Hewlett Packard
Enterprise

PRODUCTIVE PARALLEL PROGRAMMING
USING CHAPEL

Nordic-RSE Seminar Series
November 30, 2022

WHAT IS CHAPEL?

Chapel: A modern parallel programming language

e portable & scalable
e open-source & collaborative

Goals:

e Support general parallel programming
o Make parallel programming at scale far more productive

C

2

SCALABLE PARALLEL COMPUTING THAT’S ASEASY ASPYTHON?

Imagine having a programming language for parallel computing that was as...
...programmable as Python

..yet also as...
..fast as Fortran
...scalable as MPI

...GPU-ready as CUDA/OpenMP/OpenCL/OpenACC/...
...portable as C
...fun as [your favorite programming language]

This is our motivation for Chapel

3

OUTLINE

e What is Chapel, and Why?

e Chapel Characteristics

e Chapel Benchmarks & Apps
e Chapel Features

e Wrap-up

CHAPEL CHARACTERISTICS

WHAT DO CHAPEL PROGRAMS LOOK LIKE?

helloTaskPar.chpl: print a message from each core in the system

fillArray.chpl: declare and parallel-initialize a distributed array

coforall loc in {
on loc {
const numTasks = .maxTaskPar;
coforall tid in 1. .numTasks do

(

tid, numTasks, .name) ;

> chpl helloTaskPar.chpl

> ./helloTaskPar --numLocales=4
Hello from task of 4 on nl1032
Hello from task of 4 on nl1032
Hello from task of 4 on nl1034

Hello from task of on nl1032
Hello from task of on nl1033
Hello from task of on nl1034

use ;
config const n = 1000;
const D= {1l..n, 1..n}
dmapped (startIdx = (1,1));

var A: [D] real;

forall (i,]) in D do
Afi,j3] =1 + (3 - 0.5)/n;

(A) ;

chpl fillArray.chpl
./fillArray --n=5 --numLocales=4
1.3 1.5 1.7 1.9

2.7
3.7
4.7
5.7

FIVE KEY CHARACTERISTICS OF CHAPEL

Ui rUNR

compiled: fo generate the best performance possible

statically typed: to avoid simple errors after hours of execution

interoperable: with C, Fortran, Python, ...

portable: runs on laptops, clusters, the cloud, supercomputers

open-source: to reduce barriers to adoption and leverage community contributions

7

CHAPEL RELEASES

Q: What is provided in a Chapel release?
A: Chapel releases contain...
...the Chapel compiler (‘chpl’): translates Chapel source code into optimized executables
...runtime libraries: maps Chapel programs to a system’s capabilities (e.g., processors, network, memory, ...)

...library modules: provide standard algorithms, data types, capabilities, ...
...documentation (also available online at: https://chapel-lang.org/docs/)

..sample programs: primers, benchmarks, etc.

Q: How often is Chapel released? And in what formats?
A: Chapel is released quarterly (March, June, Sept, Dec) in a variety formats:
e open-source tarballs on GitHub
« as a homebrew formula and bottle for Mac and Linux
 as a Docker image
« as a module on HPE Cray systems

—

8

https://chapel-lang.org/docs/

THE CHAPEL TEAM AT HPE

e Our core team consists of:

o 16 developers + 1 starting early 2023
1 visiting scholar

1 manager
1 tech lead
1 project lead (technical manager)

1/n director

see: https://chapel-lang.org/contributors.html

— |0

https://chapel-lang.org/contributors.html

CHAPEL BENCHMARKS AND
APPLICATIONS

FOR DESKTOP BENCHMARKS, CHAPEL IS COMPACT AND FAST

Execution Time
(normalized to fastest entry)

100

80 -

60 -

40 -

20 -

1.0

chapel
csharpcore
dartexe
erlang
fpascal
fsharpcore
gcc

ghc

gnat

go

gpp

ifc

java

julia

lua

node
ocaml

perl

php
python3
racket
ruby

rust

sbcl

swift

vw

[] gmean-smallest
O gmean-fastest

.
.
.
.,
N,
N
.,
N,
ma Ia X

Perl

Racket N

Dart .. B
PHP B
Javaserdfipt -

Julia B

Compressed Code Size (AnormaAIized to smallest entry)

[plot generated by summarizing data from https://benchmarksgame-team.pages.debian.net/benchmarksgame/index.html as of May 10, 2022]

11

https://benchmarksgame-team.pages.debian.net/benchmarksgame/index.html

FOR DESKTOP BENCHMARKS, CHAPEL IS COMPACT AND FAST (ZOOMED)

Execution Time
(normalized to fastest entry)

10 v S ¥

N
O Erlang

Haskell

® ® Go ® - @ Java
Chapel Julia Rust B o

ce

1 1 1 1 1
1.0 15 2.0 2.5 3.0

Compressed Code Sizé Cnormélized to smallest entry)

@ e
o Javaserdpl .

B chapel
Bl csharpcore
mam dartexe
EEm erlang
I fpascal
mmm fsharpcore
I gcc
BN ghc
EEm gnat
go
= gpp
ifc
 java
m julia
. lua Q
node LLIS®
1 ocaml
mmm perl
B php
python3
mmm racket
BN ruby
Il rust
sbcl
swift
'Y

TS [:] gmean-smallest

O gmeafi-fastest

3.5

[plot generated by summarizing data from https://benchmarksgame-team.pages.debian.net/benchmarksgame/index.html as of May 10, 2022]

12

https://benchmarksgame-team.pages.debian.net/benchmarksgame/index.html

FOR HPC BENCHMARKS, CHAPEL TENDS TO BE CONCISE, CLEAR, AND COMPETITIVE

STREAM TRIAD: C + MPI + OPENMP

use BlockDist;

.| config const m = 1000,

alpha = 3.0;

const Dom = {1l..m} dmapped ..;

var A, B, C: [Dom] real;

B =2.0;
C =1.0

4

A = B + alpha * C;

HPCC RA: MPI KERNEL

GB/s

forall (, r) in zip(Updates, RAStream()) do
T[r & indexMask].xor(r):;

30000
25000
20000
15000
10000

5000

14
12
10

GUPS

onNn A~ O

STREAM Performance (GB/s)

MPI+OpenMP —¢—
Chapel EP —e— — - == == == == === —mm - - - —
Chapel Global - -+ -

[
16 32 64 128 256
Locales (x 36 cores / locale)

RA Performance (GUPS)

16 32 64 128 256
Locales (x 36 cores / locale)

TWO FLAGSHIP CHAPEL APPLICATIONS

;lll:
E CHAMPS: 3D Unstructured Computational Fluid Dynamics (CFD) E

Arkouda: Interactive Data Analytics at Supercomputing Scale

= &

14

CHAMPS SUMMARY

What is it?
e 3D unstructured CFD framework for airplane simulation
o ~85k lines of Chapel written from scratch in ~3 years

Who wrote it?
« Professor Eric Laurendeau’s students + postdocs at Polytechnique Montreal

« Not open-source, but available on request = %3 POLYTECHNIQUE B e e
%~ MONTREAL

Why Chapel?
« performance and scalability competitive with MPI + C++
« students found it far more productive to use

4 i
4
_.4.:[
—4

EEETTEY

: (images provided by the CHAMPS team and used with permission) I

T

CHAMPS: EXCERPT FROM ERIC’S CHIUW 2021 KEYNOTE (TRANSCRIPT)

HPC Lessons From 30 Years of Practice in CFD Towards Aircraft Design and Analysis (June 4, 2021)

“To show you what Chapel did in our lab... [our previous framework] ended up 120k lines.
And my students said, ‘We can't handle it anymore. It’s too complex, we lost track
of everything.” And today, they went from 120k lines to 48k lines, so 3x less.

But the code is not 2D, it’s 3D. And it’s not structured, it’s unstructured, which is way
more complex. And it’s multi-physics... So, Pve got industrial-type code in 48k lines.”

“[Chapel] promotes the programming efficiency ... We ask students at the master’s
degree to do stuff that would take 2 years and they do it in 3 months. So, if you

want to take a summer internship and you say, ‘program a new turbulence model,” well : f“;
they manage. And before, it was impossible to do.” R

POLYTECHNIQUE
MONTREAL

“So, for me, this is like the proof of the benefit of Chapel, plus the smiles | have on my students everyday in the lab
because they love Chapel as well. So that’s the key, that’s the takeaway.”

« Talk available online: https://youtu.be/wD-a KyB8al?t=1904 (hyperlink jumps to the section quoted here)

: (images provided by the CHAMPS team and used with permission) I 16

https://youtu.be/wD-a_KyB8aI?t=1904

CHAMPS HIGHLIGHTS

Community Activities:
o Team participated in the 7™ AIAA High-lift Prediction Workshop and 15t AIAA Ice Prediction Workshop
— Generating comparable results to high-profile sites: Boeing, Lockheed Martin, NASA, JAXA, Georgia Tech, ...
 Five papers published this past summer at 2022 AIAA Aviation
« While on sabbatical, Eric has presented CHAMPS and Chapel at ONERA, DLR, Université de Strasbourg, ...
« Student presentations at CASI/IASC Aero 21 Conference and fo CFD Society of Canada (CFDSC)

POLYTECHNIQUE MONTREAL POLYTECHNIQUE MONTREAL

Application - Fourth AIAA High Lift Prediction Workshop Application - First AIAA Ice Prediction Workshop | Numerical Verification
ourth AIAA High Lift Prediction Workshop i F /) :
First AIAA Ice Predit V. Fifth Drag Predictio (DPW)
® Case 1b : Grid refinement study for a constant angle of attack of 7.05°; J
= e 0 e x . = o
o Recili sie in e ik ot ariha it RANS Zolier. Case 241 (Iéft). Rime ice predlc?lor\ on small NACA23012 alrf:ol| (2D, low temp.); The pressure drag convergence of CHAMPS is similar to the workshop results
® Case 363 (right): Glaze ice prediction on NACA0012 swept wing (3D, warmer temp.).
CHAMPS —e— CFL3D FUNSD —e—
00F% por st NSU3D —e— FUN3D-V
— 9 00175
02 0.017 - /,//
001 0.0165 /.
a 001 0.016 |-
s - - 000 g & 0.0155
\ £ 0.015
o =N % 00145
Ve v’ \,\ - 0,00
L e SN 0.014 |-
. B 0.0135
TR | 2013
o) Cp 856555 454 353 252 15 1050 051 g 502 56 5 o5 006400 50e-05 10e04 15e-04
Adapted from Olivier-Gooch, C., Coder, J. 4th CFD High Lift Prediction Workshop, Fixed-Grid X (ormattolesding dge st AoA=h o () it s o
RANS TFG, AIAA HLPW4 Case 241 (2D rime ice) Case 363 (3D glaze ice)
I — 7 34729

: (slide images taken from Eric Laurendeau’s SIAM PP22 talk, A Case Study on the Impact of Chapel within an Academic Computational Aerodynamic Laboratory, with permission) I 17

https://chapel-lang.org/presentations/SIAM_2022_P22_Laurendeau.pdf

TWO FLAGSHIP CHAPEL APPLICATIONS

Arkouda: Interactive Data Analytics at Supercomputing Scale

EEEEEEEEEEE N
EEEEEEEEEEEER

DATA SCIENCE INPYTHON AT SCALE?

Motivation: Say you’ve got...
...HPC-scale data science problems to solve
...a bunch of Python programmers

...access to HPC systems

———— 4

E%

] I

How will you leverage your Python programmers to get your work done?

— .

ARKOUDA'’S HIGH-LEVEL APPROACH

Arkouda Client Arkouda Server
(written in Python) (written in Chapel)
= '\
-
e
—

999999999999999999
9999999999999999

N

O User writes Python code in Jupyter,
ﬂ making familiar NumPy/Pandas calls
— -

ARKOUDA SUMMARY

What is it?
« A Python library supporting a key subset of NumPy and Pandas for Data Science

—Uses a Python-client/Chapel-server model to get scalability and performance
— Computes massive-scale results (multi-TB-scale arrays) within the human thought loop (seconds to a few minutes)

o ~25k lines of Chapel, written since 2019

Who wrote it?

Arkouda Client Arkouda Server
« Mike Merrill, Bill Reus, et al., US DoD LentteniinEython)
« Open-source: https://github.com/Bears-R-Us/arkouda T -
Why Chapel?
« high-level language with performance and scalability N
° i O User writes Python code in Jupyter,
Close fo PYThOﬂIC ﬂ making NumPy/Pandas calls

—enabled writing Arkouda rapidly
—doesn’t repel Python users who look under the hood

« ports from laptop to supercomputer

— |

21

https://github.com/Bears-R-Us/arkouda

ARKOUDA PERFORMANCE COMPARED TO NUMPY

NumPy Arkouda (serial) Arkouda (parallel) Arkouda (distributed)

0.75 GB 0.75 GB 0.75 GB 384 GB
benchmark 1 core, 1 node 36 cores x 1 node 36 cores x 512 nodes
0.03 GiB/s 0.05 GiB/s 0.50 GiB/s 55.12 GiB/s
argsort
-- 1.66x 16.7x 1837.3x
0.03 GiB/s 0.07 GiB/s 0.50 GiB/s 29.54 GiB/s
coargsort
-- 2.3x 16.7x 984.7x
1.15 GiB/s 0.45 GiB/s 13.45 GiB/s 539.52 GiB/s
gather
-- 0.4x 11.7x 4£69.1x
reduce Q.90 GiB/s 11.66 GiB/s 118.57 GiB/s 43683.00 GiB/s
-- 1.2x 12.0x L4412 .4X
scan 2.78 GiB/s 2.12 GiB/s 8.90 GiB/s 741.14 GiB/s
-- 0.8x 3.2x 266.6x
1.17 GiB/s 1.12 GiB/s 13.77 GiB/s 914.67 GiB/s
scafter
-- 1.0x 11.8x 781.8x
3.94 GiB/s 2.92 GiB/s 24.58 GiB/s 6266.22 GiB/s
stream
-- 0.7x 6.2x 1590.4x

22

ARKOUDA ARGSORT AT MASSIVE SCALE

e Ran on a large Apollo system, summer 2021

e 73,728 cores of AMD Rome
o 72 TiB of 8-byte values

« 480 GiB/s (2.5 minutes elapsed time) ggg

e ~100 lines of Chapel code 400
350
300
250
200
150
100

50

GiB/s

Arkouda Argsort Performance
HPE Apollo (HDR-100 IB)

64 128 256 512 576
Locales (x 128 cores / locale)

Close to world-record performance—quite likely a record for performance/SLOC

—

|23

OVERVIEW OF CHAPEL FEATURES

CHAPEL FEATURE AREAS

Chapel language concepts

«

Domain Maps
Data Parallelism

Task Parallelism

Base Language

Locality Control

Target System

»,

25

BASE LANGUAGE

Chapel language concepts

«

Domain Maps

Data Parallelism

Base Language

Locality Control

Target System

p»,

“Lower-level” Chapel

26

A TOY COMPUTATION: THE FIBONACCI SEQUENCE

e QOur first program shows a stylized way of computing n values of the Fibonacci sequence in Chapel...
o This is admittedly a very artificial example, but it’s short and illustrative

e The Fibonacci Sequence:
e Starts with: O, 1
» Successive terms obtained by adding the previous two terms: 1, 2, 3,5, 8, ...

|27

FIBONACCI ITERATION

fib.chpl

config const n = 10;

for £ in fib(n) do
writeln (f) ;

iter fib(x) {
var current = 0,
next = 1;

for 1 in 1..x {

yield current;
current += next;

current <=> next;

prompt> chpl fib.chpl
prompt>

28

FIBONACCI ITERATION

fib.chpl

config const n = 10;

for £ in fib(n)
writeln (f) ;

iter fib(x) {
var current = 0,
next = 1;

for 1 in 1..x {
yield current;
current += next;
current <=> next;

Drive this loop
by invoking fib(n)

prompt> chpl fib.chpl
prompt> ./£fib

29

FIBONACCI ITERATION

fib.chpl

config const n = 10;

iter fib(x) {
var current = 0,
next = 1;

for 1 in 1..x {
yield current;
current += next;
current <=> next;

Execute the loop’s body

for that value

‘vield’ this expression back
to the loop’s index variable

prompt> chpl fib.chpl
prompt> ./£fib
0

30

FIBONACCI ITERATION

fib.chpl

config const n =

for £ in fib(n)
writeln (f) ;

iter fib(x) {
var current = 0,
next = 1;

for 1 in 1..x {
yield current;
current += next;
current <=> next;

prompt> chpl fib.chpl
prompt> ./£fib

Execute the loop’s body
for that value

Then continue the iterator
from where it left off

Repeating until we fall
out of it (or return)

FIBONACCI ITERATION

fib.chpl

config const n = 10;

for £ in fib(n)
writeln (f);

iter fib(x) {
var current = 0,
next = 1;

for 1 in 1..x {
yield current;
current += next;
current <=> next;

Configlurable] declarations
support command-line overrides

prompt> chpl fib.chpl
prompt> ./£fib --n=1000

32

FIBONACCI ITERATION

fib.chpl

config const n = 10;

for £ i ' Static type inference for:
writeln * constants / variables

* arguments
iter fib (x) * return types

var current
next =

Explicit typing also supported
for 1 1n 1..x {

yield current;
current += next;
current <=> next;

prompt> chpl fib.chpl
./fib --n=1000

prompt>

33

FIBONACCI ITERATION

fib.chpl

config const n: int = 10;

for £ in fib(n) do
writeln (f) ;

iter fib(x:
var current: int =
next: int = 1;

for 1 in 1..x {
yield current;
current += next;
current <=> next;

int) : int {

0,

Explicit typing also supported

prompt> chpl fib.chpl
prompt> ./£fib --n=1000

34

FIBONACCI ITERATION

fib.chpl prompt> chpl fib.chpl
config const n = 10; Zippered prompt> ./£ib --n=1000
iteration fib #0 1s
for (i,f) in zip(0..<n, fib(n)) do fib #1 1is
writeln ("fib #", i, " is ", f); fib #2 is
fib #3 1s
iter fib(x) { fib #4 1is
var current = 0, fib #5 is
next = 1; fib #6 1is
fib #7 1is
for i in 1..x { f%b #8 ?s
yield current; fib #9 is
current += next; fib #10 1is
current <=> next; fib #11 1is
| fib #12 is
\ fib #13 is

fib #14 1is

FIBONACCI ITERATION

fib.chpl

config const n = 10;

for (1,f) in zip(0..<n,
writeln("fib #",

iter fib(x) {
var current =
next = 1;

for 1 in 1..x {

yield current;
current += next;
current <=> next;

Range types
and operators

prompt> chpl fib.chpl
prompt> ./£fib --n=1000
fib #0 1is

fib #1 is

fib #2 is

fib #3 1is

fib #4 is

fib #5 1is

fib #6 1is

fib #7 is

fib #8 1is

fib #9 is

fib #10 is

fib #11 is

fib #12 is

fib #13 is

fib #14 is

36

OTHER BASE LANGUAGE FEATURES

 Various basic types: bool, int(w), uint(w), real(w), imag(w), complex(w), enums, tuples
 Error-handling
o Compile-time meta-programming
» Object-oriented programming
» Value-based records (like C structs supporting methods, generic fields, etc.)

» Reference-based classes (somewhat like Java classes or C++ pointers-to-classes)
—Nilable vs. non-nilable variants
- Memory-management strategies (shared, owned, borrowed, unmanaged)
— Lifetime checking

e Generic programming / polymorphism

» Procedure overloading / filtering

o Arguments: default values, intents, name-based matching, type queries
e Modules (supporting namespaces)

e and more...

— .

TASK PARALLELISM AND LOCALITY CONTROL

Chapel language concepts

«
—
—

Domain Maps

Data Parallelism

Base Language

Locality Control

Target System

p»,

“Lower-level” Chapel

38

THE LOCALE: CHAPEL'’S KEY FEATURE FOR LOCALITY

e locale: a unit of the target architecture that can run tasks and store variables
e Think “compute node” on a typical HPC system

prompt> ./myChapelProgram --numLocales=4

or ‘"nl 4

Locales array:

Locale O

Locale 1

Locale 2

Locale 3

User’s program starts running as a single task on locale O

39

TASK-PARALLEL “HELLO WORLD”

helloTaskPar.chpl

const numTasks = here.maxTaskPar;
coforall tid in 1..numTasks do
writef ("Hello from task %n of %n on %$s\n"
tid, numTasks, here.name) ;

TASK-PARALLEL “HELLO WORLD”

helloTaskPar.chpl

‘here’ refers to the locale on which
this code is currently running

coforall tid in 1..numTasks do
writef ("Hello from task %n

const numTasks = here.maxTaskPar;

how many parallel tasks can my
locale run at once?

%$n on %s\n",

tid, numTasks, here.name) ; what’s my locale’s name?

41

TASK-PARALLEL “HELLO WORLD”

helloTaskPar.chpl

const numTasks = here.maxTaskPar;

coforall tid in 1..numTasks do

writef ("Hello from task %$n of %$n on %s\n",
tid, numTasks, here.name) ;

a 'coforall’ loop executes each
iteration as an independent task

prompt> chpl helloTaskPar.

prompt> ./helloTaskPar
Hello from task 1 of 4
Hello from task 4 of 4
Hello from task 3 of 4
Hello from task 2 of 4

— .

TASK-PARALLEL “HELLO WORLD”

helloTaskPar.chpl

const numTasks = here.maxTaskPar;
coforall tid in 1..numTasks do
writef ("Hello from task %$n of %$n on %s\n",
tid, numTasks, here.name) ;

prompt> chpl helloTaskPar.

prompt> ./helloTaskPar
Hello from task 1 of 4
Hello from task 4 of 4
Hello from task 3 of 4
Hello from task 2 of 4

So far, this is a shared-memory program

Nothing refers to remote locales,
explicitly or implicitly

— .

TASK-PARALLEL “HELLO WORLD”

helloTaskPar.chpl

const numTasks = here.maxTaskPar;
coforall tid in 1..numTasks do
writef ("Hello from task %n of %n on %$s\n"
tid, numTasks, here.name) ;

TASK-PARALLEL “HELLO WORLD” (DISTRIBUTED VERSION)

helloTaskPar.chpl

coforall loc in Locales {
on loc {
const numTasks = here.maxTaskPar;
coforall tid in 1..numTasks do
writef ("Hello from task %n of %n on %s\n",
tid, numTasks, here.name) ;

45

TASK-PARALLEL “HELLO WORLD” (DISTRIBUTED VERSION)

helloTaskPar.chpl

coforall loc in Locales {

on loc {
const numTasks = here.maxTaskPar; the array of locales we're running on
coforall tid in 1. .numTasks do (introduced a few slides back)

writef ("Hello from task %$n of %$n on %s\n",
tid, numTasks, here.name) ;

Locale O Locale 1 Locale 2 Locale 3

Locales array:

TASK-PARALLEL “HELLO WORLD” (DISTRIBUTED VERSION)

helloTaskPar.chpl create a task per locale
on which the program is running

coforall loc in Locales {
on loc {
const numTasks = here.maxTaskPar;
coforall tid in 1..numTasks do
writef ("Hello from task %n of %n on %s\n"

tid, numTasks, here.name) ;

have each task run ‘on’ its locale

then print a message per core,
as before

} prompt> chpl helloTaskPar.chpl
} prompt> ./helloTaskPar —numLocales=4
Hello from task 1 of 4 on nl032
Hello from task 4 of 4 on nl032
Hello from task 1 of on nl1034

Hello from task of on nl1032
Hello from task of on nl033
Hello from task of on nl1034
Hello from task of on nl035

— .

TASK-PARALLEL “HELLO WORLD” (DISTRIBUTED VERSION)

helloTaskPar.chpl

coforall loc in Locales {
on loc {
const numTasks = here.maxTaskPar;
coforall tid in 1..numTasks do
writef (’
tid, numTasks, here.name) ;
} prompt> chpl helloTaskPar.chpl
} prompt> ./helloTaskPar —numLocales=4

Hello from task 1 of 4 on nl032
Hello from task of on nl1032
Hello from task of on nl1034

Hello from task of on nl1032
Hello from task of on nl033
Hello from task of on nl1034
Hello from task of on nl035

— e

CHAPEL FEATURE AREAS

Chapel language concepts

«

Domain Maps
Data Parallelism

Task Parallelism

Base Language

Locality Control

Target System

»,

49

DATA PARALLELISM AND DOMAIN MAPS

Chapel language concepts

«

Domain Maps
Data Parallelism

Task Parallelism

Base Language

Locality Control

Target System

»,

Higher-level Chapel

50

DATA-PARALLEL ARRAY FILL

fillArray.chpl

config const n = 1000;
const D = {l..n, 1..n};
var A: [D] real;

forall (i,J) in D do
Ali,j] =1 + (J - 0.5)/n;

writeln (A7) ;

51

DATA-PARALLEL ARRAY FILL

fillArray.chpl
config const n = 1000;
const D = {l..n, 1..n};

var A: [D] real;

forall (i,J) in D do
Ali,j] =1 + (J - 0.5)/n;

writeln (A7) ;

D A

declare a domain, a first-class index set

declare an array over that domain

52

DATA-PARALLEL ARRAY FILL

fillArray.chpl

config const n = 1000;
D A

const D declare a domain, a first-class index set

var A: ; declare an array over that domain

forall (i,7) 1 iterate over the domain’s indices in parallel,
Ali,J] ']) . assigning to the corresponding array elements

writeln (A7) ;

DATA-PARALLEL ARRAY FILL

: 11(13|15|15(1.9
f|”Array_chp| I —3hso e

PP P P PR PR

3.1(3.3(3.5|3.7|3.9
41| 43| 45|47 |49
51|5.3|15.5|5.7(5.9

PP TP P PR SRR SRR

config const n = 1000;
9 D A
const D = {1l..n, 1..n};
prompt> chpl dataParallel.chpl
var A: [D] real; prompt> ./dataParallel --n=5

1.1 1.3 1.5 1.7 1.9

forall (i,j) in D do 2.1 2. 2.7 2.

Ali,3] =1 + (J - 0.5)/n; 3.1 3. 3.7 3.
4.1 4 4.7 4
5.1 5 5.7 5

writeln (A7) ;

So far, this is a shared-memory program

Nothing refers to remote locales,
explicitly or implicitly

DATA-PARALLEL ARRAY FILL

fillArray.chpl
config const n = 1000; ~
locale O
const D = {1l..n, 1..n};
prompt> chpl dataParallel.chpl
var A: [D] real; prompt> ./dataParallel --n=5

1.1 1.3 1.5 1.7 1.9

forall (i,j) in D do 2.1 2. 2.7 2.

Ali,3] =1 + (J - 0.5)/n; 3.1 3. 3.7 3.
4.1 4 4.7 4
5.1 5 5.7 5

writeln (A7) ;

So far, this is a shared-memory program

Nothing refers to remote locales,
explicitly or implicitly

DATA-PARALLEL ARRAY FILL

fillArray.chpl

config const n = 1000;
const D = {l..n, 1..n};
var A: [D] real;

forall (i,J) in D do
Ali,j] =1 + (J - 0.5)/n;

writeln (A7) ;

56

DATA-PARALLEL ARRAY FILL (DISTRIBUTED

fillArray.chpl

VERSION)

use CyclicDist;
config const n = 1000;
const D = {l1..n, 1..n}
dmapped Cyclic (startlIdx =

var A: [D] real;

forall (i,J) in D do
Ali,j] =1 + (J - 0.5)/n;

writeln (A7) ;

(1,1))7

11

13

15

15

19

21

2.3

25

2.7

2.9

31

3.3

3.5

37

3.9

41

4.3

4.5

4.7

4.9

51

5.3

5.5

57

5.9

57

DATA-PARALLEL ARRAY FILL (DISTRIBUTED VERSION)

111.3|15|15|19
2112.3|25|2.7 (2.9
31(3.3|35|3.7|3.9
41| 43| 45|47 |49
51|5.3|15.5|5.7(5.9

fillArray.chpl

use CyclicDist;

config const n = 1000;

const D = {l..n, 1..n} apply a domain map, specifying how to implement...
dmapped Cyclic(startIdx = (1,1)); ..the domain’s indices,
var A: [D] real; ...the array’s elements,
...the loop’s iterations,
forall (i,j) in D do ...on the program’s locales
Ali,j] =1 + (3 - 0.5)/n;

writeln (A7) ;

Locale O Locale 1 Locale 2 Locale 3

Locales array:

DATA-PARALLEL ARRAY FILL (DISTRIBUTED VERSION)

: T 11{13|15|15(1.9
f|”Array_chp| I —ahshohe

use CyclicDist; | | % % %%

PETPPPPI: PP R SRR SRR

locale O

31(3.3|35|3.7|3.9
41| 43| 45|47 (4.9
51|5.3|15.5|5.7(5.9

config const n = 1000;
const D = {1l..n, 1..n}
dmapped Cyclic(startIdx = (1,1)); chpl dataParallel.chpl
var A: [D] real; ./dataParallel --n=5 --numLocales=1

.5 1.7 1.9

forall (i,j) in D do 7

A[i,3] =i + (3 - 0.5)/n; 7
.
.

writeln (A7) ;

Because this computation is independent of the locales,

changing the number of locales or distribution doesn’t affect the output

— .

DATA-PARALLEL ARRAY FILL (DISTRIBUTED VERSION)

11/1.3|15|15|19

fl”Array.ChpI ‘ ’. | 21. 25 .29 |Oca|e O |oca|e 1
use CyclicDist; ’ L
41 4.5 4.9
config const n = 1000; VD ' A locale 2
const D = {1l..n, 1..n}
dmapped Cyclic(startIdx = (1,1)); chpl dataParallel.chpl
var A: [D] real; ./dataParallel --n=5 --numLocales=4

SO 1.7 1.9
forall (i,j) in D do 7

A[i,3] =i + (3 - 0.5)/n; 7
.
.

writeln (A7) ;

Because this computation is independent of the locales,

changing the number of locales or distribution doesn’t affect the output

— e

DATA-PARALLEL ARRAY FILL (DISTRIBUTED VERSION)

fillArray.chpl ocale O
use CyclicDist;
config const n = 1000;
const D = {1l..n, 1..n}
dmapped Cyclic(startIdx = (1,1)); chpl dataParallel.chpl
var A: [D] real; ./dataParallel --n=5 --numLocales=1
13.1 14.1 15.1
forall (i,7j) in D do . .1 23.1 24.1 25.1
Ali,J] = 1*10 + J + (here.id+1)/10.0; . .1 33.1 34.1 35.1
. .1 43.1 44.1 45.1
writeln (A7) ; . .1 53.1 54.1 55.1

If we make it sensitive to the locales,

the output varies with the distribution details

— ,61

DATA-PARALLEL ARRAY FILL (DISTRIBUTED VERSION)

e e locale O locale 1
use CyclicDist;
config const n = 1000; locale 2
const D = {1l..n, 1..n}
dmapped Cyclic(startIdx = (1,1)); chpl dataParallel.chpl
var A: [D] real; ./dataParallel --n=5 --numlLocales=4
13.1 14.2 15.1
forall (i,7j) in D do . 4 23.3 24.4 25.3
Ali,J] = 1*10 + J + (here.id+1)/10.0; . .2 33.1 34.2 35.1
. . 43.3 44, 45.3
writeln (A7) ; . .2 53.1 54.2 55.1

If we make it sensitive to the locales,

the output varies with the distribution details

— .

DATA-PARALLEL ARRAY FILL (DISTRIBUTED VERSION)

fillArray.chpl

use CyclicDist;
config const n = 1000;
const D = {1l..n, 1..n}
dmapped Cyclic(startIdx = (1,1));

var A: [D] real;

forall (i,J) in D do
Ali,j] = 1*10 + 7 + (here.id+1)/10.0;

writeln (A7) ;

63

WRAP-UP

SUMMARY

Chapel is unique among programming languages

« built-in features for scalable parallel computing make it HPC-ready
» supports clean, concise code relative to conventional approaches
» ports and scales from laptops to supercomputers

Chapel is being used for productive parallel computing at scale

e users are reaping its benefits in practical, cutting-edge applications
« applicable to domains as diverse as physical simulations and data science i =

If you or your users are interested in taking Chapel for a spin, let us know!
« we're happy to work with users and user groups to help ease the learning curve

—

use BlockDist;

config const m = 1000,

alpha = 3.0;
const Dom = {1..m} dmapped ..;
var A, B, C: [Dom] real;

B
C

2.0;
1155

A =B + alpha * C;

Python3 Client ™ma

GB/s

STREAM Performance (GB/s)

MMMMMMMMM

30000
25000
20000
15000
10000

5000

0 Il Il Il)
16 32 64 128 256
Locales (x 36 cores / locale)

|65

CHAPEL RESOURCES

Chapel homepage: hitps://chapel-lang.org
 (points to all other resources)

Social Media:

o Twitter: @ChapelLanguage
e Facebook: @ChapelLanguage

e YouTube: http://www.youtube.com/c/ChapelParallelProgramminglLangquage

Community Discussion / Support:

e Discourse: https://chapel.discourse.group/
o Gitter: https://gitter.im/chapel-lang/chapel

o Stack Overflow: https://stackoverflow.com/questions/tagged/chapel

o GitHub Issues: https://github.com/chapel-lang/chapel/issues

—

What is Chapel?
What's New?

Upcoming Events
Job Opportunities

How Can | Learn Chapel?
Contributing to Chapel

Download Chapel
Try Chapel Online

Documentation
Release Notes

Performance
Powered by Chapel

User Resources
Developer Resources

Social Media / Blog Posts
Press

Presentations
Papers / Publications

CHIuw
CHUG

Contributors / Credits

chapel_info@cray.com

O - A
vyEHD

What is Chapel?

Chapel is a programming language designed for productive parallel computing at scale.

Why Chapel? Because it simplifies parallel programming through elegant support for:

« distributed arrays that can leverage thousands of nodes' memories and cores

« a global namespace supporting direct access to local or remote variables

« data parallelism to trivially use the cores of a laptop, cluster, or supercomputer
« task parallelism to create concurrency within a node or across the system

Chapel Characteristics

« productive: code tends to be similarly readable/writable as Python
« scalable: runs on laptops, clusters, the cloud, and HPC systems

« fast: performance competes with or beats C/C++ & MPI & OpenMP
« portable: compiles and runs in virtually any *nix environment

* open-source: hosted on GitHub, permissively licensed

New to Chapel?

As an introduction to Chapel, you may want to...

« watch an overview talk or browse its slides

read a blog-length or chapter-length introduction to Chapel
learn about projects powered by Chapel

check out performance highlights like these:

PRK Stencil Performance (Glop's) NPB-FT Performance (Gop's)

Giop/'s
) §
L A\“‘ evi
\ |
\
Gopis
st
\
1

Locales (x 36 cores / locale) Locales (x 36 cores / locale)

* browse sample programs or learn how to write distributed programs like this one:

use CyclicDist; // use the Cyclic distribution Llibrary
config const n = 100; // use --n=<val> when executing to override this default

forall i in {1..n} dmapped Cyclic(startIdx=1) do
writeln("Hello from iteration ", i, " of ", n,

" running on node ", here.id);

C e The Chapel Parallel Programming Language
| [=

66

https://chapel-lang.org/
https://twitter.com/ChapelLanguage
https://www.facebook.com/ChapelLanguage/
http://www.youtube.com/c/ChapelParallelProgrammingLanguage
https://chapel.discourse.group/
https://gitter.im/chapel-lang/chapel
https://stackoverflow.com/questions/tagged/chapel
https://github.com/chapel-lang/chapel/issues

THANK YOU

https://chapel-lang.org
@ChapelLanguage

