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TEASER FOR THIS TALK

Imagine having a programming language for HPC that was as...

...programmable as Python
..yet also as...

...Fast as Fortfran
...scalable as MP| or SHMEM
...portable as C
...flexible as C++
..Iype-safe as Fortran, C, C++, ...
...fun as [your favorite programming language]
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WHAT IS CHAPEL?

Chapel: A modern parallel programming language

e portable & scalable
e open-source & collaborative

Goals:

e Support general parallel programming
o Make parallel programming at scale far more productive

C
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WHAT DOES “PRODUCTIVITY” MEAN TO YOU?

Recent Graduates:
“Something similar to what | used in school: Python, Matlab, Java, ...”

Seasoned HPC Programmers:
“That sugary stuff which | can’t use because | need full confrol to ensure good performance”

Computational Scientists:

“Something that lets me focus on my science without having to wrestle with
architecture-specific details”

Chapel Team:

“Something that lets computational scientists express what they want,
without taking away the control that HPC programmers need,
implemented in a language that’s attractive to recent graduates.”

— |
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SPEAKING OF THE CHAPEL TEAM...

Chapel is truly a tfeam effort—we’re currently at 19 full-time employees (+ a director), and we are hiring

Chapel Development Team at HPE

=

-

see: https://chapel-lang.org/contributors.html
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https://chapel-lang.org/contributors.html
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WHY CREATE A NEW LANGUAGE?

e Because parallel programmers deserve better

o the state of the art for HPC is a mish-mash of libraries, pragmas, and extensions
o parallelism and locality are concerns that deserve first-class language features

Why Consider New Languages at all?

Syntax

Performance

Algorithms

* High level, elegant syntax
e Improve programmer productivity

e Static analysis can help with correctness
e We need a compiler (front-end)

* |f optimizations are needed to get
performance

e We need a compiler (back-end)

e Language defines what is easy and hard
¢ Influences algorithmic thinking

[Image Source:
Kathy Yelick’s (UC Berkeley, LBNL)
CHIUW 2018 keynote:

Why Languages Matter More Than Ever,

e And because existing languages don’t meet our needs...

—

used with permission]


https://chapel-lang.org/CHIUW2018.html
https://chapel-lang.org/CHIUW/2018/Yelick-Languages-CHIUW18.pdf

WHAT SHOULD A PRODUCTIVE LANGUAGE FOR HPC SUPPORT?

Traditional Language Characteristics Features Unique to HPC
e programmability e ability to express parallelism
e portability e ability to control and reason about locality

e performance
e abstraction
e inferoperability
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STREAM TRIAD: A TRIVIAL CASE OF PARALLELISM + LOCALITY

Given: m-element vectors A, B, C
Compute:Vie 1.m, A, =B; + a-C,

In pictures:
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STREAM TRIAD: A TRIVIAL CASE OF PARALLELISM + LOCALITY

Given: m-element vectors A, B, C
Compute:Vie 1.m, A, =B; + a-C,

In pictures, in parallel (shared memory / multicore):

A A

B

+ : + : + : +
C
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STREAM TRIAD: A TRIVIAL CASE OF PARALLELISM + LOCALITY

Given: m-element vectors A, B, C
Compute:Vie 1.m, A, =B; + a-C,

In pictures, in parallel (distributed memory):

— .



STREAM TRIAD: A TRIVIAL CASE OF PARALLELISM + LOCALITY

Given: m-element vectors A, B, C
Compute:Vie 1.m, A, =B; + a-C,

In pictures, in parallel (distributed memory multicore):

— .



STREAM TRIAD IN CONVENTIONAL HPC PROGRAMMING MODELS

Many Disparate Notations for Expressing Parallelism + Locality

#include <hpcc.h> m if ('a || 'b || 'e) {

if (c) HPCC_free(c);
if (b) HPCC_ free(b);
if (a) HPCC_free(a);

if (doIO) {
static int VectorSize; fprintf( outFile, "Failed to
static double *a, *b, *c; allocate memory (%d).\n",
VectorSize ) ;

int HPCC_StarStream (HPCC_Params *params) {
1 1 1 int myRank, commSize; }
' H 1 i 1 H ' int rv, errCount;

N A A HEComm comm = MEL_COMLIoREDS

MPI Comm size( comm, &commSize );

2B o i o i o ) SRR

fclose( outFile );

1 1 1 1 1 1 1
+ 1+ 0+ 0+ 0+ 0+ 0 + 1+ = = ; !
rv HPCC_Stream( params, 0 myRank) ; for (j=0; j<VectorSize; j++) {
.o .o .o .o 0, comm ) ; c[§] = 1.0;

return errCount;

}

O
_;“
._;__
_;__-

int HPCC_Stream (HPCC_Params *params, int doIO) {
register int j;
double scalar; . . . .
for (j=0; j<VectorSize; j++)
VectorSize = HPCC_LocalVectorSize( params, 3, a[j] = b[jl+scalar*c[j];
sizeof (double), 0 );
HPCC_free(c) ;

a = HPCC_XMALLOC( double, VectorSize ); HPCC_free (b) ;
b = HPCC_XMALLOC( double, VectorSize ); HPCC_free(a);
c = HPCC_XMALLOC( double, VectorSize );

return 0; }

Note: This is a very frivial parallel computation—imagine the additional differences for something more complex!
Challenge: Can we do better?

—
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CHAPEL BENCHMARKS TEND TO BE CONCISE, CLEAR, AND COMPETITIVE

STREAM TRIAD: C + MPI + OPENMP

static int Vec
static double

m (HPCC_Params *params) (

return errCount;

i

int HPCC Stream(HPCC_Params *params, int doIO)

a = HPCC_XMAL
b = HPCC_XMAL

—

3, sizeof (double), 0 );

use BlockDist;

config const m

, "Failed to allocate memory

const Dom
var A, B, C:

{l..m} dmapped ..;

GB/s

~e

~e

B + alpha * C;

HPCC RA: MPI KERNEL

forall ( , r) in zip(Updates, RAStream()) do
T[r & indexMask].xor (r

GUPS

onNn A~ O

STREAM Performance (GB/s)

MPI+OpenMP —¢—
= Chapel EP —¢— -~~~ -~~~ ----~--~-~~-=---=-~- ~2
Chapel Global - -+ -

16 32 64 128 256
Locales (x 36 cores / locale)

RA Performance (GUPS)

1 1

16 32 64 128 256
Locales (x 36 cores / locale)
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BALE INDEX GATHER: CHAPEL VS. EXSTACK VS. CONVEYORS

|
o L]
Exstack version Conveyors version
i=0; i=0;
while( exstack proceed(ex, (i==1_ num req)) ) { while (more = convey advance (requests, (i == 1 num req)),
i0 = i; more | co dvance (replies, !more)) {
while(i < 1 num req) {
1 indx = pckindx[i] >> 16; for (; i < 1 num reqg; i++) {
pe = pckindx[i] & Oxffff; pkg.idx = 1i;
if (!exstack push(ex, &l _indx, pe)) pkg.val = pckindx[i] >> 16;
break; pe = pckindx[i] & Oxffff;
alikarp if (! convey push(requests, &pkg, pe))

} ren Cray XC (Aries)

exstack_exchange (ex) ;

while (convey pull (requests, ptr, &from) == convey OK) {

- bale index gather
while (exstack pop(ex, &idx , &fromth)) { pkg.idx = ptr->idx; 3 1250 >
idxf :- ltab-li[idxi,?d . o P];g.(x'/al = ltable}[p;tr—?fal] 8 . : o -8' Chapel SHMEM
exXstack push(ex, 14X, rom ; 1 . convey pusn(re les, ’ rom =
B convey \;m;;l(requgsts); o g) 1000 5 * Aggregation (auto) =3 - Exstack
rrier(); break; o) -~ Aggregation (user) =& Conveyor X
k_exchange (ex) ; } E ’(;’\ 750 |L=@— Unordered(auto). .. . _ . . | et o o e ea it ;_-X
} ~ A T -
s Sl ) - 0 ~@- Nooptimizaton g _...: ”’,—
fromth = pckindx[j] & Oxffff; while (convey pull(replies, ptr, NULL) == convey OK) (O] M 500
exstack pop thread(ex, &idx, (uint64_t)fromth); tgt [ptr->idx] = ptr->val; E ~— R e
tgt([j] = idx; } o . AL
) @ 250 |-
lgp_barrier(); %
: >

32 64 128 256 512

Elegant Chapel version (compiler-optimized w/ ‘--auto-aggregation”) Number of Locales (x 36 cores / locale)

forall (d, 1) in zip(Dst, Inds) do
d = Srcl[i];

Manually Tuned Chapel version (using aggregator abstraction)

forall (d, 1) in zip(Dst, Inds) with (var agg = new SrcAggregator (int)) do
agg.copy(d, Srcli]);

— .




CURRENT FLAGSHIP CHAPEL APPLICATIONS

CHAMPS: 3D Unstructured CFD

Eric Laurendeau, Simon Bourgault-C6té,
Matthieu Parenteau, et al.

Ecole Polytechnique Montréal

ChplUItra: Simulating Ultralight

Dark Matter
Nikhil Padmanabhan, J. Luna Zagorac, ef al.
Yale University / University of Auckland

Arkouda: NumPy at Massive Scale ChOp: Chapel-based Optimization

% ,1, Y X
—] E EE ~ Mike Merrill, Bill Reus, et al. ‘/X'H')( Tiago Carneiro, Nouredine Melab, et al.
ﬁ e BEESEE JS DoD A teses oxe INRIA Lille, France
CrayAl: Distributed Machine Learning ‘ """""""" Your application here?
4 g “ € " e “ O " O Y Hewlett Packard Enterprise ?
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CURRENT FLAGSHIP CHAPEL APPLICATIONS

CHAMPS: 3D Unstructured CFD

Eric Laurendeau, Simon Bourgault-C6té,
Matthieu Parenteau, et al.

Ecole Polytechnique Montréal

'....................................................=
. ¢ Arkouda: NumPy at Massive Scale -
| —| et EIE ' E~ Mike Merrill, Bill Reus, et al. -
" % “““““““““ | US DoD .

CrayAl: Distributed Machine Learning :

‘g\ @ ‘@ \ O i O L Hewlett Packard Enterprise

e

ChplUItra: Simulating Ultralight

Dark Matter
Nikhil Padmanabhan, J. Luna Zagorac, ef al.
Yale University / University of Auckland

ChOp: Chapel-based Optimization
Tiago Carneiro, Nouredine Melab, et al.
INRIA Lille, France

Your application here?

|17



ARKOUDA IN ONE SLIDE

What is it?
« A Python library supporting a key subset of NumPy and Pandas for Data Science
— Computes massive-scale results within the human thought loop (seconds to minutes on multi-TB-scale arrays)
—Uses a Python-client/Chapel-server model to get scalability and performance
o ~16k lines of Chapel, largely written in 2019, continually improved since then

Python3 Client ZMQ Chapel Server

Socket
< //

Code Modules

Who wrote it?

« Mike Merrill, Bill Reus, et al., US DoD
» Open-source: https://github.com/Bears-R-Us/arkouda

(@]
=

t s o g Meta Distributed Array
istribute
Why Chapel? Object Store
 high-level language with performance and scalability ﬁ Platform MPP, SMP, Cluster, Laptop, etc.

—close to Pythonic—doesn’t repel Python users who look under the hood
 great distributed array support
« ports from laptop to supercomputer

— .


https://github.com/Bears-R-Us/arkouda

ARKOUDA ARGSORT: HERO RUN

e Recent run performed on a large Apollo system

o 72 TiB of 8-byte values
e 480 GiB/s (2.5 minutes elapsed time)

o used 73,728 cores of AMD Rome 500
450

e ~100 lines of Chapel code 400
350
300
250
200
150
100

50

GiB/s

Arkouda Argsort Performance
HPE Apollo (HDR-100 IB)

64 128 256 512 576
Locales (x 128 cores / locale)

Close to world-record performance—Quite likely a record for performance::lines of code

—
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CURRENT FLAGSHIP CHAPEL APPLICATIONS

CHAMPS: 3D Unstructured CFD

Eric Laurendeau, Simon Bourgault-C6té,
Matthieu Parenteau, et al.

Ecole Polytechnique Montréal

ChplUItra: Simulating Ultralight

Dark Matter
Nikhil Padmanabhan, J. Luna Zagorac, ef al.
Yale University / University of Auckland

Arkouda: NumPy at Massive Scale ChOp: Chapel-based Optimization

. . . - -.-X
Mike Merrill, Bill Reus, et al. '/X \ Tiago Carneiro, Nouredine Melab, et al.
$ g
fﬂ; US DoD #tonaet koxe INRIA Lille, France
CrayAl: Distributed Machine Learning ‘ """""""" : Your application here?
f Q “ € " e “ O " O ' Hewlett Packard Enterprise ?
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CHAMPS SUMMARY

What is it?

e 3D unstructured CFD framework for airplane simulation
o ~48k lines of Chapel written from scratch in ~2 years

Who wrote it?

« Professor Eric Laurendeau’s team at Polytechnique Montreal

S /7y POLYTECHNIQUE |
« performance and scalability competitive with MPI + C++ 7

« students found it far more productive to use

i

—4
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CHAMPS: EXCERPT FROM ERIC’S CHIUW 2021 KEYNOTE (VIDEO)

HPC Lessons From 30 Years of Practice in CFD Towards Aircraft Design and Analysis

LAB HISTORY AT POLYTECHNIQUE

NSCODE (2012 - early 2020):
o Shared memory 2D/2.5D structured multi-physics solver written in

C/Python

~800 C/header files: ~120k lines of code

Run by Python interface using f2py (f90 APIs)

Difficult to maintain at the end or even to merge new developments

(U)VLM (2012 - now):
o ~5-6 versions in different languages (Matlab, Fortran, C++, Python,
Chapel)

o The latest version in Chapel is integrated in CHAMPS . . POLYTECHNIQUE
EULER2D (early 2019): - MONTREAL

o Copy in Chapel of a small version of NSCODE as benchmark between C
and Chapel that illustrated the Chapel language potential
7758
¥

o ~10 Chapel files: ~1750 lines of code

CHAMPS (mid 2019 - now):

o Distributed memory 3D/2D unstructured multi-physics solver written in
Chapel
o ~120 Chapel files: ~48k lines of code

https://youtu.be/wD-a KyB8al?t=1904

: HPE PROPRIETARY | 22



https://youtu.be/wD-a_KyB8aI?t=1904

CHAMPS: EXCERPT FROM ERIC’S CHIUW 2021 KEYNOTE

HPC Lessons From 30 Years of Practice in CFD Towards Aircraft Design and Analysis

“To show you what Chapel did in our lab... [NSCODE, our previous framework] ended up
120k lines. And my students said, ‘We can't handle it anymore. It’s too complex, we lost
track of everything.” And today, they went from 120k lines to 48k lines, so 3x less.

But the code is not 2D, it’s 3D. And it’s not structured, it’s unstructured, which is way
more complex. And it’s multi-physics: aeroelastic, aero-icing. So, I’'ve got industrial-type
code in 48k lines.

-

So, for me, this is like the proof of the benefit of Chapel, plus the smiles I have on my = | |
students everyday in the lab because they love Chapel as well. So that’s the key, o f; POLYTECHNIQUE
that’s the takeaway. m-i:- MONTREAL

[Chapel]l promotes the programming efficiency ... We ask students at the master's degree to do stuff that would
take 2 years and they do it in 3 months. So, if you want to take a summer internship and you say, ‘program a new
turbulence model,” well they manage. And before, it was impossible to do.”

» Talk available online: https://youtu.be/wD-a KyB8al?t=1904 Chyperlink jumps to the section quoted here)

— .



https://youtu.be/wD-a_KyB8aI?t=1904

CHAMPS 2021 HIGHLIGHTS

e Presented at CASI/IASC Aero 21 Conference

e Participated in 15" AIAA Ice Prediction Workshop

e Participating in 4™ AIAA CFD High-lift Prediction Workshop
e Student presentation to CFD Society of Canada (CFDSC)

» Achieving large-scale, high-quality results comparable to other
major players in industry, government, academia:

e e.g., Boeing, Lockheed Martin, NASA, JAXA, Georgia Tech, ...

=

@® Login

: - ! y
A )
HOME ABOUT MEMBERS ONLY CONFERENCES & EVENTS » AWARDS « =
-t v 2

Canadian Aeronautics and Space Institute

=Rl L1

Institut aéronautique et spatial du Canada

GENERAL INFORMATION

Canada's leading aeronautics conference
La principale conférence en aéronautique au Canada

POLYTECHNIQUE MONTREAL

What is Chapel and why use it?

Challenges of multi-physics simulations

We have to balance :

¢ the fidelity of multiple solvers;
* the performances — computational costs;

* the productivity — addition of multiple physical models.

® Productivity — fast prototyping with high level syntax;

® Natively distributed — Overcome the barrier of entry of parallel distributed
programming in an academic context (2 years);

® Modularity — Generic classes and records to reuse structures;

® Memory management strategies.

IPW1 - Polytechnique Montréal




SUMMARY OF THIS SECTION

e Conventional HPC programming notations are not particularly productive

« they utilize foo many distinct ways of specifying locality and parallelism
» they are too specific to certain flavors of locality or parallelism

+H
o
R ; ; ——
o
+B
—— ; ‘.I —
o
+M "
' +M "
o
. +

Python3 Client ™MQ Chapel Server

e Chapel’s support for parallelism and locality supports...
...concise, clear, yet portable benchmarks
...user applications that are productive and scalable

Aggregate Throughput
(GBIs)

Arkouda Argsort Performance
HPE Apollo (HDR-100 18)

128 GIB Arrays —+— /

1 1 I 1 )
64 128 256 512 576

Locales (x 128 cores / locale)

GiB/s

TIrrrrrrror1
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CHAPEL FEATURE AREAS

Chapel language concepts

«

Domain Maps
Data Parallelism

Task Parallelism

Base Language

Locality Control

Target System

»,
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BASE LANGUAGE

Chapel language concepts

«

Domain Maps

Data Parallelism

Base Language

Locality Control

Target System

p»,

“Lower-level” Chapel

28



FIBONACCI ITERATION

fib.chpl

config const n = 10;

for £ in fib(n) do
writeln (f) ;

iter fib(x) {
var current = 0,
next = 1;

for 1 in 1..x {

yield current;
current += next;

current <=> next;

prompt> chpl fib.chpl
prompt>

29



FIBONACCI ITERATION

fib.chpl

config const n = 10;

for £ in fib(n)
writeln (f) ;

iter fib(x) {
var current = 0,
next = 1;

for 1 in 1..x {
yield current;
current += next;
current <=> next;

Drive this loop
by invoking fib(n)

prompt> chpl fib.chpl
prompt> ./£fib

30



FIBONACCI ITERATION

fib.chpl

config const n = 10;

iter fib(x) {
var current = 0,
next = 1;

for 1 in 1..x {
yield current;
current += next;
current <=> next;

Execute the loop’s body

for that value

‘vield’ this expression back
to the loop’s index variable

prompt> chpl fib.chpl
prompt> ./£fib
0

31



FIBONACCI ITERATION

fib.chpl

config const n =

for £ in fib(n)
writeln (f) ;

iter fib(x) {
var current = 0,
next = 1;

for 1 in 1..x {
yield current;
current += next;
current <=> next;

prompt> chpl fib.chpl
prompt> ./£fib

Execute the loop’s body
for that value

Then continue the iterator
from where it left off

Repeating until we fall
out of it (or return)




FIBONACCI ITERATION

fib.chpl

config const n = 10;

for £ in fib(n)
writeln (f);

iter fib(x) {
var current = 0,
next = 1;

for 1 in 1..x {
yield current;
current += next;
current <=> next;

Configlurable] declarations
support command-line overrides

prompt> chpl fib.chpl
prompt> ./£fib --n=1000
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FIBONACCI ITERATION

fib.chpl

config const n = 10;

for £ i ' Static type inference for:
writeln * constants / variables

* arguments
iter fib (x) * return types

var current
next =

Explicit typing also supported
for 1 1n 1..x {

yield current;
current += next;
current <=> next;

prompt> chpl fib.chpl
./fib --n=1000

prompt>

34



FIBONACCI ITERATION

fib.chpl

config const n: int = 10;

for £ in fib(n) do
writeln (f) ;

iter fib(x:
var current: int =
next: int = 1;

for 1 in 1..x {
yield current;
current += next;
current <=> next;

int) : int {

0,

Explicit typing also supported

prompt> chpl fib.chpl
prompt> ./£fib --n=1000

35



FIBONACCI ITERATION

fib.chpl prompt> chpl fib.chpl
config const n = 10; Zippered prompt> ./£ib --n=1000
iteration fib #0 1s
for (i,f) in zip(0..<n, fib(n)) do fib #1 1is
writeln ("fib #", i, " is ", f); fib #2 is
fib #3 1s
iter fib(x) { fib #4 1is
var current = 0, fib #5 is
next = 1; fib #6 1is
fib #7 1is
for i in 1..x { f%b #8 ?s
yield current; fib #9 is
current += next; fib #10 1is
current <=> next; fib #11 1is
| fib #12 is
\ fib #13 is

fib #14 1is




FIBONACCI ITERATION

fib.chpl

config const n = 10;

for (1,f) in zip(0..<n,
writeln("fib #",

iter fib(x) {
var current =
next = 1;

for 1 in 1..x {

yield current;
current += next;
current <=> next;

Range types
and operators

prompt> chpl fib.chpl
prompt> ./£fib --n=1000
fib #0 1is

fib #1 is

fib #2 is

fib #3 1is

fib #4 is

fib #5 1is

fib #6 1is

fib #7 is

fib #8 1is

fib #9 is

fib #10 is

fib #11 is

fib #12 is

fib #13 is

fib #14 is

37



OTHER BASE LANGUAGE FEATURES

 Various basic types: bool(w), int(w), uint(w), real(w), imag(w), complex(w), enums, tuples
e Object-oriented programming

» Value-based records (like C structs supporting methods, generic fields, etc.)

« Reference-based classes (somewhat like Java classes or C++ pointers-to-classes)

—Nilable vs. non-nilable variants

- Memory-management strategies (shared, owned, borrowed, unmanaged)
— Lifetime checking

 Error-handling

e Generic programming / polymorphism
o Compile-time meta-programming

e Modules (supporting namespaces)

» Procedure overloading / filtering

o Arguments: default values, intents, name-based matching, type queries
e and more...

— .



TASK PARALLELISM AND LOCALITY CONTROL

Chapel language concepts

«
—
—

Domain Maps

Data Parallelism

Base Language

Locality Control

Target System

p»,

“Lower-level” Chapel

39



THE LOCALE: CHAPEL'’S KEY FEATURE FOR LOCALITY

e locale: a unit of the target architecture that can run tasks and store variables
e Think “compute node” on a typical HPC system

prompt> ./myChapelProgram --numLocales=4

# or ‘"nl 4

Locales array:

Locale O

Locale 1

Locale 2

Locale 3

User’s program starts running as a single task on locale O

40



TASK-PARALLEL “HELLO WORLD”

helloTaskPar.chpl

const numTasks = here.maxTaskPar;
coforall tid in 1..numTasks do
writef ("Hello from task %n of %n on %$s\n"
tid, numTasks, here.name) ;




TASK-PARALLEL “HELLO WORLD”

helloTaskPar.chpl

‘here’ refers to the locale on which
this code is currently running

coforall tid in 1..numTasks do
writef ("Hello from task %n

const numTasks = here.maxTaskPar;

how many parallel tasks can my
locale run at once?

%$n on %s\n",

tid, numTasks, here.name) ; what’s my locale’s name?

42



TASK-PARALLEL “HELLO WORLD”

helloTaskPar.chpl

const numTasks = here.maxTaskPar;

coforall tid in 1..numTasks do

writef ("Hello from task %$n of %$n on %s\n",
tid, numTasks, here.name) ;

a 'coforall’ loop executes each
iteration as an independent task

prompt> chpl helloTaskPar.

prompt> ./helloTaskPar
Hello from task 1 of 4
Hello from task 4 of 4
Hello from task 3 of 4
Hello from task 2 of 4

— .



TASK-PARALLEL “HELLO WORLD”

helloTaskPar.chpl

const numTasks = here.maxTaskPar;
coforall tid in 1..numTasks do
writef ("Hello from task %$n of %$n on %s\n",
tid, numTasks, here.name) ;

prompt> chpl helloTaskPar.

prompt> ./helloTaskPar
Hello from task 1 of 4
Hello from task 4 of 4
Hello from task 3 of 4
Hello from task 2 of 4

So far, this is a shared-memory program

Nothing refers to remote locales,
explicitly or implicitly

— »




TASK-PARALLEL “HELLO WORLD”

helloTaskPar.chpl

const numTasks = here.maxTaskPar;
coforall tid in 1..numTasks do
writef ("Hello from task %n of %n on %$s\n"
tid, numTasks, here.name) ;




TASK-PARALLEL “HELLO WORLD” (DISTRIBUTED VERSION)

helloTaskPar.chpl

coforall loc in Locales {
on loc {
const numTasks = here.maxTaskPar;
coforall tid in 1..numTasks do
writef ("Hello from task %n of %n on %s\n",
tid, numTasks, here.name) ;

46



TASK-PARALLEL “HELLO WORLD” (DISTRIBUTED VERSION)

helloTaskPar.chpl

coforall loc in Locales {

on loc {
const numTasks = here.maxTaskPar; the array of locales we're running on
coforall tid in 1. .numTasks do (introduced a few slides back)

writef ("Hello from task %$n of %$n on %s\n",
tid, numTasks, here.name) ;

Locale O Locale 1 Locale 2 Locale 3

Locales array:




TASK-PARALLEL “HELLO WORLD” (DISTRIBUTED VERSION)

helloTaskPar.chpl create a task per locale
on which the program is running

coforall loc in Locales {
on loc {
const numTasks = here.maxTaskPar;
coforall tid in 1..numTasks do
writef ("Hello from task %n of %n on %s\n"

tid, numTasks, here.name) ;

have each task run ‘on’ its locale

then print a message per core,
as before

} prompt> chpl helloTaskPar.chpl
} prompt> ./helloTaskPar —numLocales=4
Hello from task 1 of 4 on nl032
Hello from task 4 of 4 on nl032
Hello from task 1 of on nl1034

Hello from task of on nl1032
Hello from task of on nl033
Hello from task of on nl1034
Hello from task of on nl035

— L



TASK-PARALLEL “HELLO WORLD” (DISTRIBUTED VERSION)

helloTaskPar.chpl

coforall loc in Locales {
on loc {
const numTasks = here.maxTaskPar;
coforall tid in 1..numTasks do
writef ("Hello from task %n of %n on %s\n",
tid, numTasks, here.name) ;
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PARALLELISM AND LOCALITY ARE ORTHOGONAL IN CHAPEL

e This is a parallel, but local program:

coforall i in 1..msgs do
writeln ("Hello from task ", 1i);

e This is a distributed, but serial program:

writeln ("Hello from locale 0!™);
on Locales[l] do writeln("Hello from locale 1!'");
on Locales[2] {

writeln("Hello from locale 2!");

on Locales[0] do writeln("Hello from locale 0!");

}

writeln ("Back on locale 0");

e This is a distributed parallel program:

coforall i in 1..msgs do
on Locales[i%numLocales] do
writeln ("Hello from task ", 1, " running on locale ",

here.id);

—

50



VARIABLES ARE ALLOCATED LOCALLY TO WHERE THE TASK IS RUNNING

onClause.chpl

config const verbose = false;
var total = O,
done = false;

on Locales|[1] {
var x, y, z: int;

locale 1

— .



CODE CAN REFER TO VISIBLE VARIABLES, EVEN WHEN THEY’RE REMOTE

onClause.chpl

config const verbose = false;
var total = O,
done = false;

on Locales|[1] {
if !done {
if verbose then
writef ("Adding locale 1’s contribution");
total += computeMyContribution() ;

}

code runs on locale 1,

but refers to values
stored on locale O

if !done {
if verbose then

writef ("Adding..

total += computi..

}

locale 1
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SIDEBAR: CHAPEL’S DECEPTIVE SIMPLICITY

Chapel resembles traditional programming enough that it’s easy to forget how roundabout SPMD can be:

—Chapel: OK, just do it

— SPMD: Make sure you're only doing it in one process

» Need to do something on just one node?

toy.chpl

proc main () {

| var x = stdin.read(int); :
I writeln("Hello!"); i

}

coforall loc in Locales do
on loc do
writeln(loc.id * x);

writeln ("Bye!");

—

toy-SPMD.chpl

proc main () {
var x: int;
if myProc() == 0 {
x = stdin.read(int);
writeln ("Hello!");

broadcastAll (x,
writeln (myProc ()
barrierAll () ;

if myProc() == 0
writeln ("Bye!'

fromLocale=0) ;

* X))
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SIDEBAR: CHAPEL’S DECEPTIVE SIMPLICITY

Chapel resembles traditional programming enough that it’s easy to forget how roundabout SPMD can be:

« Want to ensure one thing finishes before the next?
— Chapel: Typically happens through sequential ordering
- SPMD: Defensively ensure nobody gets too far ahead

toy.chpl

proc main () {
var x = stdin.read(int);
writeln ("Hello!") ;

coforall loc in Locales do |
on loc do :
writeln(loc.id * x); :

writeln ("Bye!") ;

}

—

toy-SPMD.chpl

proc main () {
var x: int;

if myProc() == 0 {
X = stdin.read (int);
writeln ("Hello!") ;

broadcastAll (x,

writeln (myProc ()

barrierAll () ;

if myProc()

fromLocale=0) ;

0O then

writeln ("Bye!")

* X))
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SIDEBAR: CHAPEL’S DECEPTIVE SIMPLICITY

Chapel resembles traditional programming enough that it’s easy to forget how roundabout SPMD can be:

« Want to refer to a remote variable? toy-SPMD.chpl
—Chapel: Is it in your lexical scope? Just name it! proc main() {
—SPMD: Insert communication, potentially in both var x: int;
the source and destination processes if myProc() == 0 ({
x = stdin.read(int);
toy.chpl writeln ("Hello!");
proc main () { }
var x = stdin.read(int); b d £A11 £ I 1e=0
writeln ("Hello!") ; roadcas (x, fromLocale=0);

writeln (myProc () * Xx);

coforall loc in Locales do
on loc do
: writeln (loc.id * x);

. barrierAll () ;

if myProc() == 0 then
writeln ("Bye!'

— .

writeln ("Bye!");

-
~—
N




SIDEBAR: CHAPEL’S DECEPTIVE SIMPLICITY

Chapel resembles traditional programming enough that it’s easy to forget how roundabout SPMD can be:

» Need some additional parallelism?

— Chapel: we have features for that, like coforall,
logically independent of hardware resources

—SPMD: Umm... Well, | suppose you could mix in
OpenMP, Pthreads, or CUDA...

toy.chpl

proc main () {
var x = stdin.read(int);
writeln ("Hello!") ;

. coforall loc in Locales do |
on loc do
writeln(loc.id * x);

writeln ("Bye!");

}

—

toy-SPMD.chpl

proc main () {
var x: int;

if myProc() == 0 {
X = stdin.read (int);
writeln ("Hello!") ;

broadcastAll (x, fromlLocale=0) ;
writeln (myProc () * x);
barrierall () ;

if myProc() == 0 then
writeln ("Bye!'

-
~—
N
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SIDEBAR: CHAPEL’S DECEPTIVE SIMPLICITY

Chapel resembles traditional programming enough that it’s easy to forget how roundabout SPMD can be:

o And of course, if what you really want is SPMD,
Chapel can do that as well...

toy.chpl

proc main () {
var x = stdin.read(int);
writeln ("Hello!") ;

coforall loc in Locales do
on loc do
writeln(loc.id * x);

writeln ("Bye!");

}

—

toy-SPMD.chpl

proc main () {
var x: int;
if myProc() == 0 {
x = stdin.read(int);
writeln ("Hello!");

broadcastAll (x, fromlLocale=0) ;
writeln (myProc () * x);
barrierall () ;

if myProc() == 0 then
writeln ("Bye!'

-
~—
N
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OTHER TASK PARALLEL FEATURES

» begin / cobegin statements: the two other ways of creating tasks

begin stmt; // fire off an asynchronous task to run ‘stmt’
cobegin ({ // fire off a task for each of ‘stmt1’, ‘stmt2’, ...
stmtl;
stmtZ2;
stmt3;
} // wait here for these tasks to complete before proceeding

» atomic / synchronized variables: types for safe data sharing & coordination between tasks

var sum: atomic int; // supports various atomic methods like .add(), .compareExchange(, ...
var cursor: sync int; //stores a full/lempty bit governing reads/writes, supporting .readEFQ, .writeEFQ

 task intents / task-private variables: confrol how variables and tasks relate

coforall i in 1..niters with (ref x, + reduce y, var z: int) { .. }

—




DATA PARALLELISM AND DOMAIN MAPS

Chapel language concepts

«

Domain Maps
Data Parallelism

Task Parallelism

Base Language

Locality Control

Target System

»,

Higher-level Chapel
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DATA-PARALLEL ARRAY FILL

fillArray.chpl

config const n = 1000;
const D = {l..n, 1..n};
var A: [D] real;

forall (i,J) in D do
Ali,j] =1 + (J - 0.5)/n;

writeln (A7) ;
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DATA-PARALLEL ARRAY FILL

fillArray.chpl
config const n = 1000;
const D = {l..n, 1..n};

var A: [D] real;

forall (i,J) in D do
Ali,j] =1 + (J - 0.5)/n;

writeln (A7) ;

D A

declare a domain, a first-class index set

declare an array over that domain
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DATA-PARALLEL ARRAY FILL

fillArray.chpl

config const n = 1000;
D A

const D .. .. . declare a domain, a first-class index set

var A: ; declare an array over that domain

forall (i,7) 1 iterate over the domain’s indices in parallel,
Ali,J] ' ] ) . assigning to the corresponding array elements

writeln (A7) ;




DATA-PARALLEL ARRAY FILL

: 11(13|15|15(1.9
f|”Array_chp| ........ I —3hso e

PP P P PR PR

3.1(3.3(3.5|3.7|3.9
41| 43| 45|47 |49
51|5.3|15.5|5.7(5.9

PP TP P PR SRR SRR

config const n = 1000;
9 D A
const D = {1l..n, 1..n};
prompt> chpl dataParallel.chpl
var A: [D] real; prompt> ./dataParallel --n=5

1.1 1.3 1.5 1.7 1.9

forall (i,j) in D do 2.1 2. 2.7 2.

Ali,3] =1 + (J - 0.5)/n; 3.1 3. 3.7 3.
4.1 4 4.7 4
5.1 5 5.7 5

writeln (A7) ;

So far, this is a shared-memory program

Nothing refers to remote locales,
explicitly or implicitly




DATA-PARALLEL ARRAY FILL

fillArray.chpl
config const n = 1000; ~
locale O
const D = {1l..n, 1..n};
prompt> chpl dataParallel.chpl
var A: [D] real; prompt> ./dataParallel --n=5

1.1 1.3 1.5 1.7 1.9

forall (i,j) in D do 2.1 2. 2.7 2.

Ali,3] =1 + (J - 0.5)/n; 3.1 3. 3.7 3.
4.1 4 4.7 4
5.1 5 5.7 5

writeln (A7) ;

So far, this is a shared-memory program

Nothing refers to remote locales,
explicitly or implicitly




DATA-PARALLEL ARRAY FILL

fillArray.chpl

config const n = 1000;
const D = {l..n, 1..n};
var A: [D] real;

forall (i,J) in D do
Ali,j] =1 + (J - 0.5)/n;

writeln (A7) ;
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DATA-PARALLEL ARRAY FILL (DISTRIBUTED

fillArray.chpl

VERSION)

use CyclicDist;
config const n = 1000;
const D = {l1..n, 1..n}
dmapped Cyclic (startlIdx =

var A: [D] real;

forall (i,J) in D do
Ali,j] =1 + (J - 0.5)/n;

writeln (A7) ;

(1,1))7

11

13

15

15

19

21

2.3

25

2.7

2.9

31

3.3

3.5

37

3.9

41

4.3

4.5

4.7

4.9

51

5.3

5.5

57

5.9
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DATA-PARALLEL ARRAY FILL (DISTRIBUTED VERSION)

11/13|15[15(19
21(2.3[25(2.7[2.9 locale O locale 1
3.1|3.3[35(3.7|3.9
41|43|45|47 |49
5.1/5.3[55/5.7/5.9

fillArray.chpl

use CyclicDist;

config const n = 1000; locale 2

const D = {l..n, 1..n} apply a domain map, specifying how to implement...
dmapped Cyclic(startIdx = (1,1)); ..the domain’s indices,
var A: [D] real; ...the array’s elements,
...the loop’s iterations,
forall (i,j) in D do ...on the program’s locales
Ali,j] =1 + (3 - 0.5)/n;

writeln (A7) ;




DATA-PARALLEL ARRAY FILL (DISTRIBUTED VERSION)

fillArray.chpl

use CyclicDist;

config const n = 1000;
const D = {l1..n, 1..n}

dmapped Cyclic (startlIdx =
var A: [D] real;

forall (i,J) in D do
Ali,j] =1 + (J - 0.5)/n;

writeln (A7) ;

(1,1))

11[13]15[15[19
21[23 2527)29
5alss(ss(a739
4143 45 47| 49

51|5.3|5.5|5.7(5.9

locale O

locale 1

locale 2

apply a domain map, specifying how to implement...

...the domain’s indices,
...the array’s elements,
...the loop’s iterations,

...on the program’s locales
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DATA-PARALLEL ARRAY FILL (DISTRIBUTED VERSION)

fillArray.chpl

use CyclicDist;
config const n = 1000;
const D = {1l..n, 1..n}
dmapped Cyclic(startlIdx =

var A: [D] real;

forall (i,7) in D do
Ali,j] =1 + (3 - 0.5)/n;

writeln (A7) ;

(1,1))7

locale O

locale 1

21 . 25 . 29
EEEED
41 9

P

locale 2

chpl dataParallel.chpl
./dataParallel —--n=5
.5 1.7 1.9

7
.
.

7
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DATA-PARALLEL ARRAY FILL (DISTRIBUTED VERSION)

fillArray.chpl

use CyclicDist;
config const n = 1000;
const D = {1l..n, 1..n}
dmapped Cyclic(startlIdx =

var A: [D] real;

forall (i,7) in D do
Ali,j] =1 + (3 - 0.5)/n;

writeln (A7) ;

(1,1))7

locale O

locale 1

21 . 25 . 29
EEEED
41 9

P

locale 2

chpl dataParallel.chpl

./dataParallel --n=5 --numlocales=4

.5 1.7 1.9

7
.
.

7
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DATA-PARALLEL ARRAY FILL (DISTRIBUTED VERSION)

fillArray.chpl

use CyclicDist;
config const n = 1000;
const D = {1l..n, 1..n}
dmapped Cyclic (startlIdx =

var A: [D] real;

forall (i,J) in D do
Ali,j] =1 + (J - 0.5)/n;

writeln (A7) ;

(1,1))7
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SPECTRUM OF CHAPEL FOR-LOOP STYLES

for loop: each iteration is executed serially by the current task
 predictable execution order, similar to conventional languages

foreach loop: all iterations executed by the current task, but in no specific order
 a candidate for vectorization, SIMD execution on GPUs

forall loop: all iterations are executed by one or more tasks in no specific order
« implemented using one or more tasks, locally or distributed, as determined by the iterand expression

forall
forall
forall
forall
forall

i in 1..n do ..

(1,3) in {1..n, 1..n} do ..
elem in myLocArr do ..
elem in myDistArr do ..
do ..

1 in myParIter (..)

// forall loops over ranges use local tasks only
// ditto for local domains...

// ..and local arrays
// distributed arrays use tasks on each locale owning part of the array

// you can also write your own iterators that use the policy you want

coforall loop: each iteration is executed concurrently by a distinct task
« explicit parallelism; supports synchronization between iterations (tasks)

—
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CHAPEL’S GLOBAL-VIEW OF DATA-PARALLELISM VS. SPMD

e “Apply a 3-point stencil to a vector”

Global-View

)2

.......

.......

.......

.......
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CHAPEL’S GLOBAL-VIEW OF DATA-PARALLELISM VS. SPMD

e “Apply a 3-point stencil to a vector”

Global-View

)2

)/2
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CHAPEL’S GLOBAL-VIEW VS. SPMD

“ ' i ” SPMD (MPI-style
e “Apply a 3-point stencil to a vector § ¢ yle)
proc main () {
. var n = 1000;
Global-View or b mumPeocs ()

me = myProc(),
\ { myN = D/p,

(i5eeE meam ) var A, B: [0..myN+1] real;
var n = 1000;
var A, B: [l..n] real; A e € o=y
£ 11 4 ; 5 1d send (me+1, A[myN]);
ora--. & if £..07. 4o recv (me+1, A[myN+1]);
B[i] = (A[i-1] + A[i+1])/2; }
} if (me > {

0)
send (me-1, A[1l]);
recv (me-1, A[O0]);

}
forall i in 1..myN do

4

M }

B[i] = (A[i-1] + A[i+1])/2;

Bug: Refers to uninitialized values at ends of A ’/
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CHAPEL’S GLOBAL-VIEW VS. SPMD

e “Apply a 3-point stencil to a vector”

Global-View

N\\\\>proc main () {

var n = 1000;
var A, B: [l..n] real;

forall 1 in 2..n-1 do
B[i] = (A[i-1] + A[i+1])/2;

Communication becomes

SPMD (MPI-style)

ééég&*proc main () {

geometrically more complex

for higher-dimensional arrays

var n = 1000;

var p = numProcs (),
me = myProc(),
myN = n/p,
myLo = 1,

myHi = myN;
var A, B: [0..myN+1] real;

if (me < p-1) {
send (me+1, A[myN]);

E recv (me+l, A[myN+1]);
} else
myHi1 = myN-1;

if (me > 0) {
send (me-1, A[1l]);
recv (me-1, A[0]);

} else
myLo = 2;

forall i in mylLo..myHi do
B[i] = (A[i-1] + A[i+1])/2;

Assumes p evenly

divides n
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JACOBI ITERATION IN PICTURES

repeat until max
change < ¢
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JACOBI ITERATION IN CHAPEL

config const n = 6, epsilon = 0.01;
const AllInds = {0..n+1, 0..n+1},
D = AllInds[l..n, 1..n],
LastRow = AllInds[n+1l..n+1, ..];

var A, Temp: [AllInds] real;

A[LastRow] = 1.0;
do {
forall (i,7) in D do
Temp[i,3] = (A[1-1,3] + A[i+l,3] + A[1i,7-1]
const delta = max reduce abs (A[D] - Temp[D]);
A[D] = Temp[D];

} while delta > epsilon;

writeln (A) ;

+ A[1,3+1])

/

4;

—
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JACOBI ITERATION IN CHAPEL

config const n = 6, epsilon = 0.01;

const AllInds = {0..n+1, O..n+1},
D AllInds[l..n, 1..n],

LastRow = AllInds[n+1l..n+1, ..];

var A, Temp: [AllInds] real;

A[LastRow] = 1.0;

do {
forall (i,j) in D do

Temp[1,J] = (A[i-1,3] + A[1i+l,3] + A[1,]

const delta = max reduce abs (A[D] - Temp[D]); Declare arrays

A[D] = Temp[D];
} while delta > epsilon;

writeln (A);

Declare configurable problem size and termination condition

Declare domains
* Slicing one domain with another computes the intersection

(0] n+1

Alllnds LastRow

]

—
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JACOBI ITERATION IN CHAPEL

config const n = 6, epsilon = 0.01;

const AllInds = {0..n+1, O..n+1},
D AllInds[l..n, 1..n],
LastRow = AllInds[n+1l..n+1, ..];

Set Explicit Boundary Condition
* indexing by a domain refers to the subarray in question
* scalar values are “promoted” when assigned to arrays

var A, Temp: [AllInds] real;

* “whole-array” operations like this are implicitly parallel

A[LastRow] = 1.0;
do {
forall (i,]) in D do
Temp[i,J] = (A[i-1,3] + A[i+1,3] + A[i,Jj-1] + A[i,j+1]) / 4;
const delta = max reduce abs (A[D] - Temp[D]);

A[D] = Temp[D];
} while delta > epsilon;

writeln (A);

—
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JACOBI ITERATION IN CHAPEL

config const n = 6, epsilon = 0.01;
const AllInds = {0..n+1, O..n+1},
D = AllInds[l..n, 1..n],
LastRow = AllInds[n+1l..n+1, ..];
var A, Temp: [AllInds] real;
A[LastRow] = 1.0;
do {
forall (i,j) in D do
Temp([i,J] = (A[i-1,3] + A[i+1,7]]

const delta = max reduce abs (A[D] -
A[D] = Temp[D];
} while delta > epsilon;

writeln (A);

4

] u
Compute 5-point stencil z [.=. 4 |I~ .--

+ A[i,3-11 + A[i,3+1]1) / 4;

Temp [D]) ;

—
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JACOBI ITERATION IN CHAPEL

config const n = 6, epsilon = 0.01;

const AllInds = {0..n+1, O..n+1},
D AllInds[l..n, 1..n],
LastRow = AllInds[n+1l..n+1, ..];

var A, Temp: [AllInds] real;

Compute maximum change
* op reduce expr = collapse aggregate expression ‘expr’ to a scalar using ‘op’

A[LastRow] = 1.0; * absQ and ‘-’ are scalar operations; calling them with array arguments results in parallel evaluation
* no femporary arrays are created when evaluating this statement

do {
forall (i,j) in D do
Temp[i,J] = (A[i-1,j1f+ A[i+1,3] + A[i,j-1] + A[i,j+1]) / 4;
const delta = max reduce abs (A[D] - Temp[D]);

A[D] = Temp[D];
} while delta > epsilon;

writeln (A);

— .



SIDEBAR: PROMOTION OF SCALAR SUBROUTINES

e Any function or operator that takes scalar arguments can be called with array expressions instead

proc foo(x: real, y: real, z: real) {
return x**y + 10*c;

}

e Interpretation is similar to that of a zippered forall loop, thus:
C = foo(nA, 2, B);

is equivalent to:

forall (¢, a, b) in zip(C, A, B) do
c = foo(a, 2, b);

as is:
C = A**2 + 10*cC;

e So, in the Jacobi computation,

abs (A[D] - Temp[D]):;

forall (a,t) in zip(A[D], Temp[D]) do abs(a - t);

— o




JACOBI ITERATION IN CHAPEL

config const n = 6, epsilon = 0.01;

const AllInds = {0..n+1, O..n+1},
D AllInds[l..n, 1..n],
LastRow = AllInds[n+1l..n+1, ..];

var A, Temp: [AllInds] real;

A[LastRow] = 1.0;
do {
forall (i,j) in D do
Temp[i,j] = (A[i-1,3] + A[i+1l,3] + A[i,J-1]1 + A[i,j+1]) / 4;
const delta = max reduce abs (A[D] - Temp[D]); Wrap up

A[D] = Temp[D]; * assign Temp back to A for next iteration
} while delta > epsilon; * see whether we terminate using normal do...while loop

* print out final array once we’re done

writeln (A);

— s




JACOBI ITERATION IN CHAPEL (NAMED, TUPLE-INDEXED VARIANT)

config const n = 6, epsilon = 0.01;

const AllInds
D
LastRow

{0..n+1, O0..n+1},
AllInds[l..n, 1..n],
AllInds[n+1l..n+1, ..1;

var A, Temp: [AllInds] real;

const north = (-1,0), south = (1,0), east = (0,1), west = (0,-1);
A[LastRow] = 1.0;
do {
forall ij in D do
Temp[1iJ] = (A[i1j+north] + A[ij+south] + A[ijt+east] + A[ijtwest])
const delta = max reduce abs(A[D] - Temp[D]):;
A[D] = Temp[D];

} while delta > epsilon;

writeln (A) ;

/

4;

—
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JACOBI ITERATION IN CHAPEL (SLICE-BASED VARIANT)

config const n = 6, epsilon = 0.01;

const AllInds
D
LastRow

{0..n+1, O0..n+1},
AllInds[l..n, 1..n],
AllInds[n+1l..n+1, ..1;

var A, Temp: [AllInds] real;

const north = (-1,0), south = (1,0), east = (0,1), west = (0,-1);
A[LastRow] = 1.0;
do {
Temp[D] = (A[D.translate(north)] + A[D.translate(south)] +
A[D.translate (east) ] + A[D.translate(west)]) / 4;
const delta = max reduce abs(A[D] - Temp[D]):;
A[D] = Temp[D];

} while delta > epsilon;

writeln (A) ;

—
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JACOBI ITERATION IN CHAPEL (BACK TO THE SIMPLE, LOCAL VERSION)

config const n = 6, epsilon = 0.01;

const AllInds
D
LastRow

{0..n+1, O0..n+1},
AllInds[l..n, 1..n],
AllInds[n+1..n+1,

var A, Temp: [AllInds] real;

A[LastRow] = 1.0;
do {
forall (i,j) in D do
Temp[1,J] = (A[1-1,J] + A[i+1,7]

const delta = max reduce abs (A[D]
A[D] = Temp[D];
} while delta > epsilon;

writeln (A) ;

Ny

+ A[j—/j_l]

- Temp[D]);

+ A[1,3+1])

/

4;

—
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JACOBI ITERATION IN CHAPEL (DISTRIBUTED VERSION)

use BlockDist;
config const n = 6, epsilon = 0.01;
const AllInds

D
LastRow

{0..n+1, O0..n+l1} dmapped Block({l..n, 1..n}),
AllInds[l..n, 1..n],
AllInds[n+1l..n+1, ..1;

var A, Temp: [AllInds] real;

A[LastRow] = 1.0;
do {
forall (i,7) in D do
Temp[i,J] = (A[i-1,3] + A[i+1,3] + A[i,j-1] + A[i,3+1]1) / 4;
const delta = max reduce abs (A[D] - Temp[D]);
A[D] = Temp[D];

} while delta > epsilon;

writeln (A) ;

—
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JACOBI ITERATION IN CHAPEL (DISTRIBUTED VERSION)

use BlockDist;

config cotgt n = 6, epsilon = 0.01;
const Al1IndsN\= {0..n+l1, 0..n+l} dmapped,Block({1l..n,
D AllInds[l..n, 1..n],
LastRow = N\llInds[n+1l..n+1, .1
var A, Temp: [AllInNs] real;
2SC O dllge
Dlelnl: s DA oo
A[LastRow] = 1.0;
do {
forall (i,j) in D do
Temp[i,j] = (A[i-1,
const delta = max re

A[D] = Temp[D];
} while delta > epsilon

writeln (A);

1.

.n}),

—
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A FINAL NOTE ON THESE JACOBI EXAMPLES

e The previous slides were developed primarily to demonstrate data parallel features in Chapel
« not necessarily to suggest “this is the best way to do Jacobi in Chapel”
« specifically, we haven’t done any benchmarking or tuning of Jacobi as it hasn’t been of deep interest to our users

* |f one wanted to do Jacobi in Chapel, there are a few other approaches to consider:

« there’s a 'Stencil’ distribution that is similar to ‘Block’ yet with a notion of ghost cells for caching neighbor values
« and if one were to do a comparison, it'd be good to compare with a more manual SPMD version in Chapel as well

IC)O



OTHERDATA PARALLEL FEATURES

» Scans: parallel prefix operations
» User-defined Parallel Iterators, Reduce/Scan Operations

“steve”
» Several Domain/Array Types: “leg”
“Sung”
|| o ] ] || | I | I “daVid”
[T | L " ”
] O O o O O HH . L] Jacob
] 11 ”
- albert
| &8 & & & B - “brad”
dense strided sparse associative
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SUMMARY OF THIS SECTION

e Chapel supports a rich set of language features
e a modern, productive set of base language features
“low-level” features for creating tasks and placing them on a system
a global namespace for referring to data lexically, whether local or remote
high-level data-parallel features such as forall loops and promotion
a rich set of domains and arrays, including global-view distributed arrays

fib.chpl

config const n = 10;

for (i,f) in zip(0..<n,
writeln("fib #", i, "

iter fib(x) {
var current = 0,
next = 1;

for i in 1..x {
yield current;
current += next;
current <=> next;
}
}

fib(n)) do
, £):

is

—

prompt> chpl fib.chpl

prompt> ./£fib --n=1000

fib
fib
fib
fib
fib
fib
fib
fib
fib
fib
fib
fib
fib
fib
fib

#0
#1
#2
#3
#4
#5
#6
#7
#8
#9

is
is
is
is
is
is
is
is
is
is

#10 is 55

#11
#12
#13
#14

is
is
is
is

89

144
K]
377

verbose Rt

total 0 |

done

locale O

if !done {
if verbose then

code runs on locale 1,
but refers to values
stored on locale O

writef ("Adding..
total += computi..

locale O

locale 1

locale 2
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CHAPEL SOUNDS GREAT...THERE MUST BE A CATCH?

e We think Chapel is great, yet at times, it can admittedly also be frustrating

o Compile times can feel sluggish (but we’re currently working on improving them)
« Error messages can be confusing or poor (ditto)

e Chapel code doesn’t support GPUs very well yet (ditto)

o Sometimes reasonable code performs poorly (ditto)

e Tools are lacking (not receiving much attention at present)

e Essentially, Chapel is a continually improving work-in-progress
« Depending on your needs and personality, it may be perfect for you today, or it could make sense to wait
« We have a reputation for being very responsive to users’ questions and needs

e Another catch is that any language, however great, must overcome social challenges to become adopted

e The HPC community is particularly skeptical of new languages
—in part due to being performance- and HW-centric; in part due to having been burnt by past language attempts

e All that said, we think that the number of HPC-focused programming languages should be > 0
o And that Chapel is as strong a contender as any

— .
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CHAPEL ON OOKAMI

e Chapel runs on Ookami

o Our December release (1.25.1) is pre-installed as a module for users’ convenience
—We’ll talk more about this in the hands-on section

e We have performed some baseline performance measurements
...but let’s cover some disclaimers first
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CHAPEL ON OOKAMI: IMPORTANT DISCLAIMERS

e We have not put any effort into tuning Chapel for A64FX processors

o Our team spends a lot of effort tuning and optimizing Chapel for Cray and InfiniBand networks
— And, to a lesser extent, optimizing for recent Intel and AMD processor designs
o To date, A64FX has not been a priority for us

e We also haven’t focused much on optimizing vectorization in Chapel

o Our approach is to expose opportunities for vectorization to the back-end compiler, relying on it
« recently, we have been focused on code generation for GPUs which is related, but different

e A64FX is, in many respects, the opposite of what we've been most focused on in recent years:
« Our recent focus: massive data sets on systems with lots of memory and bandwidth
o A64FX: memory capacity limited, vectorization-focused

— .



BASELINE OOKAMI PERFORMANCE COMPARISONS

16-node Chapel results:

Benchmark
Ookami’'s HBM greatly benefits

highly localized computations

Stream Triad 2579 GB/s 7808 GB/s

PRK Stencil 1335 GFlops/s 949 GFlops/s

ISx 2.55s 6.86 s

Bale IndexGather 4.8 GB/s/node 0.4 GB/s/node

HPCC RA(RMA)  0.0016 GUPS  0.0009 GUPS
HPCC RA (AM) 0.0084 GUPS  0.0024 GUPS

System Characteristics:

System Network Cores per node (locale) Processor Type

Apollo-CL HDR IB 48 Cascade Lake
Ookami HDR IB 48 A6LFX

: (see the disclaimers on the preceding slide before drawing any conclusions from these results)
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BASELINE OOKAMI PERFORMANCE COMPARISONS

16-node Chapel results:

Benchmark Apollo-CL Ookami
2579 GB/s 7808 GB/s

PRK Stencil 1335 GFlops/s 949 GFlops/s

Stream Triad

ISx 2.55s 6.86 s

Bale IndexGather 4.8 GB/s/node 0.4 GB/s/node

HPCC RA(RMA)  0.0016 GUPS  0.0009 GUPS
HPCC RA (AM) 0.0084 GUPS  0.0024 GUPS

Possible explanations for the poor results for more complex benchmarks:
o Chapel and its communication optimizations may require more powerful scalar cores than those on A64FX
o Chapel’s heuristics for NUMA affinity may be less effective on A64FX than on Cascadelake
o Lack of vectorization / CPU specialization may hurt Chapel more on A64FX than on Cascadel ake
« Chapel’s tasking library (Qthreads) may not perform as well on A64FX as on CascadelLake

: (see the disclaimers on the preceding slide before drawing any conclusions from these results)
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POTENTIAL OOKAMI IMPROVEMENTS: MULTIPLE PROCESSES PER NODE

e Traditionally, Chapel runs a single process per locale per compute node
 Parallelism is typically implemented via user-level tasks
—executed using worker threads that are pinned 1:1 to the compute node’s cores
o NUMA affinity is dealt with heuristically by Chapel’s implementation
- not perfect, but has typically worked “well enough” in practice
« This approach has had various benefits for us, including:
—simple execution model for users
—single communication mechanism for cross-locale accesses
—good surface-to-volume properties, particularly as core counts have increased significantly

e For various reasons, we have discussed enabling a slightly coarser execution model

e €.g., running using a process/locale per...
..NUMA domain / CMG?
..NIC?
..GPU?

e If NUMA effects are hurting Chapel on A64FX more than conventional processors, this could help
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POTENTIAL OOKAMI IMPROVEMENTS: BETTER VECTORIZATION

e As mentioned earlier, vectorization optimizations have not been a big focus for our group to date

e Three promising directions:
1. Simon Moll et al’s LLVM Region Vectorizer has demonstrated benefits for Chapel via outer-loop vectorization
—-we’d like to explore this more and potentially enable it by default in Chapel

2. ARM has been upstreaming SVE contributions to LLVM that could also improve our performance on A64FX
—thanks to Tony Curtis for bringing this to our attention

3. colleagues at EPCC have recently started a study of vectorization on ARM-based HPC systems
—(see next slide)
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POTENTIAL MITIGATION STRATEGIES: BETTER VECTORIZATION

e Michele Weiland & Ricardo Jesus (EPCC): studying how well languages target ARM-based HPC systems

« Using RAJAPerf as the basis for their study
—Have created a Chapel port using a few different computational styles
e Running on ARCHER2 (AMD EPYC 7742), Fulhame (Marvell ThunderX2), and Isambard 2 (Fujitsu A64FX)

« Starting to generate preliminary results:

(archer2)

t/tBase_Seq

t/tBase_Seq
(fulhame)

t/tBase_Seq
(isambard2-gnu)

(isambard2-1lvm)

10!
10

Base_Seq RAJA Seq Lambda_Seq

Base_OpenMP RAJA_OpenMP Lambda_OpenMP

Chapel_Seq
Chapel Forall

Chapel_Promotion
Chapel_Reduction

— perfect scaling

time (s)

10°

10°

10!

normalised time

kernel

archer2 fulhame isambard?2

TR &S &
¢ SELEE
FF IS o

W& & S
S
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https://github.com/LLNL/RAJAPerf

POTENTIAL MITIGATION STRATEGIES: BETTER VECTORIZATION

e Michele Weiland & Ricardo Jesus (EPCC): studying how well languages target ARM-based HPC systems

« Using RAJAPerf as the basis for their study

—Have created a Chapel port using a few different computational styles
e Running on ARCHER2 (AMD EPYC 7742), Fulhame (Marvell ThunderX2), and Isambard 2 (Fujitsu A64FX)
« Starting to generate preliminary results:

» » Base_Seq RAJA _Seq < Lambda_Seq Chapel_Seq Chapel_Promotion — perfect scaling
Base_OpenMP RAJA_OpenMP Lambda_OpenMP Chapel_Forall Chapel_Reduction
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POTENTIAL MITIGATION STRATEGIES: BETTER VECTORIZATION

e Michele Weiland & Ricardo Jesus (EPCC): studying how well languages target ARM-based HPC systems

« Using RAJAPerf as the basis for their study
—Have created a Chapel port using a few different computational styles
e Running on ARCHER2 (AMD EPYC 7742), Fulhame (Marvell ThunderX2), and Isambard 2 (Fujitsu A64FX)

« Starting to generate preliminary results:

archer2 fulhame isambard?2

normalised time
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BASELINE OOKAMI PERFORMANCE COMPARISONS

16-node Chapel results:

Benchmark Apollo-CL Ookami

Stream Triad 2579 GB/s 7808 GB/s

PRK Stencil 1335 GFlops/s 949 GFlops/s 0.71x Ookami-SHMEM
ISx 255s 6.86s 0.37x 576s

Bale IndexGather 4.8 GB/s/node 0.08x
HPCC RA(RMA)  0.0016 GUPS  0.0009 GUPS 0.56x

HPCC RA (AM) 0.0084 GUPS  0.0024 GUPS 0.29x

SHMEM reference versions perform similarly to Chapel

« these are run with a process per core, so don’t suffer NUMA effects
e may suggest that scalar processor / communication overheads are the likely big difference

: (see the disclaimers on the preceding slide before drawing any conclusions from these results) | 105



CHAPEL ON OOKAMI PERFORMANCE SUMMARY

e Stating for re-emphasis: We've invested no effort to date in making Chapel perform well on Ookami

e That said, we see several potential avenues for improvements:
o better vectorization / specialization for A64FX

improve our understanding of how Chapel’s communication code paths behave on A64FX
running a process/locale per CMG ; better NUMA heuristics

studying and tuning the performance of the Qthreads tasking library on A64FX
..something else we haven’t learned yet due to lack of study?
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SUMMARY

Chapel cleanly supports...

...expression of parallelism and locality T—
. . S ntax : rj\g ro?/\;e 'rzergaa;::eyrn tiz ctivi
..a diverse set of parallel features, at various levels e —

...specifying how to map computations to the system e
« |If optimizations are needed to get

Perfcl’mance performance

* We need a compiler (back-end)

Chapel is powerful:
« it supports succinct, straightforward code Algorithms iRt

e it can result in performance that competes with or beats C+MPI[+OpenMP]

Chapel is being used for productive parallel applications at scale
e recent users have reaped its benefits in 10k-48k-line applications

apkolda
Massive scale
data sclence

Benchmark Apollo-CL Ookami Ratio

Chapel is available and working on Ookami StreamTriad  2579GB/s  7808GB/s 303
. . . . PRK Stencil 1335 GFlops/s 949 GFlops/s 0.71x

o further study is required to understand opportunities for improved performance s« 2555 6865 037

' Bale IndexGather 4.8 GB/s/node 0.4 GB/s/node 0.08x
HPCC RA (RMA) 0.0016 GUPS 0.0009 GUPS 0.56x
'HPCCRA(AM)  0.0084GUPS  0.0024 GUPS 0.29x

: [Image source: Kathy Yelick’s, CHIUW 2018 keynote: Why Lanquages Matter More Than Ever, used with permission] I 108
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AGAIN, WE ARE HIRING

Chapel Development Team at HPE

:
see: https://chapel-lang.org/jobs.html
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CHAPEL RESOURCES

Chapel homepage: hitps://chapel-lang.org
 (points to all other resources)

Social Media:

o Twitter: @ChapelLanguage
e Facebook: @ChapelLanguage

e YouTube: http://www.youtube.com/c/ChapelParallelProgramminglLangquage

Community Discussion / Support:

e Discourse: https://chapel.discourse.group/
o Gitter: https://gitter.im/chapel-lang/chapel

o Stack Overflow: https://stackoverflow.com/questions/tagged/chapel

o GitHub Issues: https://github.com/chapel-lang/chapel/issues

—

What is Chapel?
What's New?

Upcoming Events
Job Opportunities

How Can | Learn Chapel?
Contributing to Chapel

Download Chapel
Try Chapel Online

Documentation
Release Notes

Performance
Powered by Chapel

User Resources
Developer Resources

Social Media / Blog Posts
Press

Presentations
Papers / Publications

CHIuw
CHUG

Contributors / Credits

chapel_info@cray.com

O - A
vyEHD

What is Chapel?

Chapel is a programming language designed for productive parallel computing at scale.

Why Chapel? Because it simplifies parallel programming through elegant support for:

« distributed arrays that can leverage thousands of nodes' memories and cores

« a global namespace supporting direct access to local or remote variables

« data parallelism to trivially use the cores of a laptop, cluster, or supercomputer
« task parallelism to create concurrency within a node or across the system

Chapel Characteristics

« productive: code tends to be similarly readable/writable as Python
« scalable: runs on laptops, clusters, the cloud, and HPC systems

« fast: performance competes with or beats C/C++ & MPI & OpenMP
« portable: compiles and runs in virtually any *nix environment

* open-source: hosted on GitHub, permissively licensed

New to Chapel?

As an introduction to Chapel, you may want to...

« watch an overview talk or browse its slides

read a blog-length or chapter-length introduction to Chapel
learn about projects powered by Chapel

check out performance highlights like these:

PRK Stencil Performance (Glop's) NPB-FT Performance (Gop's)

Giop/'s
) §
L A\“‘ evi
\ |
\
Gopis
st
\
1

Locales (x 36 cores / locale) Locales (x 36 cores / locale)

* browse sample programs or learn how to write distributed programs like this one:

use CyclicDist; // use the Cyclic distribution Llibrary
config const n = 100; // use --n=<val> when executing to override this default

forall i in {1..n} dmapped Cyclic(startIdx=1) do
writeln("Hello from iteration ", i, " of ", n,

" running on node ", here.id);

C e The Chapel Parallel Programming Language
| [ =

110



https://chapel-lang.org/
https://twitter.com/ChapelLanguage
https://www.facebook.com/ChapelLanguage/
http://www.youtube.com/c/ChapelParallelProgrammingLanguage
https://chapel.discourse.group/
https://gitter.im/chapel-lang/chapel
https://stackoverflow.com/questions/tagged/chapel
https://github.com/chapel-lang/chapel/issues

SUGGESTED READING / VIEWING

Chapel Overviews / History (in chronological order):
e Chapel chapter from Programming Models for Parallel Computing, MIT Press, edited by Pavan Balaji, November 2015
o Chapel Comes of Age: Making Scalable Programming Productive, Chamberlain et al., CUG 2018, May 2018
« Proceedings of the 8th Annual Chapel Implementers and Users Workshop (CHIUW 2021), June 2021
e Chapel Release Notes — current version 1.25, October 2021

Arkouda:

 Bill Reus’s CHIUW 2020 keynote talk: https://chapel-lang.org/CHIUW2020.html#keynote
» Arkouda GitHub repo and pointers to other resources: https://github.com/Bears-R-Us/arkouda

CHAMPS:

e Eric Laurendeau’s CHIUW 2021 keynote talk: https://chapel-lang.org/CHIUW2021.hitml#keynote
—two of his students also gave presentations at CHIUW 2021, also available from the URL above
« Another paper/presentation by his students at https://chapel-lang.org/papers.html (search “Laurendeau™)
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https://chapel-lang.org/publications/cug2018-chapel.pdf
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https://chapel-lang.org/releaseNotes.html
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https://github.com/Bears-R-Us/arkouda
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https://chapel-lang.org/papers.html
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USING CHAPEL ON OOKAMI

e Chapel is pre-installed on Ookami, thanks to Eva Siegmann and Tony Curtis

e Installed at /1lustre/software/chapel/apollo/chapel-1.25.1
 Available via normal module commands:

prompt> module load chapel

« Sample programs available:
prompt> ls $CHPL HOME/examples/*.chpl
hello.chpl hello4d4-datapar-dist.chpl
hello2-module.chpl hellob-taskpar.chpl
hello3-datapar.chpl hello6-taskpar-dist.chpl

(see also the ‘primers/’ and ‘benchmarks/’ subdirectories)

o Compile and run as shown in previous examples:
prompt> chpl $CHPL HOME/examples/hello6-taskpar-dist.chpl

prompt> ./hello6-taskpar-dist -nl 4

— | s




INSTALLING AND USING CHAPEL ON YOUROWN SYSTEM

e Often, getting started with Chapel on a supercomputer can be annoying

e Environment not as set up to your liking as your primary machine
» Shared resource, queueing times, etc.

e You're welcome to install Chapel on your laptop or favorite system if you're able to

« Mac homebrew (Catalina or later) / Linuxbrew: ‘brew install chapel’ (supports single-locale runs only)
« Mac/ Linux / *nix: Install and build from source, see https://chapel-lang.org/download.html

o Windows: Use Linux bash shell / Windows Subsystem for Linux and see previous line
o Docker: See htfps://chapel-lang.org/install-docker.html

e Developing a Chapel program on a laptop and then running it on a supercomputer is a common practice

« And Chapel’s global view tends to make it easy:
—almost always runs correctly
- typically not too difficult to get using multiple locales, particularly for data-parallel codes
—optimizing it can take more effort...
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“WHAT SHOULD I DO DURING THE HANDS-ON SESSION?”

e You're welcome to do whatever appeals to you, but here are some possibilities:

e Try compiling, running, modifying examples from this talk
—I've made most of them available on Ookami at:
/lustre/projects/global/Chapel/ookami-webinar/slideExamples/

e Try one of the hands-on exercises
— There are four exercises prepared, two that are simpler and two that are more involved (see next slide)
—Instructions and starting files are also on Ookami:

/lustre/projects/global/Chapel/ookami-webinar/handsOn/

o Try coding up a computation or parallel pattern of interest to you

e Note that you will probably want to create your own local, writeable copy of the materials above, e.g.:

prompt> cp -r /lustre/projects/global/Chapel/oockami-webinar
prompt> chmod -R u+w ookami-webinar

— | s



PREPARED HANDS-ON EXERCISES

e Advent of Code 2021 Day 1: given an array of numbers, compute some simple statistics on it

« This is a frivial computation that you’d have no trouble doing in a language you’re familiar with
o Goal is to use it to get familiar with Chapel
o Opportunities for array operations, data parallelism, reductions

o Advent of Code 2021 Day 4: simulate a bingo game with an octopus
 This is slightly more involved and interesting, but still straightforward
« More opportunities for array operations, data parallelism, 2D arrays

e Ray Tracer: given a ray tracing framework, fill in some missing details to make it work
o Exercises 2D arrays, data parallelism

» Bounded Buffer: use Chapel’s sync and atomic variables
» Exercises task parallelism and synchronization—relies on sync/atomic variables, not really covered today

(Note that none of these runs are large enough to require multiple locales, though most are amenable to them)

— | e



NEED HELP?

o We'll be handling Q&A today both live and via #chapel-webinar on the IACS Slack channel
« Members of the Chapel tfeam besides myself will be on Slack to answer questions, screen share, etc.

o After today, help is available via:
« Stack Overflow: for questions that will likely be valuable to others (tag your question with ‘chapel’)
» Discourse: our community web forum / mailing list technology
o Gitter: our community real-time chat fechnology
« GitHub issues: for filing bug reports, feature requests, etc.

— |



GENERAL TIPS WHEN GETTING STARTED WITH CHAPEL (ALSO IN README)

e Online documentation is here: https://chapel-lang.org/docs/

« The primers can be particularly valuable for learning a concept: https://chapel-lang.org/docs/primers/index.html

—These are also available from a Chapel release in ‘SCHPL_HOME/examples/primers/’
- or ‘SCHPL_HOME/test/release/examples/primers/’ if you clone from GitHub

 When debugging, almost anything in Chapel can be printed out with ‘writeln(exprl, expr2, expr3);
« Types can be printed after being cast to strings, e.g. ‘writeIn("Type of “, expr, “ is “, expr.type:string);
« A quick way to print a bunch of values out clearly is to print a tuple made up of them ‘writeln((x, v, 2));

e Once your code is correct, before doing any performance timings, be sure to re-compile with ‘--fast’
o Turns on optimizations, turns off safety checks, slows down compilation, speeds up execution significantly
« Then, when you go back to making modifications, be sure to stop using "--fast ™ in order to turn checks back on

e For vim / emacs users, syntax highlighters are in SCHPL_HOME/highlight
o Imperfect, but typically better than nothing
 Emacs MELPA users may want to use the chapel-mode available there (better in many ways, weird in others)
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