| —

Hewlett Packard
Enterprise

WHAT’S NEW WI AT &
APPLICATIONS, AGGREGATORS, AND ACCELERATORS |

Brad Chamberlain

Northwest C++ Users’ Group
January 19, 2022

CHAPEL MOTIVATION

Imagine having a programming language for HPC* that was as...

...programmable as Python
..yet also as...

...Fast as Fortfran
...scalable as MP| or SHMEM
...portable as C
...flexible as C++
..Iype-safe as Fortran, C, C++, ...
...fun as [your favorite programming language]

* = High Performance Computing

— o

STREAM TRIAD: A TRIVIAL CASE OF PARALLELISM + LOCALITY

Given: m-element vectors A, B, C
Compute:Vie 1.m, A, =B; + a-C,

In pictures:

3

STREAM TRIAD: A TRIVIAL CASE OF PARALLELISM + LOCALITY

Given: m-element vectors A, B, C
Compute:Vie 1.m, A, =B; + a-C,

In pictures, in parallel (shared memory / multicore):

A A

B

+ : + : + : +
C

4

STREAM TRIAD: A TRIVIAL CASE OF PARALLELISM + LOCALITY

Given: m-element vectors A, B, C
Compute:Vie 1.m, A, =B; + a-C,

In pictures, in parallel (distributed memory):

5

STREAM TRIAD: A TRIVIAL CASE OF PARALLELISM + LOCALITY

Given: m-element vectors A, B, C
Compute:Vie 1.m, A, =B; + a-C,

In pictures, in parallel (distributed memory multicore):

6

STREAM TRIAD IN CONVENTIONAL HPC PROGRAMMING MODELS

Many Disparate Notations for Expressing Parallelism + Locality

#include <hpcc.h> m if ('a || 'b || 'e) {

if (c) HPCC_free(c);
if (b) HPCC_ free(b);
if (a) HPCC_free(a);

if (doIO) {
static int VectorSize; fprintf(outFile, "Failed to
static double *a, *b, *c; allocate memory (%d).\n",
VectorSize) ;

int HPCC_StarStream (HPCC_Params *params) {

- A fclose(outFile);
1 1 1 int myRank, commSize; }

' H 1 i 1 H ' int rv, errCount; return 1;
AR e !
=] = : =, = : =5 = : =1 = MPI_Comm_size(comm, &commSize);
B o o o o o o R
1 1 1 1 1 1 1
+ 1+ 0+ 0+ 0+ 0+ 0 + 1+ rv = HPCC_Stream(params, 0 == myRank); " for (§=0; j<VectorSize; j++) {
.o .o .o .o , comm) c[§] = 1.0;

return errCount;

}

O

_;“
_;__
_;__-

int HPCC_Stream (HPCC_Params *params, int doIO) {
register int j;
double scalar;
for (j=0; j<VectorSize; j++)
VectorSize = HPCC_LocalVectorSize(params, 3, a[j] = b[jl+scalar*c[j];
sizeof (double), 0);
HPCC_free(c) ;

a = HPCC_XMALLOC(double, VectorSize); HPCC_free (b) ;
b = HPCC_XMALLOC(double, VectorSize); HPCC_free(a);
c = HPCC_XMALLOC(double, VectorSize);

return 0; }

Note: This is a very frivial parallel computation—imagine the additional differences for something more complex!
Challenge: Can we do better?

—

CHAPEL BENCHMARKS TEND TO BE CONCISE, CLEAR, AND COMPETITIVE

STREAM TRIAD: C + MPI + OPENMP

use BlockDist;

if (la [| !'b |
if (c) HPCC
if (b) HPCC_f .
£ config const m = 1000,
static int Cf fprintf(outFile, "Failed to allocate memory
static double fclose(outFile);
T — alpha = 3.0;
}
iotas GEE const Dom = {1l..m} dmapped ..;
e
<VectorSize; j++) (D l -
var A, B, C: [Dom] real;
return errCount;
}
int HPCC_Stream(HPCC_Params *params, int doIO) { B = 2 . O ,'
params, 3, sizeof(double), 0); C = 1 O Z
HPCC_free(c) ; . 4
a = HPCC_XMA ze); HPCC_free (b) ;
b = HPCC_XMAL ze); HPCC_free(a);
= ze);
return 0;
}
]
HPCC RA: MPI KERNEL
—_

GB/s

forall (, r) in zip(Updates, RAStream()) do
T[r & indexMask].xor(r):;

30000
25000
20000
15000
10000

5000

GUPS

onNn A~ O

14
12
10

STREAM Performance (GB/s)

MPI+OpenMP —¢—
= Chapel EP —+—
Chapel Global - -+ -

64
Locales (x 36 cores / locale)

RA Performance (GUPS)

1 1

16 32 64 128

Locales (x 36 cores / locale)

256

WHAT IS CHAPEL?

Chapel: A modern parallel programming language

e portable & scalable
e open-source & collaborative

Goals:

e Support general parallel programming
o Make parallel programming at scale far more productive

C

9

WHAT DOES “PRODUCTIVITY” MEAN TO YOU?

Recent Graduates:
“Something similar to what | used in school: Python, Matlab, Java, ...”

Seasoned HPC Programmers:
“That sugary stuff which | can’t use because | need full confrol to ensure good performance”

Computational Scientists:

“Something that lets me focus on my science without having to wrestle with
architecture-specific details”

Chapel Team:

“Something that lets computational scientists express what they want,
without taking away the control that HPC programmers need,
implemented in a language that’s attractive to recent graduates.”

— .

SPEAKING OF THE CHAPEL TEAM...

Chapel is truly a tfeam effort—we’re currently at 19 full-time employees (+ a director), and we are hiring

Chapel Development Team at HPE

-

N
=

see: https://chapel-lang.org/contributors.html

and https://chapel-lang.org/jobs.html

— .

https://chapel-lang.org/contributors.html
https://chapel-lang.org/jobs.html

OUTLINE

l. Motivation for Chapel

ll. Chapel Applications

lll. Some Chapel Features
IV. Aggregation in Chapel
V. Chapel and Accelerators

VI. Wrap-up

CHAPEL BENCHMARKS TEND TO BE CONCISE, CLEAR, AND COMPETITIVE

STREAM TRIAD: C + MPI + OPENMP

static int Vec
static double

m (HPCC_Params *params) (

return errCount;

i

int HPCC Stream(HPCC_Params *params, int doIO)

a = HPCC_XMAL
b = HPCC_XMAL

—

3, sizeof (double), 0);

use BlockDist;

config const m

, "Failed to allocate memory

const Dom
var A, B, C:

{l..m} dmapped ..;

GB/s

~e

~e

B + alpha * C;

HPCC RA: MPI KERNEL

forall (, r) in zip(Updates, RAStream()) do
T[r & indexMask].xor (r

GUPS

onNn A~ O

STREAM Performance (GB/s)

MPI+OpenMP —¢—
= Chapel EP —¢— -~~~ -~~~ ----~--~-~~-=---=-~- ~2
Chapel Global - -+ -

16 32 64 128 256
Locales (x 36 cores / locale)

RA Performance (GUPS)

1 1

16 32 64 128 256
Locales (x 36 cores / locale)

|13

CURRENT FLAGSHIP CHAPEL APPLICATIONS

CHAMPS: 3D Unstructured CFD

Eric Laurendeau, Simon Bourgault-C6té,
Matthieu Parenteau, et al.

Ecole Polytechnique Montréal

'..=
. ¢ Arkouda: NumPy at Massive Scale -
| —| et EIE ' E~ Mike Merrill, Bill Reus, et al. -
" % “““““““““ | US DoD .

CrayAl: Distributed Machine Learning :

‘g\ @ ‘@ \ O i O L Hewlett Packard Enterprise

e

ChplUItra: Simulating Ultralight

Dark Matter
Nikhil Padmanabhan, J. Luna Zagorac, ef al.
Yale University / University of Auckland

ChOp: Chapel-based Optimization
Tiago Carneiro, Nouredine Melab, et al.
INRIA Lille, France

Your application here?

| 14

ARKOUDA IN ONE SLIDE

What is it?
« A Python library supporting a key subset of NumPy and Pandas for Data Science
— Computes massive-scale results within the human thought loop (seconds to minutes on multi-TB-scale arrays)
—Uses a Python-client/Chapel-server model to get scalability and performance
o ~16k lines of Chapel, largely written in 2019, continually improved since then

Python3 Client ZMQ Chapel Server

Socket
< //

Code Modules

Who wrote it?

« Mike Merrill, Bill Reus, et al., US DoD
» Open-source: https://github.com/Bears-R-Us/arkouda

(@]
=

t s o g Meta Distributed Array
istribute
Why Chapel? Object Store
 high-level language with performance and scalability ﬁ Platform MPP, SMP, Cluster, Laptop, etc.

—close to Pythonic—doesn’t repel Python users who look under the hood
 great distributed array support
« ports from laptop to supercomputer

— .

https://github.com/Bears-R-Us/arkouda

ARKOUDA ARGSORT: HERO RUN

e Recent run performed on a large Apollo system

o 72 TiB of 8-byte values
e 480 GiB/s (2.5 minutes elapsed time)

o used 73,728 cores of AMD Rome 500
450

e ~100 lines of Chapel code 400
350
300
250
200
150
100

50

GiB/s

Arkouda Argsort Performance
HPE Apollo (HDR-100 IB)

64 128 256 512 576
Locales (x 128 cores / locale)

Close to world-record performance—Quite likely a record for performance::lines of code

—

Il()

CURRENT FLAGSHIP CHAPEL APPLICATIONS

CHAMPS: 3D Unstructured CFD

Eric Laurendeau, Simon Bourgault-C6té,
Matthieu Parenteau, et al.

Ecole Polytechnique Montréal

ChplUItra: Simulating Ultralight

Dark Matter
Nikhil Padmanabhan, J. Luna Zagorac, ef al.
Yale University / University of Auckland

Arkouda: NumPy at Massive Scale ChOp: Chapel-based Optimization

. . . - -.-X
Mike Merrill, Bill Reus, et al. '/X \ Tiago Carneiro, Nouredine Melab, et al.
$ g
fﬂ; US DoD #tonaet koxe INRIA Lille, France
CrayAl: Distributed Machine Learning ‘ """""""" : Your application here?
f Q “ € " e “ O " O ' Hewlett Packard Enterprise ?

— .

CHAMPS SUMMARY

What is it?

e 3D unstructured CFD framework for airplane simulation
o ~48k lines of Chapel written from scratch in ~2 years

Who wrote it?

« Professor Eric Laurendeau’s team at Polytechnique Montreal

S /7y POLYTECHNIQUE |
« performance and scalability competitive with MPI + C++ 7

« students found it far more productive to use

i

—4

IERRREE
EEETTEEEY

CHAMPS: EXCERPT FROM ERIC’S CHIUW 2021 KEYNOTE

HPC Lessons From 30 Years of Practice in CFD Towards Aircraft Design and Analysis

“To show you what Chapel did in our lab... [NSCODE, our previous framework] ended up
120k lines. And my students said, ‘We can't handle it anymore. It’s too complex, we lost
track of everything.” And today, they went from 120k lines to 48k lines, so 3x less.

But the code is not 2D, it’s 3D. And it’s not structured, it’s unstructured, which is way
more complex. And it’s multi-physics: aeroelastic, aero-icing. So, I’'ve got industrial-type
code in 48k lines.

-

So, for me, this is like the proof of the benefit of Chapel, plus the smiles I have on my = | |
students everyday in the lab because they love Chapel as well. So that’s the key, o f; POLYTECHNIQUE
that’s the takeaway. m-i:- MONTREAL

[Chapel]l promotes the programming efficiency ... We ask students at the master's degree to do stuff that would
take 2 years and they do it in 3 months. So, if you want to take a summer internship and you say, ‘program a new
turbulence model,” well they manage. And before, it was impossible to do.”

» Talk available online: https://youtu.be/wD-a KyB8al?t=1904 Chyperlink jumps to the section quoted here)

— .

https://youtu.be/wD-a_KyB8aI?t=1904

CHAMPS 2021 HIGHLIGHTS

e Presented at CASI/IASC Aero 21 Conference

e Participated in 15" AIAA Ice Prediction Workshop

e Participating in 4™ AIAA CFD High-lift Prediction Workshop
e Student presentation to CFD Society of Canada (CFDSC)

» Achieving large-scale, high-quality results comparable to other
major players in industry, government, academia:

e e.g., Boeing, Lockheed Martin, NASA, JAXA, Georgia Tech, ...

=

@® Login

: - ! y
A)
HOME ABOUT MEMBERS ONLY CONFERENCES & EVENTS » AWARDS « =
-t v 2

Canadian Aeronautics and Space Institute

=Rl L1

Institut aéronautique et spatial du Canada

GENERAL INFORMATION

Canada's leading aeronautics conference
La principale conférence en aéronautique au Canada

POLYTECHNIQUE MONTREAL

What is Chapel and why use it?

Challenges of multi-physics simulations

We have to balance :

¢ the fidelity of multiple solvers;
* the performances — computational costs;

* the productivity — addition of multiple physical models.

® Productivity — fast prototyping with high level syntax;

® Natively distributed — Overcome the barrier of entry of parallel distributed
programming in an academic context (2 years);

® Modularity — Generic classes and records to reuse structures;

® Memory management strategies.

IPW1 - Polytechnique Montréal

SOME CHAPEL FEATURES
(THOSE NECESSARY FOR THE NEXT
FEW SECTIONS)

CHAPEL FEATURE AREAS

Chapel language concepts

«

Domain Maps
Data Parallelism

Task Parallelism

Base Language

Locality Control

Target System

»,

22

TASK PARALLELISM AND LOCALITY CONTROL

Chapel language concepts

«
—
—

Domain Maps

Data Parallelism

Base Language

Locality Control

Target System

p»,

“Lower-level” Chapel

23

THE LOCALE: CHAPEL'’S KEY FEATURE FOR LOCALITY

e locale: a unit of the target architecture that can run tasks and store variables
e Think “compute node” on a typical HPC system

prompt> ./myChapelProgram --numLocales=4

or ‘"nl 4

Locales array:

Locale O

Locale 1

Locale 2

Locale 3

User’s program starts running as a single task on locale O

24

TASK-PARALLEL “HELLO WORLD”

helloTaskPar.chpl

const numTasks = here.maxTaskPar;
coforall tid in 1..numTasks do
writef ("Hello from task %n of %n on %$s\n"
tid, numTasks, here.name) ;

TASK-PARALLEL “HELLO WORLD”

helloTaskPar.chpl

‘here’ refers to the locale on which
this code is currently running

coforall tid in 1..numTasks do
writef ("Hello from task %n

const numTasks = here.maxTaskPar;

how many parallel tasks can my
locale run at once?

%$n on %s\n",

tid, numTasks, here.name) ; what’s my locale’s name?

26

TASK-PARALLEL “HELLO WORLD”

helloTaskPar.chpl

const numTasks = here.maxTaskPar;

coforall tid in 1..numTasks do

writef ("Hello from task %$n of %$n on %s\n",
tid, numTasks, here.name) ;

a 'coforall’ loop executes each
iteration as an independent task

prompt> chpl helloTaskPar.

prompt> ./helloTaskPar
Hello from task 1 of 4
Hello from task 4 of 4
Hello from task 3 of 4
Hello from task 2 of 4

— .

TASK-PARALLEL “HELLO WORLD”

helloTaskPar.chpl

const numTasks = here.maxTaskPar;
coforall tid in 1..numTasks do
writef ("Hello from task %$n of %$n on %s\n",
tid, numTasks, here.name) ;

prompt> chpl helloTaskPar.

prompt> ./helloTaskPar
Hello from task 1 of 4
Hello from task 4 of 4
Hello from task 3 of 4
Hello from task 2 of 4

So far, this is a shared-memory program

Nothing refers to remote locales,
explicitly or implicitly

— .

TASK-PARALLEL “HELLO WORLD”

helloTaskPar.chpl

const numTasks = here.maxTaskPar;
coforall tid in 1..numTasks do
writef ("Hello from task %n of %n on %$s\n"
tid, numTasks, here.name) ;

TASK-PARALLEL “HELLO WORLD” (DISTRIBUTED VERSION)

helloTaskPar.chpl

coforall loc in Locales {
on loc {
const numTasks = here.maxTaskPar;
coforall tid in 1..numTasks do
writef ("Hello from task %n of %n on %s\n",
tid, numTasks, here.name) ;

30

TASK-PARALLEL “HELLO WORLD” (DISTRIBUTED VERSION)

helloTaskPar.chpl

coforall loc in Locales {

on loc {
const numTasks = here.maxTaskPar; the array of locales we're running on
coforall tid in 1. .numTasks do (introduced a few slides back)

writef ("Hello from task %$n of %$n on %s\n",
tid, numTasks, here.name) ;

Locale O Locale 1 Locale 2 Locale 3

Locales array:

TASK-PARALLEL “HELLO WORLD” (DISTRIBUTED VERSION)

helloTaskPar.chpl create a task per locale
on which the program is running

coforall loc in Locales {
on loc {
const numTasks = here.maxTaskPar;
coforall tid in 1..numTasks do
writef ("Hello from task %n of %n on %s\n"

tid, numTasks, here.name) ;

have each task run ‘on’ its locale

then print a message per core,
as before

} prompt> chpl helloTaskPar.chpl
} prompt> ./helloTaskPar —numLocales=4
Hello from task 1 of 4 on nl032
Hello from task 4 of 4 on nl032
Hello from task 1 of on nl1034

Hello from task of on nl1032
Hello from task of on nl033
Hello from task of on nl1034
Hello from task of on nl035

— -

TASK-PARALLEL “HELLO WORLD” (DISTRIBUTED VERSION)

helloTaskPar.chpl

coforall loc in Locales {
on loc {
const numTasks = here.maxTaskPar;
coforall tid in 1..numTasks do
writef ("Hello from task %n of %n on %s\n",
tid, numTasks, here.name) ;

33

CHAPEL FEATURE AREAS

Chapel language concepts

«

Domain Maps
Data Parallelism

Task Parallelism

Base Language

Locality Control

Target System

»,

34

SPECTRUM OF CHAPEL FOR-LOOP STYLES

for loop: each iteration is executed serially by the current task (foriin 1..n" or “for i in mylterQ)’)
 predictable execution order, similar to conventional languages

for i in 1..n do .. // a serial loop over a range of integers
for 7 in myIter(..) do .. // a serial loop over a user-defined iterator
for (i, J) in zip(l..n, myIter(..)) do .. // zip over multiple iterables simultaneously, serially

forall loop: all iterations are executed in parallel in no specific order
« implemented using one or more tasks, locally or distributed, as determined by the iterand expression

forall i in 1..n do .. // a parallel loop over a range of integers

forall j in myIter(..) do .. // invoke a parallel user-defined iterator

forall (i, Jj) in zip(l..n, myIter(..)) do .. // zip over multiple iterables simultaneously, in parallel
forall i in 1..n with (var t = ...) do .. // give each component task a task-local variable ‘t’

coforall loop: each iteration is executed concurrently by a distinct task
« explicit parallelism; supports synchronization between iterations (tasks)

— .

CHAPEL FEATURE AREAS: WHERE LOOPS FIT IN

in Chapel, all forall-loops are
implemented using lower-level

features like coforall- and for-loops,
on-clauses, efc.

Chapel language concepts

c Domain Maps
forall-loop) IESEVEREIE D0

coforall-loop)
for-loop) Base Language
Locality Control

Target System

36

CHAPEL AGGREGATORS

BALE INDEX GATHER KERNEL IN CHAPEL: NAIVE VERSION

// Naive index gather: Dst = Src[Inds];
forall (d, 1) in zip(Dst, Inds) do
d = Srcl[i];

‘Src’ is a distributed array with
numEntries elements

‘Dst’ and ‘Inds’ are distributed arrays with
numUpdates elements

38

BALE INDEX GATHER KERNEL IN CHAPEL: NAIVE VERSION

// Naive index gather: Dst = Src[Inds];
forall (d, 1) in zip(Dst, Inds) do
d = Srcl[i];

Gets lowered roughly to...

semsEaLL Loe am Del.lesgeilocales ck A concurrent loop over the compute nodes
on loc do
coforall tid in 0..<here.maxTaskPar do A nested concurrent loop over each node’s cores
for idx in myInds(loc, tid, ..) do :
. . t h task’s chunk of gath
D[idx] = Src[Inds[idx]]; A serial loop to compute each task’s chunk of gathers

BALE INDEX GATHER KERNEL IN CHAPEL: NAIVE VERSION

// Naive index gather: Dst = Src[Inds];
forall (d, 1) in zip(Dst, Inds) do
d = Srcl[i];

Gets lowered roughly to...

coforall loc in Dst.targetLocales do

on loc do
coforall tid in 0. .<here.maxTaskPar do

for idx in myInds(loc, tid, ..) do But, for a parallel loop with no data dependencies,
D[idx] = Src[Inds[idx]]; why perform these high-latency operations serially?
So, our compiler rewrites the inner loop
for idx in myInds(loc, tid, ..) do to perform the ops asynchronously
tmorcerediopy (Dllek], szelinds[=d=]])? e Implemented by Michael Ferguson and
unorderedCopyTaskFence () ; Elliot Ronaghan, 2019

— o

BALE INDEX GATHER KERNEL IN CHAPEL: NAIVE VERSION

// Naive index gather: Dst = Src[Inds];
forall (d, 1) in zip(Dst, Inds) do
d = Srcl[i];

bale index gather
800 p=
- -@- - Unordered (auto)

_ — -~ - No optimization

o)
o
o

Aggregate Throughput
(GB/s)
AN
S

200 |- oo
--"'"-—.--——-- _______
R — h
32 64 128 256 512

Number of Locales (x 36 cores / locale)

— .

BALE INDEX GATHER KERNEL IN CHAPEL: AGGREGATOR VERSION

use CopyAggregation; ‘use’ the module providing the aggregators

// Aggregated index gather
forall (d, 1) in zip(Dst, Inds) with (var agg = new SrcAggregator (int)) do
agg.copy(d, Srcli]);

Give each task a “source aggregator”, agg, which
aggregates remote ‘gets’ locally, then performs them

To use it, we simply replace

the assignment with ‘agg.copy’

As the aggregator’s buffers fill up, it communicates the operations
to the remote locale, automatically and asynchronously

BALE INDEX GATHER KERNEL IN CHAPEL: AGGREGATOR VERSION

use CopyAggregation;

// Aggregated index gather
forall (d, 1) in zip(Dst, Inds) with (var agg = new SrcAggregator (int)) do
agg.copy(d, Srcli]);

bale index gather

3 800 p

L — -@- - Aggregation (user)

9’ 600 k — @ — Unordered (auto) g

o g - =

=~ = -il- = No optimization Pt

c -

— 4400 | o .
-9 (D ”’ —_————

© o - __——’

> 200 | .~ = oagmereT

5 & _e-7" i
> 0 oo s e

< 32 64 128 256 512

Number of Locales (x 36 cores / locale)

— .

IMPLEMENTING CHAPEL’S AGGREGATORS

e Chapel’'s aggregators are implemented as Chapel source code

» no language or compiler changes were required
e ~100 lines of reasonably straightforward code to implement ‘SrcAggregator’ used here
— (~420 lines for the entire ‘CopyAggregation’ module)

e Developed by Elliot Ronaghan, 2020-present

— »

ARKOUDA ARGSORT: HERO RUN

e Recent hero run performed on a large Apollo system

« 72 TiB of 8-byte values Arkouda Argsort Performance
480 GiB/s (2.5 minutes elapsed fime) HPE Apollo (HDR-100 IB)

« used 73,728 cores of AMD Rome L e e
450 b 128 GiBArays —e— —~ - -~ - ---“-=-=-“=-=---- - _#4#=" -

e ~100 lines of Chapel code 400
390 - T e
300 - e e e
250 - e
P2 0 [0 B
10p----"--"-"-_»»-""-""""-"""""""""""-""“"-"-"-"-"-"---------
100p---—p~~-""""""""""""""""“"“"“"-"“"“"-"“"-"-"-"-"-"--"-"----

5101 u ittt

64 128 256 512 576
Locales (x 128 cores / locale)

GiB/s

Aggregarors have been kez to gerring results like these
—1 |

CAN WE AUTOMATE AGGREGATION?

Q: Is there an opportunity for the compiler to infroduce aggregators automatically?

// Naive index gather: Dst = Src[Inds];
forall (d, 1) in zip(Dst, Inds) do
d = Srcli];

user writes straightforward code
compiler optimizes as:

use CopyAggregation;

// Aggregated index gather

agg.copy(d, Srcli]);

forall (d, 1) in zip(Dst, Inds) with

(var agg = new SrcAggregator(int)) do

A: In many cases, yes
» developed by Engin Kayraklioglu, 2021

« combines previous ‘unordered’ analysis with a new locality analysis of RHS/LHS expressions
o for details, see Engin’s LCPC 2021 paper: https://lcpc2021.github.io/

—

46

https://lcpc2021.github.io/

AUTO-AGGREGATION: IMPACT

e As aresult, the naive version can now compete with the user-written aggregators

// Naive index gather: Dst = Src[Inds];
forall (d, 1) in zip(Dst, Inds) do
d = Srcl[i];

bale index gather

800
[—)(— Aggregation (auto)

600 k™ -®- - Aggregation (user)
— -@- = Unordered (auto)
— -il- = No optimization

N
-
o

Aggregate Throughput
(GB/s)
N
o S

32 64 128 256 512
Number of Locales (x 36 cores / locale)

— .

BALE INDEX GATHER: CHAPEL VS. EXSTACK VS. CONVEYORS

|
L] L]
Exstack version Conveyors version
i=0; i=0;
while(exstack proceed(ex, (i==1_ num req))) { while (more = convey advance (requests, (i == 1 num req)),
i0 = i; more | co dvance (replies, !more)) {
while(i < 1 num req) {
1 indx = pckindx[i] >> 16; for (; i < 1 num reqg; i++) {
pe = pckindx[i] & Oxffff; pkg.idx = 1i;
if (!exstack push(ex, &l _indx, pe)) pkg.val = pckindx[i] >> 16;
break; pe = pckindx[i] & Oxffff;
alikarp if (! convey push(requests, &pkg, pe))

} ren Cray XC (Aries)

exstack_exchange (ex) ;

while (convey pull (requests, ptr, &from) == convey OK) {

- bale index gather
while (exstack pop(ex, &idx , &fromth)) { pkg.idx = ptr->idx; 3 1250 >
idxf :- ltab-li[idxi,?d . o P];g.(x'/al = ltable}[p;tr—?fal] 8 . : o -8' Chapel SHMEM
exXstack push(ex, 14X, rom ; 1 . convey pusn(re les, ’ rom =
B convey \;m;;l(requgsts); o g) 1000 5 * Aggregation (auto) =3 - Exstack
rrier(); break; o) -~ Aggregation (user) =& Conveyor X
k_exchange (ex) ; } E ’(;’\ 750 |L=@— Unordered(auto). .. . _ . . | et o o e ea it ;_-X
} ~ A T -
s Sl) - 0 ~@- Nooptimizaton g _...: ”’,—
fromth = pckindx[j] & Oxffff; while (convey pull(replies, ptr, NULL) == convey OK) (O] M 500
exstack pop thread(ex, &idx, (uint64_t)fromth); tgt [ptr->idx] = ptr->val; E ~— R e
tgt([j] = idx; } o . AL
) @ 250 |-
lgp_barrier(); %
: >

32 64 128 256 512

Elegant Chapel version (compiler-optimized w/ ‘--auto-aggregation”) Number of Locales (x 36 cores / locale)

forall (d, 1) in zip(Dst, Inds) do
d = Srcl[i];

Manually Tuned Chapel version (using aggregator abstraction)

forall (d, 1) in zip(Dst, Inds) with (var agg = new SrcAggregator (int)) do
agg.copy(d, Src[i]);

— .

CHAPEL ON GPUS

THE CASE FOR CHAPEL ON GPUS

e “any parallel algorithm on any parallel architecture”
« yet, Chapel has not supported compilation to GPUs—an obvious important case for many HPC systems

e Related efforts:

o Albert Sidelnik et al. (UIUC), Performance portability with the Chapel language, /PDPS 2012

o Brad Chamberlain, Chapel Support for Heterogeneous Architectures via Hierarchical Locales, PGAS-X 2012
o Mike Chu et al. (AMD), various works, CHIUW 2015-2018

o Akihiro Hayasi et al. (Georgia Tech), various works, CHIUW 2019-present

e Users have used Chapel with GPUs through interoperating with kernels written in CUDA, OpenCL, ...
e e.g., the CHAMPS and ChOp applications do this

e Yet, Chapel’s features for parallelism and locality are a good match for GPUs

« data-parallel loops and operations; on-clauses for saying where to store/execute things
» code generation has been the major sticking point
« we're currently leveraging our LLVM-based back-end to address this

— .

HIERARCHICAL LOCALES: A NOTIONAL CPU+GPU LOCALE MODEL

e A simple ‘gpu’ locale model might have a

sub-locale for the GPU

var a: [1..n]

on here.GPU {
var b: [1.

real;

.nJ

real;

a:[1..n] real

Locale

GPU

b: [1..n] real

51

GPUS: NOTIONAL GOAL

A toy GPU computation, notionally:

on here.GPU {

var A = [1, 2, 3, 4, 5];
forall a in A do
a += 5;

— .

GPUS: SIX MONTHS AGO

The toy GPU computation, as of Chapel 1.24:

pragma '"codegen for GPU"

export proc add nums (A: c ptr(real(64))) {
A[O0] = A[0]+5;

}

var funcPtr = createFunction();

var A = [1, 2, 3, 4, 51;

__primitive ("gpu kernel launch", funcPtr,

<grid and block size>,..,
c ptrTo(A), ..);
writeln (A) ;

extern {
#define FATBIN FILE "chpl gpu.fatbin"
double createFunction () { Read
fatbinBuffer = <read FATBIN FILE into buffer> faTtﬂnary
cuModuleloadData (&cudaModule, fatbinBuffer); and create a
cuModuleGetFunction (&function, cudaModule, CUDA
"add_nums®) ; J function
}

GPUS: TODAY

The toy GPU computation, in Chapel 1.25:

on here.getChild (1) { Locale
var A = [1, 2, 3, 4, 51;
forall a in A do Child 1
a += 5; (GPU)

m One child per device

» developed by Engin Kayraklioglu, Andy Stone, and David Iten
— -

ALTERNATIVE GPU LOCALE MODELS

What we have now (sub-locale 0 = CPU)

Locale
Child 0 Child 1 Child 2
(CPU) (GPU) (GPU)

NUMA-aware (flat)

Locale for CPU; sub-locales for GPUs

Locale (CPU)

Child O
(GPU)

Child 1
(GPU)

NUMA-aware Chierarchical)

Child O
(CPU)

Child 1
(CPU)

Locale

Child n
(GPU)

Child n+1
(GPU)

Locale
Child 0 (CPU) Child 1 (CPU)
Child 0 Child 0
(GPU) (GPU)

55

GPUS: INITIAL PERFORMANCE STUDY

HPCC Stream: very few changes needed to our typical Stream code to target GPUs

on here.getChild (1) {
var A, B, C: [1l..n] real;

const alpha = 2.0;

B =

C

forall

(a, b, c) in zip (A,
b + alpha * c;

Throughput

(GB/s)
N
S

400

Stream

M= Ym— = W= === Hm .

—#— forall-based
—&— foreach-based
-%- C+CUDA

32 64

128 256
Number of Elements (M)

512

Better

56

GPUS: NEXT STEPS

e Plenty of housecleaning, refactoring, streamlining, etc.

e Language design issues

e Further performance analysis and optimization

e Support richer and more flexible styles of programming

e Support a richer model of memory and inter-device data transfers (foday: unified memory only)
e Support a wider variety of vendors (today: Nvidia only)

— .

:
=

SUMMARY

Chapel is being used for productive parallel programming at scale
e recent users have reaped its benefits in 16k-48k-line applications

For gather/scatter/sort patterns, copy aggregation is key

« Chapel supports aggregation both through high-level abstractions and
automatic optimizations

Though Chapel support for GPUs is still in its early days,
it’s improving by leaps and bounds

GiB/s

5(C

JU

oo UOoOUNOUNoO
COOCOOOOO0OOCO0O
T I 1T I rrri

Arkouda Argsort Performance
HPE Apolio (HDR-100 IB)

I~ 128 GiB Arrays —+—

64 128 256 512 576

Locales (x 128 cores / locale)

Locale

Childo Child 1
(cPV) (GPU)

One child per device
a:[1.n] real

|59

AGAIN, WE ARE HIRING

Chapel Development Team at HPE

see: https://chapel-lang.org/contributors.html

and https://chapel-lang.org/jobs.html

— e

https://chapel-lang.org/contributors.html
https://chapel-lang.org/jobs.html

CHAPEL RESOURCES

Chapel homepage: hitps://chapel-lang.org
 (points to all other resources)

Social Media:

o Twitter: @ChapelLanguage
e Facebook: @ChapelLanguage

e YouTube: http://www.youtube.com/c/ChapelParallelProgramminglLangquage

Community Discussion / Support:

e Discourse: https://chapel.discourse.group/
o Gitter: https://gitter.im/chapel-lang/chapel

o Stack Overflow: https://stackoverflow.com/questions/tagged/chapel

o GitHub Issues: https://github.com/chapel-lang/chapel/issues

—

What is Chapel?
What's New?

Upcoming Events
Job Opportunities

How Can | Learn Chapel?
Contributing to Chapel

Download Chapel
Try Chapel Online

Documentation
Release Notes

Performance
Powered by Chapel

User Resources
Developer Resources

Social Media / Blog Posts
Press

Presentations
Papers / Publications

CHIuw
CHUG

Contributors / Credits

chapel_info@cray.com

O - A
vyEHD

What is Chapel?

Chapel is a programming language designed for productive parallel computing at scale.

Why Chapel? Because it simplifies parallel programming through elegant support for:

« distributed arrays that can leverage thousands of nodes' memories and cores

« a global namespace supporting direct access to local or remote variables

« data parallelism to trivially use the cores of a laptop, cluster, or supercomputer
« task parallelism to create concurrency within a node or across the system

Chapel Characteristics

« productive: code tends to be similarly readable/writable as Python
« scalable: runs on laptops, clusters, the cloud, and HPC systems

« fast: performance competes with or beats C/C++ & MPI & OpenMP
« portable: compiles and runs in virtually any *nix environment

* open-source: hosted on GitHub, permissively licensed

New to Chapel?

As an introduction to Chapel, you may want to...

« watch an overview talk or browse its slides

read a blog-length or chapter-length introduction to Chapel
learn about projects powered by Chapel

check out performance highlights like these:

PRK Stencil Performance (Glop's) NPB-FT Performance (Gop's)

Giop/'s
) §
L A\“‘ evi
\ |
\
Gopis
st
\
1

Locales (x 36 cores / locale) Locales (x 36 cores / locale)

* browse sample programs or learn how to write distributed programs like this one:

use CyclicDist; // use the Cyclic distribution Llibrary
config const n = 100; // use --n=<val> when executing to override this default

forall i in {1..n} dmapped Cyclic(startIdx=1) do
writeln("Hello from iteration ", i, " of ", n,

" running on node ", here.id);

C e The Chapel Parallel Programming Language
| [=

61

https://chapel-lang.org/
https://twitter.com/ChapelLanguage
https://www.facebook.com/ChapelLanguage/
http://www.youtube.com/c/ChapelParallelProgrammingLanguage
https://chapel.discourse.group/
https://gitter.im/chapel-lang/chapel
https://stackoverflow.com/questions/tagged/chapel
https://github.com/chapel-lang/chapel/issues

SUGGESTED READING / VIEWING

Chapel Overviews / History (in chronological order):
e Chapel chapter from Programming Models for Parallel Computing, MIT Press, edited by Pavan Balaji, November 2015
o Chapel Comes of Age: Making Scalable Programming Productive, Chamberlain et al., CUG 2018, May 2018
« Proceedings of the 8th Annual Chapel Implementers and Users Workshop (CHIUW 2021), June 2021
e Chapel Release Notes — current version 1.25, October 2021

Arkouda:

 Bill Reus’s CHIUW 2020 keynote talk: https://chapel-lang.org/CHIUW2020.html#keynote
» Arkouda GitHub repo and pointers to other resources: https://github.com/Bears-R-Us/arkouda

CHAMPS:

e Eric Laurendeau’s CHIUW 2021 keynote talk: https://chapel-lang.org/CHIUW2021.hitml#keynote
—two of his students also gave presentations at CHIUW 2021, also available from the URL above
« Another paper/presentation by his students at https://chapel-lang.org/papers.html (search “Laurendeau™)

—

62

https://chapel-lang.org/publications/PMfPC-Chapel.pdf
https://mitpress.mit.edu/books/programming-models-parallel-computing
https://chapel-lang.org/publications/cug2018-chapel.pdf
https://chapel-lang.org/CHIUW2021.html
https://chapel-lang.org/releaseNotes.html
https://chapel-lang.org/CHIUW2020.html
https://github.com/Bears-R-Us/arkouda
https://chapel-lang.org/CHIUW2021.html
https://chapel-lang.org/papers.html

SUMMARY

Chapel is being used for productive parallel programming at scale
e recent users have reaped its benefits in 16k-48k-line applications

For gather/scatter/sort patterns, copy aggregation is key

« Chapel supports aggregation both through high-level abstractions and
automatic optimizations

Though Chapel support for GPUs is still in its early days,
it’s improving by leaps and bounds

GiB/s

5(C

JU

oo UOoOUNOUNoO
COOCOOOOO0OOCO0O
T I 1T I rrri

Arkouda Argsort Performance
HPE Apolio (HDR-100 IB)

I~ 128 GiB Arrays —+—

64 128 256 512 576

Locales (x 128 cores / locale)

Locale

Childo Child 1
(cPV) (GPU)

One child per device
a:[1.n] real

|63

THANK YOU

https://chapel-lang.org
@ChapelLanguage

