
Brad Chamberlain, Sung-Eun Choi

Steve Deitz, Angeles Navarro

Cray Inc. / University of Málaga

PGAS 2011: October 17th, 2011

(Or perhaps: Partitioned Global Namespace Languages)

Concept:
 support a shared namespace

 “any parallel task can access any lexically visible variable”

 give each variable a well-defined affinity to a system node
 “local variables are cheaper to access than remote ones”

 founding members: UPC, Co-Array Fortran, Titanium

Strengths:
 permits users to specify what to transfer rather than how

 supports reasoning about locality/affinity to get scalability

Weaknesses (of traditional PGAS languages):
 restricted to SPMD programming and execution models

 limited support for distributed arrays

 Distinct concepts for parallelism vs. locality
 e.g., coforall loop creates tasks, locale type represents locality

 Rich set of array types

3

A

B

C
A

A

A

A

 General/dynamic/multithreaded parallelism

Q1: How are arrays laid out in memory?
 Are regular arrays laid out in row- or column-major order? Or…?

 How are sparse arrays stored? (COO, CSR, CSC, block-structured, …?)

 What memories/memory types are used?

Q2: How are arrays distributed between locales/nodes?
 Completely local to one locale? Or distributed?

 If distributed… In a blocked manner? cyclically? block-cyclically?
recursively bisected? dynamically rebalanced? …?

4

dynamically

…?

…?

Q1: How are arrays laid out in memory?
 Are regular arrays laid out in row- or column-major order? Or…?

 How are sparse arrays stored? (COO, CSR, CSC, block-structured, …?)

 What memories/memory types are used?

Q2: How are arrays distributed between locales/nodes?
 Completely local to one locale? Or distributed?

 If distributed… In a blocked manner? cyclically? block-cyclically?
recursively bisected? dynamically rebalanced? …?

5

dynamically

…?

…?
A: Chapel’s domain maps are designed to give the

user full control over such decisions

const ProblemSpace = [1..m];

var A, B, C: [ProblemSpace] real;

A = B + alpha * C;

7

=

α·
+

const ProblemSpace = [1..m];

var A, B, C: [ProblemSpace] real;

A = B + alpha * C;

8

=

α·
+

No domain map specified => use default layout
• current locale owns all indices and values
• computation will execute using local processors only

const ProblemSpace = [1..m]

dmapped Block(boundingBox=[1..m]);

var A, B, C: [ProblemSpace] real;

A = B + alpha * C;

9

=

α·
+

const ProblemSpace = [1..m]

dmapped Cyclic(startIdx=1);

var A, B, C: [ProblemSpace] real;

A = B + alpha * C;

10

=

α·
+

HotPAR’10: User-Defined Distributions and Layouts in Chapel
Chamberlain, Deitz, Iten, Choi; June 2010

CUG 2011: Authoring User-Defined Domain Maps in Chapel
Chamberlain, Choi, Deitz, Iten, Litvinov; May 2011

Chapel release:

 Technical notes detailing domain map interface for programmers:

$CHPL_HOME/doc/technotes/README.dsi

 Current domain maps:

$CHPL_HOME/modules/dists/*.chpl

layouts/*.chpl

internal/Default*.chpl

11

Q3: How are data parallel loops implemented?
forall i in B.domain do B[i] = i/10.0;

forall c in C do c = 3.0;

 How many tasks? Where do they execute?

 How is the iteration space divided between the tasks?

12

A B C

Q4: How are parallel zippered loops implemented?
forall (a,b,c) in (A,B,C) do

a = b + alpha * c;

 Particularly given that the iterands might have incompatible
distributions, memory layouts, and parallelization strategies

Q3: How are data parallel loops implemented?
forall i in B.domain do B[i] = i/10.0;

forall c in C do c = 3.0;

 How many tasks? Where do they execute?

 How is the iteration space divided between the tasks?

13

Q4: How are parallel zippered loops implemented?
forall (a,b,c) in (A,B,C) do

a = b + alpha * c;

 Particularly given that the iterands might have incompatible
distributions, memory layouts, and parallelization strategies

A: Chapel’s leader-follower iterators (the topic of this
paper) are designed to give users full control over
such decisions

Background and Motivation

Quick Introduction to Chapel

 Leader-Follower Iterators

 Results and Summary

14

 An emerging parallel programming language

 Design and development led by Cray Inc.

 Started under the DARPA HPCS program

 Overall goal: Improve programmer productivity
 Improve the programmability of parallel computers

 Match or beat the performance of current programming models

 Support better portability than current programming models

 Improve the robustness of parallel codes

 A work-in-progress

15

 Being developed as open source at SourceForge

 Licensed as BSD software

 Target Architectures:
 multicore desktops and laptops

 commodity clusters

 Cray architectures

 systems from other vendors

 (in-progress: CPU+accelerator hybrids, manycore, …)

16

General Parallel Programming
 “any parallel algorithm on any parallel hardware”

Multiresolution Parallel Programming

 lower levels for control

 higher levels for programmability, productivity

17

Domain Maps

Data Parallelism

Task Parallelism

Base Language

Target Machine

Locality Control

Chapel language concepts

18

Domain Maps

Data Parallelism

Task Parallelism

Base Language

Target Machine

Locality Control

19

iter fibonacci(n) {

var current = 0,

next = 1;

for 1..n {

yield current;

current += next;

current <=> next;

}

}

for f in fibonacci(7) do

writeln(f);

0

1

1

2

3

5

8

iter tiledRMO(D, tilesize) {

const tile = [0..#tilesize,

0..#tilesize];

for base in D by tilesize do

for ij in D[tile + base] do

yield ij;

}

const D = [1..n, 1..n];

for ij in tiledRMO(D, 2) do

write(ij);

(1,1)(1,2)(2,1)(2,2)

(1,3)(1,4)(2,3)(2,4)

(1,5)(1,6)(2,5)(2,6)

…

(3,1)(3,2)(4,1)(4,2)

20

var A: [0..9] real;

for (i,j,a) in (1..10, 2..20 by 2, A) do

a = j + i/10.0;

writeln(A);

2.1 4.2 6.3 8.4 10.5 12.6 14.7 16.8 18.9 21.0

21

Domain Maps

Data Parallelism

Task Parallelism

Base Language

Target Machine

Locality Control

22

coforall t in 0..#numTasks do

writeln(“Hello from task “, t, “ of “, numTasks);

writeln(“All tasks done”);

Hello from task 2 of 4

Hello from task 0 of 4

Hello from task 3 of 4

Hello from task 1 of 4

All tasks done

23

Domain Maps

Data Parallelism

Task Parallelism

Base Language

Target Machine

Locality Control

Definition:
 Abstract unit of target architecture

 Supports reasoning about locality

 Capable of running tasks and storing variables
 i.e., has processors and memory

Typically: A multi-core processor or SMP node

24

 Specify # of locales when running Chapel programs

 Chapel provides built-in variables representing locales

 On-clauses support placement of computations:

25

% a.out --numLocales=8

config const numLocales: int = …;

const LocaleSpace = [0..#numLocales];

const Locales: [LocaleSpace] locale;

L0 L1 L2 L3 L4 L5 L6 L7

Locales

% a.out –nl 8

writeln(“on locale 0”);

on Locales[1] do

writeln(“now on locale 1”);

writeln(“on locale 0 again”);

on A[i,j] do

bigComputation(A);

on node.left do

search(node.left);

26

Domain Maps

Data Parallelism

Task Parallelism

Base Language

Target Machine

Locality Control

27

forall a in A do

writeln(“Here is an element of A: ”, a);

How many tasks?
• (That’s what we’re here to figure out!)
• In practice, typically 1 ≤ #Tasks << #Iterations)

forall (a, i) in (A, 1..n) do

a = i/10.0;

Forall-loops may be zippered, like for-loops
• Corresponding iterations must match up
• (But how?!)

Other languages have supported zippered iteration…

…but have either been serial
(e.g., Python, Ruby, …)

…or parallel, yet only supporting a small number of

built-in zipperable types/parallelization strategies
(e.g., NESL, HPF, ZPL, …)

28

Background and Motivation

Quick Introduction to Chapel

Leader-Follower Iterators

 Results and Summary

31

32

 Chapel defines all zippered forall loops in terms of
leader-follower iterators:
 leader iterators: create parallelism, assign iterations to tasks

 follower iterators: serially execute work generated by leader

 Given…
forall (a,b,c) in (A,B,C) do

a = b + alpha * c;

…A is defined to be the leader

…A, B, and C are all defined to be followers

33

 Conceptually, the Chapel compiler translates:
forall (a,b,c) in (A,B,C) do

a = b + alpha * c;

into:

inlined A.lead() iterator, which yields work…

for (a,b,c) in (A.follow(work),

B.follow(work)

C.follow(work)) do

a = b + alpha * c;

Leader iterators are defined using task/locality features:
iter BlockArr.lead() {

coforall loc in Locales do

on loc do

coforall tid in here.numCores do

yield computeMyChunk(loc.id, tid);

}

Follower iterators simply use serial features:
iter BlockArr.follow(work) {

for i in work do

yield accessElement(i);

}

34

Domain Maps

Data Parallelism

Task Parallelism

Base Language

Target Machine

Locality Control

35

 Given the previous leader iterators…
forall (a,b,c) in (A,B,C) do

a = b + alpha * c;

…would get rewritten by the Chapel compiler as:
coforall loc in Locales do

on loc do

coforall tid in here.numCores {

const work = computeMyChunk(loc.id, tid);

for (a,b,c) in (A.follow(work),

B.follow(work)

C.follow(work)) do

a = b + alpha * c; }

=

α·
+

=

α·
+

…permit the user to write high-level parallel loops…
 …without tripping over all of the low-level details

 while still able to reason about them semantically

…provide clear answers to our motivating questions:
 Chapel semantics define a leader for each data parallel loop

 Leader iterators decide…
 how many tasks to use

 where the tasks execute

 what work each task owns

 Followers are responsible for yielding corresponding
iterations – even if they aren’t local
 gives them control over communication granularity/approach

36

Q: “What if I don’t like the approach implemented by
an array’s leader iterator?”

A: Several possibilities…

37

forall (b,a,c) in (B,A,C) do

a = b + alpha * c;

38

Make something else the leader.

const ProblemSize = [1..n] dmapped BlockCyclic(start=1,

blocksize=64);

var A, B, C: [ProblemSize] real;

forall (a,b,c) in (A,B,C) do

a = b + alpha * C;

39

Change the array’s default leader by changing its
domain map (perhaps to one that you wrote yourself).

forall (a,b,c) in (dynamic(A, chunk=64), B, C) do

a = b + alpha * c;

40

Invoke some other leader iterator explicitly
(perhaps one that you wrote yourself).

 Statically-blocked leaders and followers
 local and distributed (single- and multi-locale)

 OpenMP-style dynamic leader iterators
 dynamic (deal out fixed chunk size)

 guided (deal out varying chunk sizes)

 Adaptive work-stealing leader

 Pseudo-random number stream follower

(The paper also covers coding conventions and
implementation details in more detail than the talk)

41

Background and Motivation

Quick Introduction to Chapel

Leader-Follower Iterators

Results and Summary

42

Shared Memory: Chapel vs. OpenMP
 Chapel dynamic vs. OpenMP dynamic

 Chapel guided vs. OpenMP guided

 Chapel adaptive vs. OpenMP guided

Distributed Memory: HPCC Benchmarks
 STREAM: multi-locale static block leader & followers

 RA: multi-locale static block leader + random follower

43

44

46

 Leader-follower iterators permit users to write their
own recipes for parallel iteration in Chapel
 Control over granularity, locality, work mapping

 Shared- or distributed-memory execution

 Without need to modify compiler or runtime

 Initial performance results support the approach
 Shared-memory comparable to OpenMP

 Distributed-memory scales, albeit with loop startup
overhead when written in global-view style

47

 Break leader into two steps to permit amortization of
overheads
 creation of parallelism vs. assignment of work

 Improve support for multidimensional iteration
 works today, but produces suboptimal loop nests

 Support option to write standalone forall iterators
 today, they use leader-follower interface which is overkill

 And several other things…

48

 Cray:

 External

Collaborators:

 Interns:

5050

Brad Chamberlain Sung-Eun Choi Greg Titus Vass Litvinov

Albert Sidelnik Jonathan Turner Angeles Navarro

Jonathan Claridge Hannah Hemmaplardh Andy Stone Jim Dinan Rob Bocchino Mack Joyner

You? Your

Friend/Student/

Colleague?

Tom Hildebrandt

 Chapel Home Page (papers, presentations, tutorials):
http://chapel.cray.com

 Chapel Project Page (releases, mailing lists, code):
http://sourceforge.net/projects/chapel/

 General Questions/Info:
chapel_info@cray.com (or SourceForge chapel-users list)

 Upcoming Events:
SC11 (November, Seattle WA):

Monday, Nov 14th: full-day comprehensive Chapel tutorial

Wednesday, Nov 16th: BoF: Chapel Lightning Talks

Friday, Nov 18th: half-day outreach Chapel tutorial

throughout: PGAS booth
51

http://chapel.cray.com/
http://sourceforge.net/projects/chapel/
mailto:chapel_info@cray.com
mailto:chapel_info@cray.com
mailto:chapel_info@cray.com

http://sourceforge.net/projects/chapel/http://chapel.cray.com chapel-info@cray.com

http://sourceforge.net/projects/chapel/
http://chapel.cray.com/
mailto:chapel-info@cray.com
mailto:chapel-info@cray.com
mailto:chapel-info@cray.com

