—1

Hewlett Packard
Enterprise

PRACTICAL EXAMPLES OF
PRODUCTIVITY AND PERFORMANCE IN CHAPEL

Brad Chamberlain

PASC23
June 26, 2023

WHAT IS CHAPEL?

Chapel: A modern parallel programming language

» portable & scalable
e open-source & collaborative

Goals:

e Support general parallel programming
o Make parallel programming at scale far more productive

PRODUCTIVE PARALLEL PROGRAMMING: A POTENTIAL DEFINITION

Imagine a programming language for parallel computing that was as...
...programmable as Python

..yet also as...
..fast as Fortran/C/C++

...scalable as MPI/SHMEM

...GPU-ready as CUDA/OpenMP/OpenCL/OpenACC/...
...portable as C

OUTLINE

e What is Chapel?

e Applications of Chapel
e Chapel Intfro on CPUs and GPUs
e Wrap-up

CHAPEL IS COMPACT, CLEAR, AND COMPETITIVE

1
STREAM TRIAD: C + MPI + OPENMP use BlockDist;
. config const n = 1 000 000,
et alpha = 0.01;
== const Dom = Block.createDomain ({1l..n}); 0
. “i*|var A, B, C: [Dom] real; o
, return errCount; scjl T3
in:egigieitlemrj(l;?cc Params *params, int doIO) { : . B e 2 . O ;
calvVer izeof (double), 0); w;c;g E C = 1 . O ;
— ‘ A =B + alpha * C;
]
HPCC RA: MPI KERNEL

T[r & indexMask].xor (r)

forall (, r) in zip(Updates, RAStream()) do

r

30000
25000
20000

15000
10000
5000

GUPS

14
12
10

STREAM Performance (GB/s)

MPI+OpenMP —¢—
= Chapel EP —+—
Chapel Global - -+ -

64 256

Locales (x 36 cores / locale)

RA Performance (GUPS)

R

1

64
Locales (x 36 cores / locale)

16 32

APPLICATIONS OF CHAPEL

Python3 Client m™ma Chapel Server

Socket

t Distributed
Object Store
ﬁ Patform u
CHAMPS: 3D Unstructured CFD Arkouda: Interactive Data Science at Massive Scale ChOp: Chapel-based Optimization ChplUltra: Simulating Ultralight Dark Matter
Laurendeau, Bourgault-Coté, Parenteau, Plante, et al. Mike Merrill, Bill Reus, et al. T. Carneiro, G. Helbecque, N. Melab, et al. Nikhil Padmanabhan, J. Luna Zagorac, et al.
Ecole Polytechnique Montréal U.S. DoD INRIA, IMEC, et al. Yale University et al.

Low-pass filter with LOWESS (intrinsically parallel)

[

RH (%) at Lake Mead

(] e " L ==
2010 2011 2012 2013 2014 2015

NA
\7
l a

Lattice-Symmetries: a Quantum Many-Body Toolbox Desk dot chpl: Utilities for Environmental Eng. RapidQ: Mapping Coral Biodiversity ChapQG: Layered Quasigeostrophic CFD

date

Tom Westerhout Nelson Luis Dias Rebecca Green, Helen Fox, Scott Bachman, et al. lan Grooms and Scott Bachman
Radboud University The Federal University of Parand, Brazil The Coral Reef Alliance University of Colorado, Boulder et al.
FEATUI;ES ENSEMBLES .. :................:
o\o/e\ojo ZDIOSNIO P,
EXPLORATION PARAMETERS RATIONALE - s c: : :
Chapel-based Hydrological Model Calibration CrayAl HyperParameter Optimization (HPO) CHGL: Chapel Hypergraph Library Your Application Here?
Marjan Asgari et al. Ben Albrecht et al. Louis Jenkins, Cliff Joslyn, Jesun Firoz, et al.
University of Guelph Cray Inc. / HPE PNNL

: (images provided by their respective teams and used with permission) I 6

CHAMPS SUMMARY

What is it?
e 3D unstructured CFD framework for airplane simulation
o ~85k lines of Chapel written from scratch in ~3 years

Who wrote it? I
« Professor Eric Laurendeau’s students + postdocs at Polytechnique Montreal R
! 3 POLYTECHNIQUE SpNSiissals -

g MONTREAL

Why Chapel?
« performance and scalability competitive with MPI + C++
« students found it far more productive to use i

« enabled them to compete with more established CFD centers

e
= =
4+
e
ok 2 B

EEETETEY

: (images provided by the CHAMPS team and used with permission) I 7

CHAMPS COMMUNITY HIGHLIGHTS

e Team participated in the 7t AIAA High-lift Prediction Workshop and 15t AIAA Ice Prediction Workshop
« Generating comparable results to high-profile sites: Boeing, Lockheed Martin, NASA, JAXA, Georgia Tech, ...

e Five papers published last summer at 2022 AIAA Aviation

« While on sabbatical, Eric presented CHAMPS and Chapel at ONERA, DLR, Université de Strasbourg, ...

e Student presentations at CASI/IASC Aero 21 Conference and to CFD Society of Canada (CFDSC)

POLYTECHNIQUE MONTREAL

Application

- Fourth AIAA High Lift Prediction Workshop
| Prediction Workshop

® Case 1b : Grid refinement study for a constant angle of attack of 7.05°;
® Results are in line with state of the art RANS solver.

05
acuat
om tooM s
o
* - \\\
acy.. a5
%
Ve PR
At A e
. e Y
=~
W
¢ ax10® 1

Cp 65 6 55 5 45 4 35 3 25 2 15 -1 05 0 05 1

[g 5 5 35 5
Adapted from Olivier-Gooch, C., Coder, J. 4th CFD High Lift Prediction Workshop, Fixed-Grid
RANS TFG, AIAA HLPW4

POLYTECHNIQUE MONTREAL

Application - First AIAA Ice Prediction Workshop
® Case 241 (left): Rime ice prediction on small NACA23012 airfoil (2D, low temp.);
® Case 363 (right): Glaze ice prediction on NACA0012 swept wing (3D, warmer temp.).

o
001
0.00: E
— >
E
>
0.00:
, s L L
0 502
X (Normal to leading edge at AoA=0 deg) [m] a
Case 241 (2D rime ice) i
77

Numerical Verification

® The pressure drag convergence of CHAMPS is similar to the workshop resultsJ

Cop

CHAMPS —e— CFL3D

NSU3D —e— FUN3D-V
0.0175
0.017 -
0.0165
0.016 |-
0.0155
0.015

FUN3D —e—

0.0145
0.014 -

0.0135

0.013
0.0e+00

5.0e-05 1.0e-04 1.5e-04

h2 = (1N)23

24/29

: (slide images taken from Eric Laurendeau’s SIAM PP22 talk, A Case Study on the Impact of Chapel within an Academic Computational Aerodynamic Laboratory, with permission) I 8

https://chapel-lang.org/presentations/SIAM_2022_P22_Laurendeau.pdf

CHAMPS: EXCERPT FROM ERIC’S CHIUW 2021 KEYNOTE (TRANSCRIPT)

HPC Lessons From 30 Years of Practice in CFD Towards Aircraft Design and Analysis (June 4, 2021)

“To show you what Chapel did in our lab... [our previous framework] ended up 120k lines.
And my students said, ‘We can't handle it anymore. It’s too complex, we lost track
of everything.” And today, they went from 120k lines to 48k lines, so 3x less.

But the code is not 2D, it’s 3D. And it’s not structured, it’s unstructured, which is way
more complex. And it’s multi-physics... So, Pve got industrial-type code in 48k lines.”

“[Chapel] promotes the programming efficiency ... We ask students at the master’s
degree to do stuff that would take 2 years and they do it in 3 months. So, if you

o
want to take a summer internship and you say, ‘program a new turbulence model,” well m f%?
they manage. And before, it was impossible to do.” e

. POLYTECHNIQUE

MONTREAL

“So, for me, this is like the proof of the benefit of Chapel, plus the smiles | have on my students everyday in the lab
because they love Chapel as well. So that’s the key, that’s the takeaway.”

e Talk available online: https://youtu.be/wD-a KyB8al?t=1904 (hyperlink jumps to the section quoted here)

: (images provided by the CHAMPS team and used with permission) I 9

https://youtu.be/wD-a_KyB8aI?t=1904

APPLICATIONS OF CHAPEL

CHAMPS: 3D Unstructured CFD

Laurendeau, Bourgault-Coté, Parenteau, Plante, et al.

Ecole Polytechnique Montréal

Lattice-Symmetries: a Quantum Many-Body Toolbox Desk dot chpl: Utilities for Environmental Eng.
Tom Westerhout
Radboud University

Chapel-based Hydrological Model Calibration
Marjan Asgari et al.
University of Guelph

—

apel Server

e E I E I

hon3 Client o
fyt 3 Socket

Arithmetic

Distributed
Object Store

Platform P, SMP, Cluster, Laptop, etc.

Arkouda: Interactive Data Science at Massive Scale

Mike Merrill, Bill Reus, et al.
U.S. DoD

Low-pass filter with LOWESS (intrinsically parallel)

RH (%) at Lake Mead

0 =i : L =y
2010 2011 2012 2013 2014 2015
date

Nelson Luis Dias
The Federal University of Parand, Brazil

FEATURES ENSEMBLES
EX?'.ORATIONuPARAMETEMATIONALE

CrayAl HyperParameter Optimization (HPO)
Ben Albrecht et al.
Cray Inc. / HPE

ChOp: Chapel-based Optimization
T. Carneiro, G. Helbecque, N. Melab, et al.
INRIA, IMEC, et al.

RapidQ: Mapping Coral Biodiversity

Rebecca Green, Helen Fox, Scott Bachman, et al.

The Coral Reef Alliance
PR D) d R L4

CHGL: Chapel Hypergraph Library
Louis Jenkins, Cliff Joslyn, Jesun Firoz, et al.
PNNL

(images provided by their respective teams and used with permission)

ChplUltra: Simulating Ultralight Dark Matter
Nikhil Padmanabhan, J. Luna Zagorac, et al.
Yale University et al.

[

. _‘

ChapQG: Layered Quasigeostrophic CFD
lan Grooms and Scott Bachman
University of Colorado, Boulder et al.

?

Your Application Here?

DATA SCIENCE INPYTHON AT SCALE?

Motivation: Imagine you've got...

...HPC-scale data science problems to solve
...a bunch of Python programmers

..access fo HPC systems

———— 4

&%

How will you leverage your Python programmers to get your work done?

— |

ARKOUDA: APYTHON FRAMEWORK FOR INTERACTIVE HPC

Arkouda Client Arkouda Server
“ (y_vritt?n in Pythonk)w (written in Chapel)
. =\
-
e
—

(02 4 ... 199999994 199999996 199999998)

999999999999999999
9999999999999999

N

O User writes Python code in Jupyter,
ﬂ making familiar NumPy/Pandas calls

12

ARKOUDA SUMMARY

What is it?
« A Python client-server framework supporting interactive supercomputing

— Computes massive-scale results (TB-scale arrays) within the human thought loop (seconds to a few minutes)
—Initial focus has been on a key subset of NumPy and Pandas for Data Science

o ~30k lines of Chapel + ~25k lines of Python, written since 2019
« Open-source: hitps://github.com/Bears-R-Us/arkouda

Arkouda Client Arkouda Server
Who wrote it? Sl D i)
« Mike Merrill, Bill Reus, et al., US DoD ; s
6
Why Chapel?
e close to Pythonic
—enabled writing Arkouda rapidly /N/
—doesn’t repel Python users who look under the hood O user writes Python code in Jupyter,
« achieved necessary performance and scalability (1 1) making NumPy/Pandas calls

« ability fo develop on laptop, deploy on supercomputer

: | 13

https://github.com/Bears-R-Us/arkouda

ARKOUDA ARGSORT PERFORMANCE

HPE Apollo (May 2021) X
e HDR-100 Infiniband network (100 Gb/s)
o 576 compute nodes

e 72 TiB of 8—byTe values igg
e ~480 GiB/s (~150 seconds) 400

350
300
250
200
150
100

50

GiB/s

Arkouda Argsort Performance

- HDR-100 IB May 2021, 128 GiB/node —— - - - - - - - - - - -
128 256 512 576
Nodes

A notable performance achievement in ~100 lines of Chapel

ARKOUDA ARGSORT PERFORMANCE

HPE Apollo (May 2021) X
e HDR-100 Infiniband network (100 Gb/s)

Arkouda Argsort Performance
o 576 compute nodes

-) 1200 p------ -~ e o

» 72 TiB of 8-byte values Slingshot-11 April 2023, 32 GiB/node —e—

e ~480 GiB/s (~150 seconds) 1000 = HDR-100 IB May 2021, 128 GiB/node —»— -~ -~ - — >~ - - - - - -
HPE Cray EX (April 2023) &—® o B800 -

S~

« Slingshot-11 network (200 Gb/s) M G600 p--------"-mm T

o 896 compute nodes O 400 b---------em T T

o 28 TiB of 8-byte values 000 koo - .

e ~1200 GiB/s (~24 seconds) :

0]
128 256 512 896
Nodes

A notable performance achievement in ~100 lines of Chapel

ARKOUDA ARGSORT PERFORMANCE

HPE Apollo (May 2021) X
e HDR-100 Infiniband network (100 Gb/s)

Arkouda Argsort Performance
o 576 compute nodes

* 72 TiB of 8-byte values 2888 - Slingshot-11 May 2023, 32 GiB/node —s— — — — — — ——— — __
o ~480 GiB/s (~150 seconds) Slingshot-11 April 2023, 32 GiB/node —e—
/7000 |~ HDR-100 IB May 2021, 128 GiB/node —— ~~ ="~~~ "~~~

HPE Cray EX (April 2023) ®—® = 6000 [------------rrmmmmmmm oo e

+ Slingshot-11 network (200 Gb/s) 0 2888 A

o 896 compute nodes O 3000 b------- T

« 28 TiB of 8-byte values 2000 F-----—~- -

« ~1200 GiB/s (~24 seconds) 1000 - """ """ e :
HPE Cray EX (May 2023) &———§ v 1024 2048 4096 8192

o Slingshot-11 network (200 Gb/s)
e 8192 compute nodes

o 256 TiB of 8-byte values

« ~8500 GiB/s (~31 seconds)

A notable performance achievement in ~100 lines of Chapel

: | 16

APPLICATIONS OF CHAPEL: LINKS TO USERS’ TALKS (SLIDES + VIDEO)

CHAMPS: 3D Unstructured CFD
CHIUW 2021 CHIUW 2022

Python3 Client ;’:‘0 Chapel Server

Dispatcher

ket
g §
£ z
Code Modules § S .
2]
t Meta Distributed Array
Distributed
ﬁ Object Store
Platform PP, SMP, Cluster, Laptop, etc.

Arkouda: Interactive Data Science at Massive Scale

CHIUW 2020 CHIUW 2023

Low-pass filter with LOWESS (intrinsically parallel)

RH (%) at Lake Mead

Lattice-Symmetries: a Quantum Many-Body Toolbox Desk dot chpl: Utilities for Environmental Eng.

CHIUW 2022

Chapel-based.—i-l”;(drologic;'lwr»;lod;l ~Cal?;;ation
CHIUW 2023

—

CHIUW 2022

FEATURES ENSEMBLES
EXPI.ORATIONUPARAMETEMATIONALE

CrayAl HyperParameter Optimization (HPO)
CHIUW 2021

ChOp: Chapel-based Optimization

CHIUW 2021 CHIUW 2023

CHIUW 2023

CHGL: Chapel Hypergraph Library
CHIUW 2020

(images provided by their respective teams and used with permission)

ChplUltra: Simulating Ultralight Dark Matter

CHIUW 2020 CHIUW 2022

(4

NA
\7
l a

ChapQG: Layered Quasigeostrophic CFD

?

Your Application Here?

https://chapel-lang.org/CHIUW2023.html
https://chapel-lang.org/CHIUW2022.html
https://chapel-lang.org/CHIUW2021.html
https://chapel-lang.org/CHIUW2020.html
https://chapel-lang.org/CHIUW2021.html
https://chapel-lang.org/CHIUW2023.html
https://chapel-lang.org/CHIUW2022.html
https://chapel-lang.org/CHIUW2020.html
https://chapel-lang.org/CHIUW2022.html
https://chapel-lang.org/CHIUW2022.html
https://chapel-lang.org/CHIUW2023.html
https://chapel-lang.org/CHIUW2023.html
https://chapel-lang.org/CHIUW2021.html
https://chapel-lang.org/CHIUW2020.html

INTRODUCTION TO CHAPEL
ON CPUS AND GPUS

(BY EXAMPLE USING STREAM TRIAD)

STREAM TRIAD: A TRIVIAL CASE OF PARALLELISM + LOCALITY

Given: n-element vectors A, B, C
Compute: Vi€ 1.n, A, =B, + a-C,

In pictures:

N I A 6 A A
g LT TTTTTTTTTTTTTTTTITTIITT]
+
cITTTTTTTTTTTTTTTIITTTTT]]
o

19

STREAM TRIAD: A TRIVIAL CASE OF PARALLELISM + LOCALITY

Given: n-element vectors A, B, C
Compute: Vi€ 1.n, A, =B, + a-C,

In pictures, in parallel (shared memory / multicore):

AL TT T TTTTT " TTTTT TTTTT]

20

STREAM TRIAD: A TRIVIAL CASE OF PARALLELISM + LOCALITY

Given: n-element vectors A, B, C
Compute: Vi€ 1.n, A, =B, + a-C,

In pictures, in parallel (distributed memory, global-view):

21

STREAM TRIAD: A TRIVIAL CASE OF PARALLELISM + LOCALITY

Given: n-element vectors A, B, C

Compute: Vi€ 1.n, A, =B, + a-C,

In pictures, in parallel (distributed memory multicore, global-view):

22

STREAM TRIAD: AN ALTERNATE APPROACH

Given: n-element vectors A, B, C on each locale

In pictures, in parallel (distributed memory multicore, local-view):

AL TT1 OO TT1 OO 111 L TT1
s (I 1171 ¢ (I T1J ¢ CTIT17 CITITTT1
+ + + + + + + +

¢ LT TT]

a

. I
.

. I
.

STREAM TRIAD: SHARED MEMORY VERSION

stream-ep.chpl

config const n = 1 000 000,
alpha = 0.01;

declare three arrays of size ‘n’

var A, B, C: [l..n] real;

A = B + alpha * C; whole-array operations result in
arallel computation
n [P P

So far, this is simply a multi-core program

Nothing refers to remote locales,

explicitly or implicitly

STREAM TRIAD: DISTRIBUTED MEMORY, EP VERSION

stream-ep.chpl

alpha = 0.01;

coforall loc in Locales {
on loc {

config const n = 1 000 000,

AT [T
B [T T TT T

+ O+ 0+ o+
o e R
« @ | o

—

create a task per locale...

..running ‘on’ its locale

var A, B, C: [l..n] real; :
A =B + alpha * C; then run multi-core Stream
) on local arrays, as before

25

STREAM TRIAD: DISTRIBUTED MEMORY, GLOBAL VERSION

stream-glbl.chpl

config const n =
alpha

use BlockDist;

const Dom =

var A, B, C: [Dom]

A =B + alpha * C;

1 000 000,

= 0.01;

Block.createDomain
real;

({1..n}); ...and distributed arrays

these whole-array operations

will use all cores on all locales

. I A

create a distributed domain (index set)...

'use’ the standard block-distribution module

26

HPC BENCHMARKS: CONVENTIONAL APPROACHES VS. CHAPEL

STREAM TRIAD: C + MPI + OPENMP

arams *params, int doIO) {

use BlockDist;
i | config const n = 1_000 000,
fclose || alpha _ O . Ol;
.l const Dom = Block.createDomain ({1..n});
“."|var A, B, C: [Dom] real;
e = 2.0;
cC =1.0;
A = B + alpha * C;

' Chapel Global ¢= == ¢

HPCC RA: MPI KERNEL

GB/s

T[r & indexMask].xor (r);

forall (, r) in zip(Updates, RAStream()) do

30000
25000
20000
15000
10000

5000

14
12
10

GUPS

onNn A~ O

STREAM Performance (GB/s)

MPI+OpenMP —¢—
= ChapelEP —— -~~~ -~~~ -~~~ ---~--------- -2
Chapel Global - -+ -

16 32 64 256
Locales (x 36 cores / locale)

RA Performance (GUPS)

Chapel —+—

L 1 J
16 32 64 128
Locales (x 36 cores / locale)

HPC BENCHMARKS: CONVENTIONAL APPROACHES VS. CHAPEL

STREAM TRIAD: C + MPI + OPENMP

use BlockDist;

MPI+OpenMP Y=={

config const n = 1 000 000,
alpha = 0.01;
const Dom = Block.createDomain ({1..
var A, B, C: [Dom] real;
1B = 2.0;
o C = 1,07
A = B + alpha * C;
' Chapel Global ¢= == ¢
Chapel EP ¢l
config const n = 1 000 000,
alpha = 0.01;

coforall loc in Locales {
on loc {
var A, B, C: [1l..n] real;
A = B + alpha * C;

GB/s

30000
25000
20000
15000
10000

5000

STREAM Performance (GB/s)

MPI+OpenMP —¢—
Chapel EP —e— — - == == == == === —mm - - - —
Chapel Global - -+ -

1632 64 128 256

Locales (x 36 cores / locale)

These programs are all CPU-only

Nothing refers to GPUs,
explicitly or implicitly

STREAM TRIAD: DISTRIBUTED MEMORY, GPUS ONLY

stream-ep.chpl

config const n = 1 000 000,
alpha = 0.01;

coforall loc in Locales do on loc {
coforall gpu in here.gpus do on gpu {

var A, B, C: [l..n] real;
A =B + alpha * C;

Use a similar ‘coforall’ + ‘on’ idiom
to run a Triad concurrently
on each of this locale’s GPUs

This is a GPU-only program

Nothing other than coordination code
runs on the CPUs

29

STREAM TRIAD: DISTRIBUTED MEMORY, GPUS AND CPUS

stream-ep.chpl

config const n =
alpha =

1 000 000,
0.01;

coforall loc in Locgless
cobegin {
coforall gpu in here.gpus do on gpu {
var A, B, C: [1l..n] real;
A =B + alpha * C;

0 on loc {

var A, B, C: [l..n]
A =B + alpha * C;

‘cobegin { ... } creates a task

per child statement

one task runs our multi-GPU triad

real; D e ey the other runs the multi-CPU triad

This program uses all CPUs and GPUs
across all of our compute nodes

STREAM TRIAD: DISTRIBUTED MEMORY, GPUS AND CPUS (REFACTOR)

stream-ep.chpl

config const n = 1 000 000,
alpha = 0.01;

coforall loc in Locales do on loc {
cobegin {
coforall gpu in here.gpus do on gpu {
runTriad() ;

}

runTriad() ;

proc runTriad() {

—

we can also refactor the repeated
code info a procedure for re-use

var A, B, C: [l..n] real; the compiler creates CPU and GPU
A =B + alpha * C; versions of this procedure

31

CHAPEL ON GPUS: STATUS

Status: Compiling Chapel to GPUs is still reasonably new:

NVIDIA AMD
via Chapel multi- multi- via Chapel multi- multi-
inferop? heroic? loops? GPU? node? interop? heroic? loops? GPU? node?
pre-2021 v N4

CHAPEL ON GPUS: STATUS

Status: Compiling Chapel to GPUs is still reasonably new:

NVIDIA AMD
via Chapel multi- multi- via Chapel multi- multi-
inferop? heroic? loops? GPU? node? interop? heroic? loops? GPU? node?
pre-2021 v v
Mar 2021 v1.24 v v v

CHAPEL ON GPUS: STATUS

Status: Compiling Chapel to GPUs is still reasonably new:

NVIDIA AMD
via Chapel multi- multi- via Chapel multi- multi-
inferop? heroic? loops? GPU? node? interop? heroic? loops? GPU? node?
pre-2021 v v
Mar 2021 v1.24 v v v
Sep 2021 v1.25 v v v v

34

CHAPEL ON GPUS: STATUS

Status: Compiling Chapel to GPUs is still reasonably new:

NVIDIA AMD
via Chapel multi- multi- via Chapel multi- multi-
inferop? heroic? loops? GPU? node? interop? heroic? loops? GPU? node?
pre-2021 v v
Mar 2021 v1.24 v v v
Sep 2021 v1.25 v v v v
Mar 2022 v1.26 v v v v v

CHAPEL ON GPUS: STATUS

Status: Compiling Chapel to GPUs is still reasonably new:

NVIDIA AMD

via Chapel multi- multi- via Chapel multi- multi-

inferop? heroic? loops? GPU? node? interop? heroic? loops? GPU? node?
pre-2021 v v
Mar 2021 v1.24 v v v
Sep 2021 v1.25 v v v v
Mar 2022 v1.26 v v v v v
Jun2022 v1.27 v v v v v v

CHAPEL ON GPUS: STATUS

Status: Compiling Chapel to GPUs is still reasonably new:

NVIDIA AMD
via Chapel multi- multi- via Chapel multi- multi-
inferop? heroic? loops? GPU? node? interop? heroic? loops? GPU? node?
pre-2021 v v
Mar 2021 v1.24 v v v
Sep 2021 v1.25 v v v v
Mar 2022 v1.26 v v v v v
Jun2022 v1.27 v v v v v v
Dec 2023 v1.29 v v v v v v v

CHAPEL ON GPUS: STATUS

Status: Compiling Chapel to GPUs is still reasonably new:

NVIDIA AMD
via Chapel multi- multi- via Chapel multi- multi-

inferop? heroic? loops? GPU? node? interop? heroic? loops? GPU? node?
pre-2021 v v
Mar 2021 v1.24 v v v
Sep 2021 v1.25 v v v v
Mar 2022 v1.26 v v v v v
Jun2022 v1.27 v v v v v v
Dec 2023 v1.29 v v v v v v v
Mar 2023 v1.30 v v v v v v v v v

CHAPEL ON GPUS: STATUS

Status: Compiling Chapel to GPUs is still reasonably new:

NVIDIA AMD
via Chapel multi- multi- via Chapel multi- multi-

inferop? heroic? loops? GPU? node? interop? heroic? loops? GPU? node?
pre-2021 v v
Mar 2021 v1.24 v v v
Sep 2021 v1.25 v v v v
Mar 2022 v1.26 v v v v v
Jun2022 v1.27 v v v v v v
Dec 2023 v1.29 v v v v v v v
Mar 2023 v1.30 v v v v v v v v v
Jun 2023 v1.31 v v v v v v v v v v

—

STREAM TRIAD: CHAPEL GPU PERFORMANCE VS. REFERENCE VERSIONS

|
Stream (using NVIDIA RTX A2000)
oS- i - Sl - Sttt

.............. j‘ 800
5 200 o
Qo —
<N £ »600
o m - C+CUDA DM
© O 100 -~ 1.30 (1.29+Eager Load+LICM) o0 400
I'S -M- 1.30 Prerelease (1.29+Eager Load) '|E 200

-9 1.29
0 : ! 0

32 64 128

Number of Elements (M)

Performance vs. CUDA has become increasingly
competitive over the past 6 months

—

f

Stream (using AMD Instinct MI100)
oY= —W—————— N}

=% C+HIP
-@- Chapel

32 64
Number of Elements (M)

128

WRAP-UP

THE CHAPEL TEAM AT HPE, JUNE 2023

SUMMARY

Chapel is unique among programming languages et persmes o
- built-in features for scalable parallel computing make it HPC-ready | = == ioiegn |
« supports clean, concise code relative to conventional approaches |™ 20 e R
« ports and scales from laptops to supercomputers L T

Chapel is being used for productive parallel computing at scale

e users are reaping its benefits in practical, cutting-edge applications
« in diverse application domains: from physical simulation to data science

Python3 Client ma Chapel Server
ot

« scaling to thousands of nodes / millions of processor cores

R . . coforall gpu in here.gpus do on gpu {
Vendor-neutral GPU support is maturing rapidly var &, B, C: [Ll..n] real;
o fleshes out an overdue aspect of “any parallel hardware” A = B + alpha * C;
}
We’re interested in helping new users and fostering new collaborations m:
1 1

: | 43

CHAPEL RESOURCES

Chapel homepage: hitps://chapel-lang.org

e (points to all other resources)

Social Media:
 Blog: https://chapel-lang.org/blog/
o Twitter: @ChapelLanguage
e Facebook: @ChapellLanguage
e YouTube: @ChapelLanguage

Community Discussion / Support:

 Discourse: https://chapel.discourse.group/
o Gitter: https://gitter.im/chapel-lang/chapel

o Stack Overflow: https://stackoverflow.com/questions/tagged/chapel

o GitHub Issues: https://github.com/chapel-lang/chapel/issues

—

Home

What is Chapel?
What's New?

Blog

Upcoming Events
Job Opportunities

How Can | Learn Chapel?

Contributing to Chapel
Community

Download Chapel

Try Chapel Online

Documentation
Release Notes

Performance
Powered by Chapel

Presentations
Papers / Publications

CHIUW
CHUG

Contributors / Credits

chapel+info@discoursemail.com

O-mEo
YyEO

What is Chapel?

Chapel is a programming language designed for productive parallel computing at scale.

Why Chapel? Because it simplifies parallel programming through elegant support for:

« distributed arrays that can leverage thousands of nodes' memories and cores
« a global namespace supporting direct access to local or remote variables

« data parallelism to trivially use the cores of a laptop, cluster, or supercomputer
« task parallelism to create concurrency within a node or across the system

Chapel Characteristics

« productive: code tends to be similarly readable/writable as Python
« scalable: runs on laptops, clusters, the cloud, and HPC systems

« fast: performance competes with or beats C/C++ & MPI & OpenMP
« portable: compiles and runs in virtually any *nix environment

« open-source: hosted on GitHub, permissively licensed

New to Chapel?

As an introduction to Chapel, you may want to...

« watch an overview talk or browse its slides
« read a chapter-length introduction to Chapel
¢ learn about projects powered by Chapel

« check out performance highlights like these:

PRK Stencil Performance (Gflop/s) NPB-FT Performance (Gop/s)
00 orcpenie o 4500
10000 ™88 == 4
o ¢ @3
g g
) G2
1632 64 2 2 v ’
Locales (x 36 cores / locale) Locales (x 36 cores / locale)

* browse sample programs or learn how to write distributed programs like this one:

use CyclicDist; // use the Cyclic distribution Library
config const n = 100; // use --n=<val> when executing to override this default

forall i in Cyclic.createDomain(1..n) do
writeln("Hello from iteration ", i, " of ", n, " running on node ", here.id);

(NN The Chapel Parallel Programming Language
[C::HA:EL
:~‘ 4

VA

https://chapel-lang.org/
https://chapel-lang.org/blog/
https://twitter.com/ChapelLanguage
https://www.facebook.com/ChapelLanguage/
https://www.youtube.com/@ChapelLanguage
https://chapel.discourse.group/
https://gitter.im/chapel-lang/chapel
https://stackoverflow.com/questions/tagged/chapel
https://github.com/chapel-lang/chapel/issues

SUMMARY

Chapel is unique among programming languages et persmes o
- built-in features for scalable parallel computing make it HPC-ready | = == ioiegn |
« supports clean, concise code relative to conventional approaches |™ 20 e R
« ports and scales from laptops to supercomputers L T

Chapel is being used for productive parallel computing at scale

e users are reaping its benefits in practical, cutting-edge applications
« in diverse application domains: from physical simulation to data science

Python3 Client ma Chapel Server
ot

« scaling to thousands of nodes / millions of processor cores

R . . coforall gpu in here.gpus do on gpu {
Vendor-neutral GPU support is maturing rapidly var &, B, C: [Ll..n] real;
o fleshes out an overdue aspect of “any parallel hardware” A = B + alpha * C;
}
We’re interested in helping new users and fostering new collaborations m:
1 1

: | 45

THANK YOU

https://chapel-lang.org
@ChapelLanguage

