompt>
Hello
Hello
Hello
Hello

from task 1 running on

from task 2 running on
from task 2 running on

from task 1 running on

33
32
33
32

R ANY

Task Parallelism and Locality, by example

Abstraction of

System Resources

taskParallel.chpl

coforall loc in Locales do

on loc
const numTasks =

coforall tid in 1..numTasks
writef ("Hello from task
"running on %s\n",

tid, numTasks,

here.numPUs () ;

do

sn of

SN

here.name) ;

”+

prompt> chpl taskParallel.chpl

./taskParallel --numLocales=2
task 1 of 2 nl0
task 2 of 2 nl0
task 2 of 2 nl0
task 1 of 2 nl0

prompt>
Hello
Hello
Hello
Hello

from running on

from running on
from running on

from running on

33
32
33
32

R ANY

Task Parallelism and Locality, by example

Control of Locality/Affinity

taskParallel.chpl

coforall loc in Locales do
on loc {
const numTasks =
coforall tid in 1..numTasks
writef ("Hello from task
"running on %s\n",

tid, numTasks,

here.numPUs () ;

do

sn of

SN

here.name) ;

”+

prompt> chpl taskParallel.chpl

./taskParallel --numLocales=2
task 1 of 2 nl0
task 2 of 2 nl0
task 2 of 2 nl0
task 1 of 2 nl0

prompt>
Hello
Hello
Hello
Hello

from running on

from running on
from running on

from running on

33
32
33
32

R ANY

Task Parallelism and Locality, by example cmas

taskParallel.chpl

coforall loc in Locales do
on loc {
const numTasks = here.numPUs () ;
coforall tid in 1..numTasks do
writef ("Hello from task %$n of %n "+
"running on %s\n",

tid, numTasks, here.name);

prompt> chpl taskParallel.chpl

prompt> ./taskParallel --numLocales=2

Hello from task 1 of 2 running on nl033
Hello from task 2 of 2 running on nl032
Hello from task 2 of 2 running on nl033
Hello from task 1 of 2 running on nl032

Other Task Parallel Features o

« Atomic / Synchronized variables: for sharing data & coordination
* begin / cobegin statements: other ways of creating tasks

© 2018 Cray Inc. (@ 46

Data Parallelism in Chapel Smacr

Chapel language concepts

C Domain Maps
D Higher-level
Task Parallelism Chapel

Base Language
Locality Control

Target Machine

© 2018 Cray Inc. 47

Data Parallelism, by example =

dataParallel.chpl

config const n = 1000;
var D = {1..n, 1..n};

var A: [D] real;
forall (i,j) in D do
Afi,j] =i + (J - 0.5)/n;

writeln (2) ;

prompt> chpl dataParallel.chpl
prompt> ./dataParallel --n=5
1.1 1.3 1.5 1.7 1.9

2
3.
4
5

1 2.7
.1 3.7
.1 4.7
1 5.7

Data Parallelism, by example =

Domains (Index Sets) dataParallel.chpl

config const n = 1000;
var D = {1..n, 1..n};

var A: [D] real;
forall (i,j) in D do
Ali,3] =1 + (3 - 0.5)/n;

writeln (2) ;

prompt> chpl dataParallel.chpl
prompt> ./dataParallel --n=5
1.1 1.3 1.5 1.7 1.9

2.7
3.7
4.7
5.7

12
.1 3.
.1 4.
15

Data Parallelism, by example =

dataParallel.chpl

config const n = 1000;
var D = {1..n, 1..n};

var A: [D] real;
forall (i,j) in D do

Ali,J] =1 4+ (J - 0.5)/n;
writeln (2) ;

prompt> chpl dataParallel.chpl
prompt> ./dataParallel --n=5
1.1 1.3 1.5 1.7 1.9

2
3.
4
5

1 2.7
.1 3.7
.1 4.7

1 5.7

Data Parallelism, by example =

dataParallel.chpl

config const n = 1000;
var D = {1..n, 1..n};

Data-Parallel Forall Loops

var A: [D] real;
forall (i,j) in D do
Afi,j] =i + (J - 0.5)/n;

writeln (2) ;

prompt> chpl dataParallel.chpl
prompt> ./dataParallel --n=5
1.1 1.3 1.5 1.7 1.9

12
.1 3.
1 4
15

2.7
3.7
4.7
5.7

Data Parallelism, by example

This is a shared memory program

Nothing has referred to remote
locales, explicitly or implicitly

prompt> chpl dataParallel.chpl
prompt> ./dataParallel --n=5

1.

dataParallel.chpl

var D = {1..n, 1..n};

var A: [D] real;
forall (i,j) in D do

writeln (2) ;

config const n = 1000;

Ali,j] =1+ (3 - 0.5)/n;

1.3 1.5 1.7 1.9

2
3.
4
5

2.7
3.7
4.7
5.7

R ANY

Distributed Data Parallelism, by example

Domain Maps
(Map Data Parallelism to the System)

dataParallel.chpl

use CyclicDist;
config const n = 1000;

forall (i,j) in D do
Ali,j] =i+ (3 - 0.5)/n;

var D = {l1l..n, 1..n}
dmapped Cyclic(startIdx = (1,1));
va : [D] real;

prompt> chpl dataParallel.chpl
prompt> ./dataParallel --n=5 --numLocales=4
1.1 1.3 1.5 1.7 1.9

2
3.
4
5

1 2.7
.1 3.7
.1 4.7

1 5.7

R ANY

Distributed Data Parallelism, by example Smas

dataParallel.chpl

use CyclicDist;
config const n = 1000;
var D = {l1l..n, 1..n}
dmapped Cyclic(startIdx = (1,1));
var A: [D] real;
forall (i,j) in D do
Afi,j]1 =i+ (3 - 0.5)/n;

writeln (2) ;

prompt> chpl dataParallel.chpl
prompt> ./dataParallel --n=5 --numLocales=4
1.1 1.3 1.5 1.7 1.9

2
3.
4
5

1 2.7
.1 3.7
.1 4.7

1 5.7

Chapel Has Several Domain / Array Types =masr

HEEA R AR
D 0O 0O O O O - .
0 O O O O O
0 0O 0O O O O | H |
dense strided sparse
[]“steve”
e R TO
| Sung Q\ \\ ,,/ Vs ",b,
“daVId” o ~:C}-—’/O:\“%{j
| "jacob TN S xett0
| |“albert” o 2anl
__|“brad”
associative unstructured

© 2018 Cray Inc. [55

Chapel Has Several Domain / Array Types =masr

u) |) | o | 5 S Y S N O
D o o o o o -IIIIII=::=: J
b O O O O O - -
0 O O O O O
p o @ o 8 &@ - -
dense strided sparse

[]“steve”

Ll “Iee”

|| “Sung”

| _|“david”

O “JaCOb”

|_|“albert”

L “bradn

associative unstructured

© 2018 Cray Inc. [56

Chapel Has Several Domain / Array Types =masr

b o b o b o]
< Y - T - N T R iy ..'__.s_.lI-___--
D o E o g o |
i o o SmmmEaiaammess EEees)
1 T
dense strided : spar'se

/7
unstructured

associative

© 2018 Cray Inc. [57

Other Data Parallel Features o

 Parallel Iterators and Zippering

« Slicing: refer to subarrays using ranges / domains

* Promotion: execute scalar functions in parallel using array arguments
* Reductions: collapse arrays to scalars or subarrays

« Scans: compute parallel prefix operations

« Several Flavors of Domains and Arrays

© 2018 Cray Inc. (@ 58

Chapel Results
and Resources

© 2018 Cray Inc.

HPC Patterns: Chapel vs. Reference

LCALS: Chapel vs. Reference Sman-

Serial Kernels (long)
.

Parallel Kemels (long)

II ER ER Wm II EN EEN EE Em NN
K * o K « & » » & >
Ka & I Y & 2 o

LCALS

STREAM
Triad

|Sx

HPCC RA

PRK
Stencil

CRANY

HPCC RA: Chapel vs. Reference

RA Performance (GUPS)

GUPS

Locales {x 36 cores / locale)

e~

HPCC STREAM Triad: Chapel vs. Reference Sman-

STREAM Performance (GBJs)

Gass

Locales (x 36 cores / kecale)

Time (sec)

ISx: Chapel vs. Reference

15x Time (seconds)

Locales (x 36 cores / locale)

PRK Stencil: Chapel vs. Reference

PR Scenc Performance (Glop's)

Rotrams —o—
oot 119 e s =

Ghlopls

Locales (x 36 cores | locale)

o

© 2018 Cray Inc.

Nightly performance tickers online at:
https://chapel-lang.org/perf-nightly.html

60

https://chapel-lang.org/perf-nightly.html

HPC Patterns: Chapel vs. Reference Smacs

LCALS HPCC RA
Global Random
Local loop kernels Updates
STREAM PRK
Triad ISx Stencil
Embarrassing/Pleasing Bucket-Exchange Stencil Boundary
Parallelism Pattern Exchanges

Nightly performance tickers online at:
©2018 Cray Inc. https://chapel-lang.org/perf-nightly.html 61

https://chapel-lang.org/perf-nightly.html

HPC Patterns: Chapel vs. Reference Smacs

LCALS HPCC RA
Global Random
Local loop kernels Updates
STREAM PRK
Triad ISx Stencil
Embarrassing/Pleasing Bucket-Exchange Stencil Boundary
Parallelism Pattern Exchanges

Nightly performance tickers online at:
©2018 Cray Inc. G https://chapel-lang.org/perf-nightly.html 62

https://chapel-lang.org/perf-nightly.html

HPCC RA: Chapel vs. Reference Sma

RA Performance (GUPS)

Chapel 1.19 (pre-release) —@—
Reference (bucketing) —>—

GUPS

Locales (x 36 cores / locale)

© 2018 Cray Inc. 63

HPCC Random Access Kernel:

/* Perform updates to main table. The scalar equivalent is: } else {
* HPCC_InsertUpdate (Ran, WhichPe, Buckets);
* for (i=0; i<NUPDATE; i++) { pendingUpdates++;
* Ran = (Ran << 1) * (((s64Int) Ran < 0) ? POLY : 0); }
* Table[Ran & (TABSIZE-1)] = Ran; it+;
L)
% else {

MPI_Test (soutreq, &have done, MPI_STATUS_IGNORE) ;
if (have_done) (
outreq = MPI_REQUEST_NULL;
pe = HPCC_GetUpdates (Buckets, LocalSendBuffer, localBufferSize,
speUpdates) ;
MPI_Isend(sLocalSendBuffer, peUpdates, tparams.dtype6d, (int)pe,
UPDATE_TAG, MPI_COMM WORLD, &outreq);
pendingUpdates -= peUpdates;

MPI_Irecv(sLocalRecvBuffer, localBufferSize, tparams.dtype6d,
MPI_ANY SOURCE, MPI_ANY TAG, MPI_COMM WORLD, &inreq);
while (i < SendCnt) {
/* receive messages */
do {
MPI_Test (&inreq, &have_done, &status);
if (have_done) {
if (status.MPI_TAG == UPDATE_TAG) {)
MPI_Get_count (&status, tparams.dtype64, &recvUpdates);)
bufferBase = 0;)
for (j=0; j < recvUpdates; j ++) { /* send remaining updates in buckets */
inmsg = LocalRecvBuffer [bufferBase+j]; while (pendingUpdates > 0)
LocalOffset = (inmsg & (tparams.TableSize - 1)) - /* receive messages */
tparams.GlobalStartMyProc; do {
HPCC_Table[LocalOffset] "= inmsg; MPI_Test (s¢inreq, s&have_done, &status);
) if (have_done) (
} else if (status.MPI_TAG == FINISHED_TAG) f{ if (status.MPI_TAG == UPDATE_TAG) {
NumberReceiving--; MPI_Get_count (&¢status, tparams.dtype64, &recvUpdates);
} else bufferBase = 0;
MPI_Abort(MPI_COMM WORLD, -1); for (j=0; j < recvUpdates; j ++) {
MPI_Irecv(sLocalRecvBuffer, localBufferSize, tparams.dtype6d, inmsg = LocalRecvBuffer[bufferBase+j];
MPI_ANY SOURCE, MPI_ANY TAG, MPI_COMM WORLD, &inreq); LocalOffset = (inmsg & (tparams.TableSize - 1)) -
} tparams.GlobalStartMyProc;
HPCC_Table[LocalOffset] "= inmsg;

} while (have_done && NumberReceiving > 0);
if (pendingUpdates < maxPendingUpdates) { }

Ran = (Ran << 1) ((s64Int) Ran < ZERO64B ? POLY : ZEROG4B);) else if (status.MPI_TAG == FINISHED TAG) {
GlobalOffset = Ran & (tparams.TableSize-1); /* we got a done message. Thanks for playing... */
if (GlobalOffset < tparams.Top) NumberReceiving--;
WhichPe = (GlobalOffset / (tparams.MinLocalTableSize + 1));) else {
else MPI_Abort (MPI_COMM WORLD, -1);
WhichPe = ((GlobalOffset - tparams.Remainder) /)

tparams.MinLocalTableSize); MPI_Irecv(sLocalRecvBuffer, localBufferSize, tparams.dtype64,
{ MPI_ANY SOURCE, MPI_ANY TAG, MPI_COMM WORLD, &inreq);

if (WhichPe == tparams.MyProc)
LocalOffset = (Ran & (tparams.TableSize - 1)) -)
tparams.GlobalStartMyProc; } while (have done && NumberReceiving > 0);

HPCC_Table[LocalOffset] "= Ran;

© 2018 Cray Inc. C

cCRANY

MPI_Test (soutreq, &have done, MPI_STATUS_IGNORE) ;
if (have_done) (
outreq = MPI_REQUEST_NULL;
pe = HPCC_GetUpdates (Buckets, LocalSendBuffer, localBufferSize,
speUpdates) ;
MPI_Isend(&LocalSendBuffer, peUpdates, tparams.dtype6d, (int)pe,
UPDATE_TAG, MPI_COMM WORLD, &outreq);
pendingUpdates -= peUpdates;

)
/* send our done messages */

for (proc_count = 0 ; proc_count < tparams.NumProcs ; ++proc_count) {
if (proc_count == tparams.MyProc) { tparams.finish_req[tparams.MyProc] =
MPI_REQUEST NULL; continue; }
/* send garbage - who cares, no one will look at it */

MPI_Isend(&Ran, 0, tparams.dtype6d, proc_count, FINISHED TAG,
MPI_COMM WORLD, tparams.finish_req + proc_count);
)
/* Finish everyone else up... */
while (NumberReceiving > 0) {
MPI_Wait (&inreq, &status);
if (status.MPI_TAG == UPDATE_TAG) {
MPI_Get_count (&status, tparams.dtype64, &recvUpdates);
bufferBase = 0;
for (j=0; j < recvUpdates; j ++) {
inmsg = LocalRecvBuffer[bufferBase+j];
LocalOffset = (inmsg & (tparams.TableSize - 1)) -
tparams.GlobalStartMyProc;
HPCC_Table[LocalOffset] "= inmsg;
)

} else if (status.MPI_TAG == FINISHED_TAG) {
/* we got a done message. Thanks for playing... */
NumberReceiving--;

) else {

MPI_Abort (MPI_COMM WORLD, -1);

)
MPI_Irecv(sLocalRecvBuffer, localBufferSize, tparams.dtype64,
MPI_ANY SOURCE, MPI_ANY TAG, MPI_COMM WORLD, &inreq);

MPI Waitall(tparams.NumProcs, tparams.finish req, tparams.finish statuses);

64

HPCC Random Access Kernel: MPI cRas

/* Perform updates to main table. The scalar equivalent is: C h a pel Ke rne I

* for (i=0; i<NUPDATE; i++) {

L Ron~(Ran << 1) ((s5diny Ran <02 POLY ;0 forall (, r) in zip (Updates, RAStream()) do
- _
! Tlr & indexMask] *= r;

MPI Comment

/* Perform updates to main table. The scalar equivalent is:
*

* for (i1=0; i<NUPDATE; 1i++) {

e Ran = (Ran << 1) * (((s64Int) Ran < 0) ? POLY : 0);
s Table[Ran & (TABSIZE-1)] ”“= Ran;

* }

*/

© 2018 Cray Inc. i 65

HPCC RA: Chapel vs. Reference Sma

RA Performance (GUPS)

Chapel 1.19 (pre-release) —@—
Reference (bucketing) —>—

GUPS

Locales (x 36 cores / locale)

© 2018 Cray Inc. 66

HPCC RA: Chapel vs. Reference (w/ buffered atomics) ===~

GUPS

© 2018 Cray Inc.

RA Performance (GUPS)

__
Chapel 1.19 buff (pre-release) == -®-*

Chapel 1.19 (pre-release) —®— .-
= Reference(bucketing)+__________________________:._-"‘_
B = - e . e e- - e - .- - - - - -
g
_______________________ ...

16 32 64 128 256

Locales (x 36 cores / locale)

67

Chapel for Python Programmers

Developed by Simon Lund

© 2018 Cray Inc.

A Chapel for Python Programmers

Search docs

Getting Started
Language Basics
Parallelism

NumPy

Batteries

Keywords

Pythonic Module
Python and Chapel
Miscellaneous Notes

If Chapel had a band

R ANY

Docs » Chapel for Python Programmers 0 Edit on GitHub

Chapel for Python Programmers

Subtitle: How | Learned to Stop Worrying and Love the Curlybracket.

So, what is Chapel and why should you care? We all know that Python is the
best thing since sliced bread. Python comes with batteries included and there
is nothing that can’t be expressed with Python in a short, concise, elegant,
and easily readable manner. But, if you find yourself using any of these
packages - Bohrium, Cython, distarray, mpi4py, threading, multiprocessing,
NumPy, Numba, and/or NumExpr - you might have done so because you felt
that Python’s batteries needed a recharge.

You might also have started venturing deeper into the world of curlybrackets.
Implementing low-level methods in C/C++ and binding them to Python. In the
process you might have felt that you gained performance but lost your

https://chapel-for-python-programmers.readthedocs.io/

68

https://chapel-for-python-programmers.readthedocs.io/

Python < Chapel Interoperability e

« We've recently added support for calling from Python to Chapel

» Exposes Chapel libraries as Python modules

» Uses compiler-generated Cython files under the hood
« Users have extended this to write Chapel cells within Jupyter, calling from Python
* Work remains to support additional types and usage patterns

 For more information, see:
https://chapel-lang.org/docs/technotes/libraries.html#using-your-library-in-python

©2018 Cray Inc. C 69

https://chapel-lang.org/docs/technotes/libraries.html

The Chapel Team at Cray (May 2018) S

V’V.V

;). baad ~12 full-time employees + ~2 summer interns

© 2018 Cray Inc. 70

Chapel is Currently Hiring cmas

» Our team has two positions open at present
* An ideal candidate would have experience in:
« parallel, concurrent, and/or distributed computing
» compilers
« But more important are software developers...
...with a passion for creating a great parallel language
...who are fearless in tackling the related technical and social challenges

© 2018 Cray Inc. (@ 71

Chapel Community Partners

L. Ly N r -
THE GEORGE
; ettt | Ll 7. WASHINGTON
HAVERFORD , UNIVERSITY
COLLEGE AMD {LIN WASHINGTON, DC

5K °F

C ’ THE UNIVERSITY OF TOKYO

THE UNIVERSITY
OF ARIZONA

-~

: A
rreeee '"I

M Lawrence Livermore
National Laboratory

BERKELEY LAB

Sandia National Laboratories

Lawrence Berkeley
National Laboratory

(and several others...)

A SRICE

R ANY

L2\
WESTERN

WASHINGTON UNIVERSITY

gE\
UNIVERSITY OF

MARYLAND

https://chapel-lang.org/collaborations.html

© 2018 Cray Inc.

72

https://chapel-lang.org/collaborations.html

Chapel Central

https://chapel-lang.orqg

downloads
presentations

papers

resources
documentation

© 2018 Cray Inc.

N

CHAPEL

Home
What is Chapel?

What's New?
Upcoming Events
Job Opportunities

How Can | Learn Chapel?
Contributing to Chapel
Documentation
Download Chapel

Try it Now
Reloase Notes

Social Media / Blog Posts
Press

Presentations
Tutortals
Publications and Papers

CHuwW
CHUG

Contributors / Credits
Research / Collaborations

chapel-ang org
chapel_info@cray com

The Chapel Parallel Programming Language

What is Chapel?

Chapel is a modern programming language that is...

. p first-class for concurrent and parallel computation
« producti ig with progr ility and performance in mind

« portable: runs on laptops, clusters, the cloud, and HPC systems
.
.

scalable: supports locality-oriented features for distributed memory systems
open-source: hosted on GitHub, permissively licensed

New to Chapel?

As an introduction to Chapel, you may want to...

read a blog article or book chapter

watch an overview talk or browse its slides

download the release

browse sample programs

view other resources to learn how to trivially write distributed programs like this:

use CyclicDist; // use the Cyclic distribution Library
config const n « 100; // use --n=<val> when executing to override this defoult

forall 1 in {1..n) dmapped Cyclic(startldx=1) do
writeln("Hello from iteration ", i, " of ", n, " running on node ", here.id);

What's Hot?

Chapel 1.17 is now available—download a copy or browse its release notes
* The advance program for CHIUW 2018 is now available—hope to see you there!

(v} B s = « Chapel is proud to be 2 Rails Girls Summer of Code 2018 organization
Eivo « Watch talks from ACCU 2017, CHIUW 2017, and ATPESC 2016 on YouTube
« Browse slides from SIAM PP18, NWCPP, Sealang, SC17, and other recent talks
* Also see: What's New?
c

Es

CRANY

73

https://chapel-lang.org/

Chapel Online Documentation cmas

https://chapel-lang.org/docs: ~200 pages, including primer examples

Chapel Documentation

Docs » Chapel Documentation View page source

version117 ¥

Chapel Documentation
Compiling and Running Chapel

uickstart Instructions
Q ! # Chapel Documentation

Using Chapel
Platform-Specific Notes version 1.17 ¥

Technical Notes

Docs » Using Chapel

+ Tank Paraedam View pag

Using Chapel

Tools

Task Paralleli:
Writing Chapel Programs Contents 38 elism

Using Chapel

Quick Reference
Hello World Variants

This primer iustrates Chapef's paraliel tasking features, namely the begse . comegin . 30 cotors!

atements

Primers

Language Specification
Built-in Types and Functions
Standard Modules
Package Modules

1 Matement sgawns 3 thread of execution that & indegendent of the Current (maen) thread

Standard Layouts and Distributions
Chapel Users Guide (WIP)

© Task Paratebare

Sagte witete -
ek P et

[
Language Hlstory O Previous e »:;:y:.l.":.:." COntimues 0n 10 the next statement. There & 1o guiw antee 28 10 Which
[T

S/ Sngon

¢ Chapel Evolution

« Archived Language Specifications

Cobegin Statements

© 2018 Cray Inc.

https://chapel-lang.org/docs

Chapel Social Media (no account required) cmas

Followers

278

Followng

48

Tweets & replies

Media

7= Chapel Parallel Programming Language
\—,/ 2 wubacrbers

woue veeos PLAYUSTS CasmeLs ABOUT

Programming
Language 5 “rin Chapel videos #av AL
@ChepelLanguage ' D ey A slayst of fewnsed Cruces iresentationa

CHIUW 2017 keynote: Chapel's Home in the New Landscape of

Scientific Frameworks, Jonathan Dursi
SUBSCRIP TIONS B > G\ 0 Page - MA vemy

WM Q rovswonvutu

® Chapel Programming Language
@

http://twitter.com/ChapelLanguage 8 o & ot

The Audacity of Chapet: Scalable Pacallel Programming Done Right -
Events Al next week's Scientific Computing PuPPy (Puget Sound "7 Brad Chamberiain [ACCU 2017]
Programming Python User Group) meet-up, wel be giving an Q@ Gemg ACCU Conterance + 11K v 1 your
Info and Ads introduction to the Chapel language. Join us!
formenriet RLDS: /www.meetup, com/PSPPython/events/252719582/ AMORE FROM YOUTVSE - Wrpeng dosk

> D o veneens PYCON UK 2017: On Big Computation and Python
http://facebook.com/ChapelLanguagef * “™
O semege

https://www.youtube.com/channel/UCHmMmM27bYjhknKEmU7ZzPGsQ/

©2018 Cray Inc. C 8

http://twitter.com/ChapelLanguage
http://facebook.com/ChapelLanguage
https://www.youtube.com/channel/UCHmm27bYjhknK5mU7ZzPGsQ/

Chapel Community cmas

Questions Developer Jobs Tags Users [chapel] -+ EETEEE o9e es

140

Tagged Questions - votes rarswersd

Chagel is a portatie, open-source paralel programiming language. Use Bus tag 1o ask quessons about the Chaped
language or s implementaton

Leam more imgrove g rlo Top users Synonyms

chapel-lang / chapel @waiche 45 WU 405 Yien s

6 Tuple Concatenation in Chapel oce @ hsves 2 P roguests 26 Proects @ Settings aghts «

Lets sary I'm generating Suples and | want 1o concatenate them as they come. How do | 6o s The lolowing)

Goos element-wise addtion: If ts * (00", "cal’), 1 * (Dar", "dog”) 18 += L gves ts =
Filers « s issue is.open Labels Milestones
holes concaenstion addtion hoc chepel .

o
e | - P —— e ——

Brian Dotan
. what is the syntax for making a copy (not a reference) to an array?

Implement “bounded-coforali” optimization for remote coforalls awe: Compler

6 Is there a way 10 use non-scalar values in functions with where clauses in Chapel? W Michael Ferguson

" ke in 2 new variable?

. Brian Dolan
oh, got it, thanks!

I've been trying out Chapel off and on over the past year or 50. | have used C and C++ briefly in the past, bul #6357 coanes 1) hours ag0 by ronemt

most of My experence is wih Gynamic WnGuUages Such a3 PyBon, Ruby. and Erang more
E - Consider using Processor A1omIcs for remote coforalis ENACount wes: Compler
chacel trpe Pertormance.

iﬂ}..p. 8306 spened 13 hours age by renewh
47 views . Make UNINStall ares BTR type Festurs Reguest

3 epened 14 hours age by

6 Is there any writef() format specifier for a bool?

Michael Ferguson

make check doesn’t work with ./configure e §TR
wna 1 locked at e writef() documentation for any bool speciier and there Gant seem 10 be any. In 8 Chape! PE352 coened ¥ hours ago by mee!
g program | have: ... config const verly = faise; * Tt works but | want 10 use weitel()

H

Passing variable via in intent to a forall loop seems to create an iteration-private variable,
tyse: By

—— —~—m nc‘l'n lm-w‘nmnm res Compier
https://stackoverflow.com/questions/tagged/chapel Remove chol_comm_make_progress s . I

sn'tthere s proc f(ref arr) () aswell?

“ @

Runtime error after make on Linux Mint see §TR weer sve
00148 comred 8 Gy 0z by Garenans Michael Ferguson

yes. The default intent for array is ‘ref” o ‘const ref” depending on if the Runction body modifies
2. S0 that's effectively the default

https://github.com/chapel-lang/chapel/issues

https://qitter.im/chapel-lang/chapel
read-only mailing list: chapel-announce@lists.sourceforge.net (~15 mails / year)

© 2018 Cray Inc. (@ 76

https://stackoverflow.com/questions/tagged/chapel
https://github.com/chapel-lang/chapel/issues
https://gitter.im/chapel-lang/chapel

Suggested Reading: Chapel history and overview ===

Chapel chapter from
* a detailed overview of Chapel’s history, motivating themes, features
 published by MIT Press, November 2015
« edited by Pavan Balaji (Argonne)
 chapter is also available

© 2018 Cray Inc. .

https://mitpress.mit.edu/books/programming-models-parallel-computing
https://chapel-lang.org/publications/PMfPC-Chapel.pdf

Suggested Rea

IN

Chapel Comes of Age: Making

Bradford L. Chamberiain, Ellict Rooaghas, Bes Alteecht, Lydia Duncas, Michael Ferguson,
Bea Harsbbarger, David ltea, David Keaton, Vassily Livisov, Preston Sahabu, and Greg Titus
Chapel Team
Cray Inc.
Seatife, WA, USA
chapel info@cray com

mh-pv—qh-n--l

1. INTRODUCTION
Chapel is a programming language designed %o suppoct
productive, -purpose parallel competing s scale.

chusters 1o Cray systems. In addition, Frograms can
be run on cloud-computing platforms asd HPC syssems
from other vendors. Chapel s being developed in an opea-
source masner under the Apache 2.0 licemse and is hosted
GitHeb!

Ao gt comhapel Langbagel

The development of the Chapel langeage was usdentaken
by Cray lec. as past of its participetion in the DARPA High
Productivity Computing Systems program (HPCS). HPCS
wrapped wp in late 2012, at which point Chapel was a com-
pelling prototype, having successfully demoestrated several
key research challenges that the project had usdertaken.
Chief among Bese was supporting dats- and tsk-paraliclism
in a unificd manner within a single language. This was
accomplished by supporting the creation of high-level data-
paralic] abstractsoes like parallel Joops aad wrays in terms
of Jower-level Chapel featsres such a5 classes, iterators, and

s

Under HPCS, Chapel also successflly supported the ex-
pression of parallelism using distinct language features from
those used 1o costrol locality and affieiry—that is, Chapel
programmens specify which shosld e in
parallel distinctly tm-gx-lyq-hmmw

suppoct
works. This allows Chapel 10 take advantage of native
Parwice wipport for remote s, pets, and stoeic memory

operations.
Despite these successes, at the close of HPCS, Chapel was

posential users were safficiently positive that, is early 2013,
Cray embarked ce a follow-up effort 10 improve Chapel
and move it towards being & production-ready language.
Colloguially, we refer 10 this effort as “the five-year push™

‘This paper's coatribution is 10 describe the results of this
five-year effort, providing readers with an understanding of
Chapel's progress aad achievements since the end of e
HPCS program. In doing 30, we directly compare the status
of Chapel version 1.17, released last moeth, with Chapel
versice 1.7, which was released five years ago is Apeil 2013,

Recent Progress (CUG 2018) ===~

available at chapel-lang.org

Chapel Comes of Age: =
_ Productive Parallelism at Scale @:;:T.
CUG 2018 =/
Brad Chamberlain, Chapel Team, Cray Inc.

© 2018 Cray Inc.

(@) 78

https://chapel-lang.org/publications/cug2018-chapel.pdf
https://chapel-lang.org/publications/ChapelForCUG2018.pdf

Summary and Wrap-up Smas

Chapel offers a unique combination of productivity, performance, and parallelism

Chapel may be attractive to Python programmers seeking performance,
parallelism, scalability, and/or static typing

We're interested in identifying and working with the next generation of Chapel
users, and are interested in your thoughts and feedback

We are hiring!

I'll be available afterwards for questions, discussion, demos, efc.

© 2018 Cray Inc. . 79

SAFE HARBOR
STATEMENT

This presentation may contain forward-looking
statements that are based on our current
expectations. Forward looking statements may
include statements about our financial
guidance and expected operating results, our
opportunities and future potential, our product
development and new product introduction
plans, our ability to expand and penetrate our
addressable markets and other statements
that are not historical facts.

These statements are only predictions and
actual results may materially vary from those
projected. Please refer to Cray's documents
filed with the SEC from time to time
concerning factors that could affect the
Company and these forward-looking
statements.

© 2018 Cray Inc.

QUESTIONS?

cray.com @)
@cray_inc W

napel-lang.orc 7 linkedin.com/company/cray-inc-/ in

