Chapel’s Multiresolution Programming Model
Mixing High-level Parallel Abstractions with Lower-level Control

Brad Chamberlain, Chapel Team, Cray Inc.
Northwest C++ Users Group
February 21, 2018

CcCHAaRPEL :

N

Safe Harbor Statement

~

Kl'his presentation may contain forward-looking statements that are
based on our current expectations. Forward looking statements
may include statements about our financial guidance and expected
operating results, our opportunities and future potential, our product
development and new product introduction plans, our ability to
expand and penetrate our addressable markets and other
statements that are not historical facts. These statements are only
predictions and actual results may materially vary from those
projected. Please refer to Cray's documents filed with the SEC from
time to time concerning factors that could affect the Company and

these forward-looking statements.
_ ? J

Copyright 2018 Cray Inc.

What is Chapel?

What is Chapel? —_— Y

Chapel: A productive parallel programming language

e portable
e Open-source
e a collaborative effort (/ N
(el —P7 g
! CHAPEL
Goals: —

e Support general parallel programming -
e “any parallel algorithm on any parallel hardware”

e Make parallel programming at scale far more productive

\

Copyright 2018 Cray Inc.

N
>/

\
Scalable Parallel Programming Concerns SR '

)
S \
\

Q: What do HPC programmers need from a language?
A: Software engineering and performance ‘
What should execute simultaneously?
Locality: Where should those tasks execute?
Mapping: How to map the program to the system?
Separation of Concerns: Decouple these issues

Chapel is a language designed to address these needs
from first principles

Chapel and Other Languages

Chapel strives to be as...
...programmable as Python
...fast as Fortran
...scalable as MPI, SHMEM, or UPC
...portable as C
...flexible as C++
...fun as [your favorite programming language]

§

Copyright 2018 Cray Inc.

CLBG Cross-Language Summary PSSR A

(Oct 2017 standings)

100

I csharpcore
B dart
EEN erlang
Il fpascal
B fsharp
N gcc
N ghc
N gnat
g0
. gpp
hack
ifc
m java
N jruby
. lua
node
B ocaml
. perl
. B php
S~ i python3

= Pythoemn

s
3

Smalltalk - g mm st
sbcl
- B scala
RS swift
OCaml m RaCket\PHP = ‘t");pescript
~ O . yarv
J@V@@@[ﬂ]pﬂ; Dgt | - . t . D Il—.[lglp [[] egmean-smallest
Typescript |_EEotE D,‘% u- L GRS () gmean-fastest
_,4--@*. P O ST
=S -‘-tz::' _______ P

1.0 1.5] 3.0

Compressed Code Slze (normalized to smallest entry)

Execution Time
(normalized to fastest entry)

CLBG Cross-Language Summary
(Oct 2017 standings, zoomed in)

N
Typescript .",.\ |
Javaseript ©

- OCaml
\\\. N

“Scala
Haskell ® “Fi#
mi

Execution Time
(normalized to fastest entry)

. Rust

N o 1 O

<
.
.
C e

[} 2.5 3.0

1.0 1.5

Compressed Code Size (normalized to smallest entry)

I csharpcore
B dart
I erlang
W fpascal
B fsharp
N gcc
N ghe
N gnat
g0
. gpp
hack
ifc
B java
N jruby
. lua
node
B ocaml
N perl

\\\ B php

python3
I racket
. st

shcl
Bl scala

swift
I typescript
7]

M yarv
\(D gmean-smallest

(O gmean-fasfiest

CLBG Cross-Language Summary
(Oct 2017 standings, zoomed in)

N
Typescript .",.\ |
Javaseript ©

OCa

ml
30 ;

n
“Scala
Haskell ® “Fi#
D \\\.’\ \\\\

. \ \\P
~.. . mPascal
S \\ \ SO
~ \ AN N

N N
SN
RN
- @
(@) RS
<
<

Execution Time
(normalized to fastest entry)

()

Chapel N ‘\%‘:By\st

N o 1 O

<
.
.
C e

1.0 1.5 [} 2.5 3.0

Compressed Code Size (normalized to smallest entry)

B chapel
I csharpcore
B dart
I erlang
W fpascal
B fsharp
N gcc
N ghe
N gnat
g0
. gpp
hack
ifc
B java
N jruby
. lua
node
B ocaml
N perl

\\\ B php

python3
I racket
. st

shcl
Bl scala

swift
I typescript
7]

M yarv
\(D gmean-smallest

(O gmean-fasfiest

CLBG Cross-Language Summary PSSR A

(Oct 2017 standings)

100
B chapel
I csharpcore
B dart
EEN erlang
Il fpascal
B fsharp
N gcc
N ghc
N gnat
g0
. gpp
hack
ifc
m java
N jruby
. lua
node
B ocaml
. perl
. B php
S~ i python3

= Pythoemn

s
3

Smalltalk - g mm st
sbcl
- B scala
RS swift
OCamI] RaCket\PHP i = ‘t");pescript
Dart . - O ‘ . yarv
J@V@@@Tﬂpﬂ:. q. ﬂ . t o D ﬂ__l[lglp % gmean-smallest

Typescrlpt D'% - _‘ ») gmean-fastest
Chapel ‘.? :0"""‘ .n-«---OO '.. --9

Execution Time
(normalized to fastest entry)

----- me - %--.a

] 3.0

Compressed Code Slze (normalized to smallest entry)

Chapel Performance: HPC Benchmarks

.
\
CRANY
PSar

LCALS: Chapel vs. C + OpenMP

.
\

Shared memory performance competitive with hand-coded
Serial LCALS kernels: Chapel vs. g++

2 8 g4+ serial

= II|IIIIII|III“IIIIIIIIIIIIIIIIIIIIIIIIIII

Parallel LCALS kernels: Chapel vs g++ w/ E

OMP

Normalized
Time

Normalized
Time

LCALS

HPCC RA

HPCC RA Performance: Chapel vs. MPI

Performance of RA (atomics)

GUP/s

STREAM PRK R
o ol wm wm owmom II T T .'4"“”“ P _Locales (xsswms;:elrs\ouc:slk
hapel paraliel ref MPI bucketing —s— 1.1 w+q oversubscribed -+
. .
C
[riad 1Sx Stencil |
- \ - \ -
HPCC Stream Triad: Chapel vs. MPI+OpenMP = =Ras Isx Peformance: Chapel vs. MPI, SHMEM R Stencil PRK Scalability e
. \ . \ Stencil PRK Performance (weak scaling) .
\ \ \
[P0V o
Performance of STREAM I1Sx weakiSO Total Time
14 {00} P
25000
20000 e 12 L, 000 e
S 310 2
2 15000 ,..—-‘”‘MM . L
O 10000 El SHVEM R
5000 / ® 6 —Chapel
0 t 1 J =4 —MPI 5 Bl
1632 64 128 256 2 2 P = L L)
0 16 32 64 128 256
Locales 1 2 4 8 16 32 64 Locales
R:«rﬁ..;; - chllze:: - 1.12 Global e Nodes (x 36 cores per node)

MPI+OpentP —e— Chapel ——

7R
(O

Nightly performance graphs online
at: https://chapel-lang.org/perf

https://chapel-lang.org/perf

Chapel Performance: HPC Benchmarks

Local loop kernels

LCALS

STREAM
Triad

|Sx

HPCC RA

PRK
Stencil

Global Random
Updates

Embarrassing/Pleasing |

Parallelism

Bucket-Exchange

Pattern

Stencil Boundary
Exchanges

Nightly performance graphs online
at: https://chapel-lang.org/perf

https://chapel-lang.org/perf

[

!)1

=
g ¥
by
.’t _ﬁ_‘:
23 —

|

3

Chapel Community Partners o

B 7 THE GEORGE AY

{ et Ll "> WASHINGTON ‘//_/\

HAVERFORD S ONversT . \WESTERN
COLLEGE AMD "V}‘f’\‘ WASHINGTON, DC WASHINGTON UNIVERSITY

Casxr B omuce 9

THE UNIVERSITY OF TOKYO NIVERSITY OF
THE UNIVERSITY
Ayl MARYLAND

-~

A
rreeee '"I

B Lawrence Livermore
National Laboratory

BERKELEY LAB
Lawrence Berkeley Sandia National Laboratories

National Laboratory

(and several others...)
https://chapel-lang.org/collaborations.html

https://chapel-lang.org/collaborations.html

Tonight’s Plan o

Q \
S \
\

e Cover features that we haven’t in this forum before
e base language features of potential interest to C++ users \

e multiresolution features for user control over parallel abstractions
e parallel iterators
e domain maps
e locale models

e Review core features along the way

e goal: quicker than in previous talks
e help refresh memories / bring new attendees up-to-speed

e Please ask questions as we go

2

= (15

=/ Copyright 2018 Cray Inc. >/

Chapel language feature areas

Chapel language concepts

Domain Maps

Task Parallelism
Base Language
Locality Control

Base Language

C Domain Maps
Data Parallelism
Task Parallelism

b1 Base Language
Locality Control

Lower-level Chapel

Base Language Features, by example

iter fib(n) {
var current = 0,
next = 1;

for i in 1..n {
yield current;
current += next;
current <=> next;

N

config const n

for £ in fib(n)
writeln (£f) ;

do

iter fib(n) {
var current = 0,
next = 1;

~

for i in 1..n {
yield current;
current += next;
current <=> next;

Base Language Features, by example

Configuration declarations
(to avoid command-line argument parsing)

./a.out —-n=1000000

‘ -
config const n =

for £ in fib(n)
writeln (£f) ;

do

Base Language Features, by example

Modern iterators

iter fib(n) { sufig const n = 10;
var current = 0,
next = 1; for £ in fib(n) do

writeln (£f) ;
for i in 1..n {
yield current;
current += next;
current <=> next;

/ 7\
(
2

Base Language Features, by example

Static type inference for:

iter £ib (o)

var current = 0,
next = 1;

for i in 1..n {
yield current;
current += next;
current <=> next;

« arguments
* return types
+ variables

~

confii/7éhst n'= 10;
for £%in fib(n) do

writeln (£f) ;

C

Base Language Features, by example

=

iter fib(n) {
o)

var current = 0,
next = 1;

for i in 1..n {
yield current;
current += next;
current <=> next;

Zippered iteration

config const n =

for (i, f)
writeln("fib #",

i,

in zip(0..#n,

"

Base Language Features, by example

iter fib(n) {
var current = 0/
next = 1;

for i in 1..n {
yield current;
current += next;
current <=> next;

/ 7\
(
2

Range types and
operators

config const n =

for (i,f) in zip(0..#n,

writeln("fib #",

i,

1A

Base Language Features, by example

iter fib(n) {
var current = 0,
next = 1;

for i in 1..n {
yield current;
current += next;
current <=> next;

/ :\
|
2

config[const n = 10;

for (i, f)
writeln (

in

zip (0. .4#n,

14

i,

Base Language Features, by example

iter fib(n) {
var current = 0,
next = 1;

for i in 1..n {
yield current;
current += next;
current <=> next;

2

config const n = 10;

for (i, f)
writeln (

in

zip (0. .4#n,

4

i,

C

Other Base Language Features
of Potential Interest to C++ Users

Other Base Language Features: OOP e

Two flavors of object-oriented types:

Value-based: Reference-based:
record Circle { class Circle {
var radius: real; var radius: real;
proc area() { .. } proc area() { .. }
} }
var myCircle = new Circle(radius = 1.0),
myCircle2 = myCircle; // copy for record, alias for class
myCircle.radius = 2.0;

writeln (myCircle2.area()); //1.0forrecord, 4.0 for class

Other Base Language Features: Generics o

e Support for generic types and functions

e w.r.t. types and statically known values ('param's) \
class Arr {

param numDims: int; // number of dimensions
type eltType; // element type
var size: numDims*int; //tuple storing per-dimension size

var myArr = new Arr (2, string, (100, 200)),
new Arr (3, real, (500, 500, 500));

myArr2

Other Base Language Features: Generics o

e Support for generic types and functions

e w.r.t. types and statically known values ('param's) \
proc mypow (type t, x: t, param exponent: int) {
var result = 1:t;
for param 1 in 1..exponent do

result *= x; note: this is an utterly artificial and
return result; over-engineered way to write this
function in Chapel, done merely to

} demonstrate type/param args in
~6 lines...

var twoSquared = mypow (int, 2, 2);

var piCubed = mypow (real, 3.14159265, 3);

Other Base Language Features: Meta-Programming =='A‘Y\‘

\
Compile-time procedures to compute types / params
proc computePacketSize (type tl, type t2) param {
return numBits (tl) + numBits (t2);
}
proc ¢ intToChapelInt () type {
return int (numBits(c int));
}
Also, support for config types / params
config param bitsPerInt = 16;
config type eltType = int(bitsPerInt);

chpl -sbitsPerInt=64 —-seltType=real (32) myProg.chpl

\

Other Base Language Features: Meta-Programming <=I=A:Y®‘ '

\

S \
\

e Ability to unroll loops / fold conditionals or ‘void’ exprs
for param i in (1, 2.3, “hello”, (5,7)) do \

144

writeln(“1: ” , 1, ™ has type: ”, 1.type:string);

e Reflection module:
e “Can this function / method be resolved”
e ‘“lterate over all fields in this record giving me their names / types”

=
= Copyright 2018 Cray Inc.

Other Base Language Features :l:Ayf '

e Error-handling

e Modules (namespaces) ‘
e Overloading, filtering

e Default args, arg intents, keyword-based arg passing

e Argument type queries / pattern-matching

Copyright 2018 Cray Inc.

Base Language Features: What’s Missing?

e better initializer (constructor) features
e currently being implemented and refined

e delete-free programming / borrow-checking
e currently being designed and implemented

e first-class functions
e prototyped, need strengthening

e constrained generics / interfaces / concepts
e proposal drafted but not implemented

e anti-function hijacking features
e currently under consideration

\

Copyright 2018 Cray Inc.

(33)

Task Parallelism and Locality Control

«
—)

——)

Domain Maps

Data Parallelism
Task Parallelism

Base Language
Locality Control

\
Locales <=I=A:Yf '

S \
\

e Unit of the target system useful for reasoning about locality
e Each locale can run tasks and store variables \
e Has processors and memory (or can defer to something that does)
e For most HPC systems, locale == compute node

Locales:
Iocale\ locale locale locale

0 1 2 3
User’s main() executes on locale #0

Task Parallelism and Locality, by example o

taskParallel.chpl

coforall loc in Locales do
on loc {
const numTasks = here.numPUs () ;
coforall tid in 1..numTasks do
writef ("Hello from task %n of %n "+
"running on %s\n",

tid, numTasks, here.name);

prompt> chpl taskParallel.chpl -o taskParallel
prompt> ./taskParallel --numLocales=2
Hello from task 1 of 2 running on nl033

Hello from task 2 of running on nl032

2
Hello from task 2 of 2 running on nl033
Hello from task 1 of 2

running on nl032

(

Task Parallelism and Locality, by example

Abstraction of

System Resources

taskParallel.chpl

coforall loc in Locales do

on loc
const numTasks = here.numPUs () ;

coforall tid in 1..numTasks do
writef ("Hello from task %$n of %n "+
"running on %s\n",

tid, numTasks, here.name);

prompt> chpl taskParallel.chpl -o taskParallel
prompt> ./taskParallel --numLocales=2
Hello from task 1 of 2 running on nl033

Hello from task 2 of running on nl032

2
Hello from task 2 of 2 running on nl033
Hello from task 1 of 2

running on nl032

(

Task Parallelism and Locality, by example

High-Level

Task Parallelism taskParallel.chpl

-coforall loc in Locales do
on loc {
const numTasks = here.numPUs () ;
coforall tid in 1..numTasks do
writef ("Hello from task %$n of %n "+
"running on %s\n",

tid, numTasks, here.name);

prompt> chpl taskParallel.chpl -o taskParallel
prompt> ./taskParallel --numLocales=2
Hello from task 1 of 2 running on nl033

Hello from task 2 of running on nl032

2
Hello from task 2 of 2 running on nl033
Hello from task 1 of 2

running on nl032

(

Task Parallelism and Locality, by example =Rac

Control of Locality/Affinity

taskParallel.chpl

coforall loc in Locales do

on loc {

writef ("Hello from task

"running on %s\n

const numTasks = here.numPUs () ;
coforall tid in 1..numTasks do

tid, numTasks, here.name);

%n of %n "+

"
14

prompt> chpl taskParallel.chpl -o
prompt> ./taskParallel —--numLocale
Hello from task 1 of 2 running on

Hello from task 2 of running on

2
Hello from task 2 of 2 running on
Hello from task 1 of 2

running on

taskParallel
s=2

nl033

nl032

nl033

nl1032

(

Task Parallelism and Locality, by example

Abstraction of

System Resources

taskParallel.chpl

coforall loc in Locales do
on loc {

const numTasks = here.numPUs () ;

do

gn of %n

coforall tid in 1..numTasks
itef ("Hello from task

on

‘%S\H”,

tid, numTasks, here.name);

”_I_

prompt> chpl taskParallel.chpl -o taskParallel

./taskParallel --numLocales=2

task 1 of 2 nl033
task 2 of 2 nl032
task 2 of 2 nl1033
task 1 of 2 nl1032

prompt>
Hello
Hello
Hello
Hello

from running on

from running on

from running on

from

running

on

(

Task Parallelism and Locality, by example

High-Level

Task Parallelism

taskParallel.chpl

coforall loc in Locales do
on loc {

\\\"coforall tid in 1..numTas
writef ("Hello from task

"running on %s\n

const numTasks = here.numPUs () ;

tid, numTasks, here.name);

ks do
sn of Sn "+

"
14

prompt> chpl taskParallel.chpl -o
prompt> ./taskParallel —--numLocale
Hello from task 1 of 2 running on

Hello from task 2 of running on

2
Hello from task 2 of 2 running on
Hello from task 1 of 2

running on

taskParallel
s=2

nl033

nl032

nl033

nl1032

Task Parallelism and Locality, by example =Rac

taskParallel.chpl

coforall loc in Locales do
on loc {
const numTasks = here.numPUs () ;
coforall tid in 1..numTasks do

writef ("Hello from task %$n of %n "+

Not seen here:

"running on %s\n",
Data-centric task coordination tid, numTasks, here.name);
via atomic and full/empty vars }

prompt> chpl taskParallel.chpl -o taskParallel
prompt> ./taskParallel --numLocales=2
Hello from task 1 of 2 running on nl033

Hello from task 2 of running on nl032

2
Hello from task 2 of 2 running on nl033
Hello from task 1 of 2

running on nl032

Task Parallelism and Locality, by example o

taskParallel.chpl

coforall loc in Locales do
on loc {
const numTasks = here.numPUs () ;
coforall tid in 1..numTasks do
writef ("Hello from task %n of %n "+
"running on %s\n",

tid, numTasks, here.name);

prompt> chpl taskParallel.chpl -o taskParallel
prompt> ./taskParallel --numLocales=2
Hello from task 1 of 2 running on nl033

Hello from task 2 of running on nl032

2
Hello from task 2 of 2 running on nl033
Hello from task 1 of 2

running on nl032

Chapel: Scoping and Locality

var 1i: int;

Locales (think: “compute nodes”)

@
k_/ Copyright 2018 Cray Inc.

\
CR=RAY |
(Y \
S \
\

Chapel: Scoping and Locality

var i: int;
on Locales[1l] {

Locales (think: “compute nodes”)

@
k_/ Copyright 2018 Cray Inc.

Chapel: Scoping and Locality

var i: int;
on Locales[1l] {
var J: int;

Locales (think: “compute nodes”)

@
(_/ Copyright 2018 Cray Inc.

Chapel: Scoping and Locality

var i: int;
on Locales[1l] {
var J: int;
coforall loc in Locales {
on loc {

Locales (think: “compute nodes”)

@
(_/ Copyright 2018 Cray Inc.

Chapel: Scoping and Locality

var i: int;
on Locales[1l] {
var J: int;
coforall loc in Locales {
on loc {
var k: int;

Locales (think: “compute nodes”)

@
(_/ Copyright 2018 Cray Inc.

Chapel: Scoping and Locality

var i: int;
on Locales[1l] {
var J: int;
coforall loc in Locales {
on loc {
var k: int;
k = 2%1 + 3;

OK to access i, j, and k
} wherever they live

Locales (think: “compute nodes”)

&C\
—
= Copyright 2018 Cray Inc.

Chapel: Scoping and Locality

var i: int;
on Locales[1l] {
var J: int;
coforall loc in Locales {
on loc {
var k: int;
k = 2%1 + 3;
here, i and j are remote, so

the compiler + runtime will
} transfer their values

Locales (think: “compute nodes”)

Copyright 2018 Cray Inc.

Chapel: Locality queries
var i: int;
on Locales[1l] {
var J: int;
coforall loc in Locales {
on loc {
.here.. // query the locale on which this task is running
..J.locale.. //query the locale on which j is stored
..here.physicalMemory (..).. / query system characteristics
.here.runningTasks () .. // query runtime characteristics

Locales (think: “compute nodes”)

=
= Copyright 2018 Cray Inc.

Data Parallelism in Chapel cRas

Chapel language concepts

C Domain Maps
D Higher-level
~ Task Parallelism Chapel

Base Language
Locality Control

\

N

Data Parallelism, by example

N

dataParallel.chpl

config const n = 1000;

var D = {1..n, 1..n};

var A: [D] real;

forall (i,j) in D do
Ali,j] =

writeln (A);

i+ (3 - 0.5)/n;

prompt> chpl dataParallel.chpl -o dataParallel

prompt>

1.1 1.

2
3.
4
5

1

1
1
1
1

2
3.
4
5

3 1.51.7 1.9
2.7 2.9
3.7 3.9
4.7 4.9
5.7 5.9

./dataParallel --n=5

\
Data Parallelism, by example cRAaNY

Domains (Index Sets) dataParallel.chpl

config const n = 1000;
var D = {l1..n, 1..n};

var A: [D] real;
forall (i,j) in D do

Ali,J] =1 4+ (J - 0.5)/n;
writeln (A);

prompt> chpl dataParallel.chpl -o dataParallel
prompt> ./dataParallel --n=5
1.1 1.3 1.5 1.7 1.9

2
3.
4
5

12 2.7 2.9
1 3. 3.7 3.9
1 4 4.7 4.9
15 5.7 5.9

/ =

\
Data Parallelism, by example cRAaNY

dataParallel.chpl

config const n = 1000;

var D = {1..n, 1..n};

var A: [D] real;
forall (i,j) in D do

Ali,J] =1 4+ (J - 0.5)/n;
writeln (A);

prompt> chpl dataParallel.chpl -o dataParallel
prompt> ./dataParallel --n=5
1.1 1.3 1.5 1.7 1.9

2
3.
4
5

12 2.7
1 3. 3.7
1 4 4.7
15 5.7

2.9
3.9
4.9
5.9

/ =

\
Data Parallelism, by example cRAaNY

dataParallel.chpl

config const n = 1000;
var D = {l1..n, 1..n};

Data-Parallel Forall Loops

var A: [D] real;
forall (i,j) in D do

Ali,J] =1 4+ (J - 0.5)/n;
writeln (A);

prompt> chpl dataParallel.chpl -o dataParallel
prompt> ./dataParallel --n=5
1.1 1.3 1.5 1.7 1.9

2
3.
4
5

12 2.7 2.9
1 3. 3.7 3.9
1 4 4.7 4.9
15 5.7 5.9

/ =

\
Data Parallelism, by example cRAaNY

dataParallel.chpl

config const n = 1000;
var D = {l1..n, 1..n};

This is a shared memory program

var A: [D] real;

Nothing has referred to remote forall (i,J) in D do
locales, explicitly or implicitly Ali,j] =i + (3 - 0.5)/n;
writeln (2) ;

prompt> chpl dataParallel.chpl -o dataParallel
prompt> ./dataParallel --n=5
1.1 1.3 1.5 1.7 1.9

2
3.
4
5

12 2.7 2.9
1 3. 3.7 3.9
1 4 4.7 4.9
15 5.7 5.9

\
Data Parallelism, by example cRAaNY

dataParallel.chpl

config const n = 1000;
var D = {l1..n, 1..n};

This is a shared memory program

var A: [D] real;

Nothing has referred to remote forall (i,J) in D do
locales, explicitly or implicitly Ali,j] =i + (3 - 0.5)/n;
writeln (2) ;

prompt> chpl dataParallel.chpl -o dataParallel
prompt> ./dataParallel --n=5
1.1 1.3 1.5 1.7 1.9

2
3.
4
5

12 2.7 2.9
1 3. 3.7 3.9
1 4 4.7 4.9
15 5.7 5.9

Distributed Data Parallelism, by example RN

dataParallel.chpl

use CyclicDist;

config const n = 1000;

var D = {l1l..n, 1..n}
dmapped Cyclic(startIdx = (1,1));
var #4: [D] real;
Domain Maps forall (i,j) in D do
(Map Data Parallelism to the System) Ali,j] =i + (3 - 0.5)/n;

writeln (2) ;

prompt> chpl dataParallel.chpl -o dataParallel
prompt> ./dataParallel —--n=5 --numLocales=4
1.1 1.3 1.5 1.7 1.9

2.1
3.1
4.1
5.1

2 2.7 2.9
3. 3.7 3.9
4 4.7 4.9
5 5.7 5.9

Distributed Data Parallelism, by example RN

magic! m dataParallel.chpl
o use CyclicDist;
descrlptlve! config const n = 1000;

var D = {l1..n, 1l..n}
dmapped Cyclic(startIdx = (1,1));
OO var A: [D] real;
forall (i,j) in D do
NOt at aII Ali,j] =i + (3 - 0.5)/n;
« Lowering of code is well-defined writeln ()
« User can control details prompt> chpl dataParallel.chpl -o dataParallel

e Part of Chapel‘s multiresolution prompt> ./dataParallel —--n=5 --numLocales=4
. 1.1 1.3 1.51.7 1.9
philosophy...

2.1 2
3.1 3.
4.1 4
5.1 5

2.7
3.7
4.7
5.7

2.9
3.9
4.9
5.9

Chapel’s Multiresolution Design: Motivation o

EEA™ High-Level
EZZ8—| Abstractions

Low-Level m
Implementation OpenMP
Concepts Pthreads

Target Machine Target Machine

“‘Why is everything so tedious/difficult?”

“Why don’t | have more control?”

“‘Why don’t my programs trivially port
to new systems?”

C

Chapel’s Multiresolution Philosophy =|=A:Yj' '

Multiresolution Design: Support multiple tiers of features
e higher levels for programmability, productivity \
e lower levels for greater degrees of control

Domain Maps

Task Parallelism

Base Language
Locality Control

e Dbuild the higher-level concepts in terms of the lower
e permit users to intermix layers arbitrarily

Distributed Data Parallelism, by example RN

Chapel’s prescriptive approach: (———-—= "=

forall (i,3J) in D do..

config const n = 1000;

= invoke and inline D’s var D = {1..n, 1l..n};
default parallel iterator
var A: [D] real;

- defined by D’s type / forall (i,j) in D do
domain map A[i,3] =i + (3 - 0.5)/n;

writeln (2) ;

default domain map

prompt> chpl dataParallel.chpl -o dataParallel
 create a task per local core

* block indices across tasks

prompt> ./dataParallel —--n=5 --numLocales=4
1.1 1.3 .5 1.7 1.9

2
3.
4
5

12 2.7 2.9
1 3. 3.7 3.9
1 4 4.7 4.9
15 5.7 5.9

Distributed Data Parallelism, by example

Chapel’s prescriptive approach:

dataParallel.chpl

forall (i,3J) in D do..
= invoke and inline D’s
default parallel iterator

» defined by D’s type /
domain map

use CyclicDist;

config const n = 1000;
var D = {1l..n, 1..n}
dmapped Cyclic(startIdx =
var A: [D] real;
forall (i,j) in D do
Afi,j]1 =i+ (3 - 0.5)/n;

writeln (2) ;

(1,1))7

defaillt domain man

' cyclic domain map
. on each target locale...
 create a task per core

* block local indices across
tasks

2.1
3.1
4.1
5.1

prompt>
1.1 1.

2
3.
4
5

3 1.51.7 1.9
2.7 2.9
3.7 3.9
4.7 4.9
5.7 5.9

prompt> chpl dataParallel.chpl -o dataParallel
./dataParallel —--n=5 --numLocales=4

Distributed Data Parallelism, by example RN

Chapel’s prescriptive approach: (———-—= "=

forall (i,j) in D do.. use CyclicDist;
config const n = 1000;

var D = {1l..n, 1..n}
dmapped Cyclic(startIdx = (1,1));
var A: [D] real;
Ooforall (i,j) in D do
Ali, j]l =31 4+ (J - 0.5)/n;

What if | don’t like D’s
iteration strategy?

Write and call your own parallel iterator:
forall (i,3j) in myParlIter (D) do.. rallel.chpl -o dataParallel

Or, use a different domain map: lel --n=5 --numlLocales=4
var D = {l1..n, 1..n} dmapped Block(..);
Or, write and use your own domain map:

var D = {l..n, 1..n} dmapped MyDomMap (..);

Write and Call Your Own Parallel lterator

\
Authoring Parallel Iterators cRas
S)
\

e Similar to serial iterators, but invoked by forall” loops

e Unlike serial iterators, these can contain parallel constructs \
forall 1 in myParIter (D) { .. }

Invokes:
iter myParIter (dom: domain, .. /*tag as a paralleliterator */) {
coforall tid in O..#numTasks {
const myChunk = computeChunk (dom, tid, numTasks);
for i in myChunk do
yield i;

Authoring Zippered Parallel Iterators <=|=A:Yj’ '

Parallel iterators can also support zippered iteration
forall (i,3j) in zip (myParIter (D), A) { .. } \
defined in terms of leader...
iter myParIter (dom: domain, ..) {
coforall tid in O..#numTasks do
yield computeChunk (dom, tid, numTasks) ;

}

...and follower iterators:
iter myParIter (dom: domain, followThis, ..) {
for 1 in followThis do yield 1i;

Use a Different Domain Map

\
Domain Maps: A Multiresolution Feature SRSy
) \
\

Domain maps are “recipes” that instruct the compiler
how to map the global view of a computation... \

A =B + alpha * C;

...to the target locales’ memory and processors:
I I

\
Domain Maps: A Multiresolution Feature CRANY |

Domain maps are “recipes” that instruct the compiler
how to map the global view of a computation... \

Domain Maps specify...
...mapping of indices to locales
...layout of domains / arrays in memory

...to the target locales’ memory EEEERCEEECeES
I ...core operations on arrays / domains

A = B + alpha *

[[ITITITil]+
o TTTTTTITIT]
[] 1 1 []

Sample Domain Maps: Block and Cyclic

var Dom = 4, .8} dmapped Block({1..4, 1..8});

L1 L2 L3
distributed to
L5 L6 (L7

var Dom = {1..4, 1..8} dmapped Cyclic(startIdx=(1,1));

1
. . L0 [L1 L2 L3
distributed to % s 5

=N

@

Write and Use Your Own Domain Map

Chapel’s Domain Map Philosophy o

1. Chapel provides a library of standard domain maps
e to support common array implementations effortlessly

2. Expert users can write their own domain maps in Chapel
e to cope with any shortcomings in our standard library

Domain Maps

Task Parallelism
Base Language
Locality Control

3. Chapel’s standard domain maps are written using the end-user framework
e to avoid a performance cliff between “built-in” and user-defined cases
o infact every Chapel array is implemented using this framework

Domain Map Descriptors

Domain Map

/Represents: a domain\

map value

Generic w.r.t.: index type

State: the domain map’s
representation

Typical Size: ©(1) —
O(numLocales)

Required Interface:
e create new domains

Q/vhich locale owns index I"?/

Domain

Represents: a domain\
Generic w.r.t.: index type

State: representation of
index set

Typical Size: O(1) —»
©(numindices)

Required Interface:

» create new arrays

* queries: size, members
* iterators: serial, parallel
+ domain assignment

-\index set operations /

Array
(epresents: an array \

Generic w.r.t.: index type,
element type

State: array elements

Typical Size:
O(numindices)

Required Interface:

* (re-)allocation of elements

* random access

* iterators: serial, parallel

* get/set of sparse “zero”
values

<)

Chapel and Performance Portability =|=A:Yj’ '

e Avoid locking key policy decisions into the language
e Array memory layout? \
e Sparse storage format?
e Parallel loop policies?

(C\\
=
= Copyright 2018 Cray Inc.

Chapel and Performance Portability AN

(Y \
S \
\

e Avoid locking key policy decisions into the language

e Array memory layout? not defined by Chapel \
e Sparse storage format? not defined by Chapel
e Parallel loop policies? not defined by Chapel

e Abstract node architecture? not defined by Chapel

e Instead, permit users to specify these in Chapel itself

e support performance portability through...
...a separation of concerns
...abstractions—known to the compiler, and therefore optimizable

e goal: make Chapel a future-proof language

\

Copyright 2018 Cray Inc.

Classic Locales

e Historically, Chapel’s locales were black boxes
e Intra-node concerns handled by compiler, runtime, OS

e This was sufficient when compute nodes were simple

cpu

cpu cpu cpu

cpu cpu cpu cpu

cpu cpu cpu cpu

locale locale locale locale

r
«C COMPUTE | STORE | ANALYZE
= Copyright 2018 Cray Inc.

Classic Locales

locale

locale

locale

locale

COMPUTE

STORE

Copyright 2018 Cray Inc.

ANALYZE

\
Classic Locales S S
Y \
\

Classic model breaks down for more complex cases
E.g. multiple flavors of memory or processors \

] NUMA domain
accelerator
cpu | cpu
mem cpu| cpu|
cpu [cpu ool ol .
locale locale locale i i |
L cpu | cpu :
mem .
| cpu | cpu cpuc?ul
Could hope compilers will “simply get smart enough” F NUMA domain
q
...but seems naive and doesn’t match Chapel’s philosophy (locale
DU DU DU CpU| | |
locale locale locale locale

Hierarchical Locales

e So, we made locales hierarchical

COMPUTE | STORE | ANALYZE
Copyright 2018 Cray Inc.

Hierarchical Locales

e So, we made locales hierarchical

e Locales can now themselves contain locales
e E.g., an accelerator sub-locale, a scratchpad memory sub-locale

sub-locale
A

sub-locale
A

sub-locale
A

sub-locale
A

[c][c][D][E]

sub-locale B

[c][c][D][E]

sub-locale B

[c][c][D][E]

sub-locale B

[c][c][D][E]

sub-locale B

locale

locale

locale

locale

e Target sub-locales with on-clauses, as before
on Locales[0].GPU do computationThatLikesGPUs () ;

e |deally, hide such logic in abstractions: domain maps, parallel iterators
e Introduced a new multiresolution type: locale models

\
Chapel’s Locale Models =AY

e User-specified type representing locales

e Similar goals to domain maps:
e Support user implementation of key high-level abstractions
e Make language future-proof (w.r.t. emerging architectures)

\

Copyright 2018 Cray Inc.

(83)

Authoring a Locale Model cRAY

e Creating a locale model:

e Create a top-level locale object type
e In turn, it can contain fields representing sub-locales

e Each locale / sub-locale type must meet a required interface:
e Memory: How is it managed? (malloc, realloc, free)
e Tasking: How do | launch and synchronize tasks?

e Communication: How are data & control transferred between locales?
e gets, puts, active messages
e widening of pointers

\

Copyright 2018 Cray Inc.

(@)
NV

\
An Example: The numa Locale Model CRAY |

// support for tasking stmts: begin, cobegin, coforall
proc chpl taskListAddCoStmt

[\
S \
. $CHPL_HOME/modules/....numa/LocaleModel.chpl \
physical conceptual
class NumaDomain : AbstractLocaleModel ({
const sid: chpl sublocID t;
}
g NUMA domain // The node model \
<8 class LocaleModel : AbstractLocaleModel {
g cpulcpu const numSublocales: int;
3 var childSpace: domain (1) ;
3 mem hildLocales: [childs] NumaDomain;
g cpulcpu var childLocales: [childSpace] NumaDomain;
& }
8 - - - - —
% // support for memory management
2 cpujcpu proc chpl here alloc(size:int, md:int(16)) { .. }
o mem - -
§ cpujcpu // support for "on" statements
& _ proc chpl executeOn
8 NUMA domain (loc: chpl localelID t, // target locale
% fn: int, // on-body func idx
5 NUMA compute node args: §7voi<_:17ptr, // func args
¢ args_size: int(32) // args size
8))
>
@
x
Q
=
=
Z% (subloc_id: int, // target subloc

5 fn: int, // body func idx

3 args: c_void ptr, // func args

N ref tlist: task list, // task list
tlist node id: int // task list owner

))

\
Locale Models: Status] — PVl

e All Chapel compilations use a locale model
e Set via environment variable or compiler flag

e Current locale models:
o flat: the default, has no sublocales (as in the classic model)

e numa: supports a sub-locale per NUMA domain within the node
e knl: for Intel® Xeon Phi™: nhuma w/ sublocale for HBM/MCDRAM

¢

Copyright 2018 Cray Inc.

//77\\
(86)
N/

Wrapping Up

\
Summary CRAY |
(Y \
S \
\

e Chapel’s design uses a multiresolution philosophy
e High-level for productivity \
e Low-level for control
o User-extensible for flexibility, future-proof design
e Three key examples of multiresolution features:
o Parallel iterators: specify the implementation of forall loops
o Domain maps: specify the implementation of domains and arrays
o Locale models: specify the capabilities of the target architecture

\

Copyright 2018 Cray Inc.

CHIUW 2017 Keynote cRas

Chapel’s Home in the Landscape of

New Scientific Computing Languages ~
(and what it can learn from the neighbours)

Jonathan Dursi, The Hospital for Sick Children, Toronto

Quote from CHIUW 2017 keynote AN

e \
S \
\

“My opinion as an outsider...is that Chapel is important,

Chapel is mature, and Chapel is just getting started. ;
“If the scientific community is going to have frameworks for
solving scientific problems that are actually designed for our
problems, they’re going to come from a project like Chapel.

“And the thing about Chapel is that the set of all things that
are ‘projects like Chapel’ is ‘Chapel.’”
—Jonathan Dursi

Chapel’s Home in the New Landscape of Scientific Frameworks
(and what it can learn from the neighbours)
CHIUW 2017 keynote

https://ljdursi.github.io/CHIUW2017 / https://www.youtube.com/watch?v=xj0rwdLOR4U

@
&_/ Copyright 2018 Cray Inc.

https://ljdursi.github.io/CHIUW2017/
https://www.youtube.com/watch?v=xj0rwdLOR4U

Chapel Resources

The Chapel age

What is Chapel?

Home Chapel is a modern programming language that is...
Chapel Overview
« parallel: contains first-class concepts for concurrent and parallel computation
What's New? « productive: designed with programmability and performance in mind
Emwni:',a: « portable: runs on laptops, clusters, the cloud, and HPC systems

« scalable: supports locality-oriented features for distributed memory systems

How Can | Learn Chapel? open-source: hosted on GitHub, permissively licensed

Documentation

Download Chapel New to Chapel?

Try It Now

Rolease Notes

As an introduction to Chapel, you may want to...

« read a blog article or book chapter
« watch an overview talk or browse its slides
Soclal Media / Blog Posts « download the release
Press .
.

User Resources
Educator Resources
Developer Resources

browse sample programs

s enitions view other resources to learn how to trivially write distributed programs like this

Tutorlals
Publications and Papers

use CyclicDist; // use the Cyclic distribution Library
CHIUW config const n = 10@; // use ./a.out --n=<val> to override this default
CHUG
Lightning Talks forall i in {1..n} dmapped Cyclic(startldx=1) do

writeln("Hello from iteration ", i, " of ", n, " running on node ", here.id);
Contributors / Credits

Research Groups

License

What's Hot?

lang. i i =
m;: - ywm Chapel 1.16 is now available—download a copy today!

« The CHIUW 2018 call for participation is now available!
O « A recent Cray blog post reports on highlights from CHIUW 2017.
LYo « Chapel is now one of the supported languages on Try It Online!
« Watch talks from ACCU 2017, CHIUW 2017, and ATPESC 2016 on YouTube.
« Browse slides from PADAL, EAGE, EMBRACE, ACCU, and other recent talks.

See also: What's New?

https://chapel-lang.org/

How to Track Chapel

http://facebook.com/ChapelLanguage

http://twitter.com/ChapelLanquage

https://www.youtube.com/channel/UCHMmM27bYjhknK5mU7Z2zPGsQ/

chapel-announce@lists.sourceforge.net

Page Messages Notificationsf)] Insights Publishing Tools

e Liked v
7/ N

N Following v 4 Share «s

-

C\ Chapel Programming Language
S/ Aol 210t e
» to note that Chapel is

Sthinthe

@ChapelLanguage

g8 8

B

program time / fastest program time

benchmarks game

Home

Posts.

Videos

Photos

About

Likes

m 270 people reached

& Uke W Comment 4 Sharo

© Russal Winder, Mykola Rabchavskiy and 2 others

o y
/ Computer Language Game's. " graphs.
4 That said, we're even prouder of how clear and concise the Chapel
th ‘entries that per .
Chapel .
Programming How many times slower?
Language 300

L el

%

20 Apr 2017 ubdq

\

J
Chapel Language
@ChapelLanguage
Chapel is a productive parallel

programming language designed for
large-scale computing whose

& chapel.cray.com
() Joined March 2016

3 115 Photos and videos

development is being led by Gcray_inc

TWEETS FOLLOWING FOLLOWERS LKES

222 12 129 32

Tweets Tweets & replies Media

7% Chapel Language GChapelLanguage - 5h
k@? Doing interesting applications work in Chapel or another PGAS language?
Submit it to the PAW 2017 workshop at @SC17.

sourceryinstitute.github.io/PAW/

Copyright 2018 Cray Inc.

Chapel Parallel Programming Language

Home Videos Playlists Channels About

Chapel videos

Parallel ing | Brad

jonne Training Program on Extreme-Scale Computing, Summer 2016,

Wild", Nikhil

W 2016: the 3rd Anousl Chapel
loble at

(93)

http://facebook.com/ChapelLanguage
http://twitter.com/ChapelLanguage
https://www.youtube.com/channel/UCHmm27bYjhknK5mU7ZzPGsQ/

Suggested Reading (healthy attention spans) <=|=,A‘Y\®' '

S \
\

Chapel chapter from Programming Models for Parallel Computing
a detailed overview of Chapel’s history, motivating themes, features \
published by MIT Press, November 2015
edited by Pavan Balaji (Argonne)
chapter is now also available online

Other Chapel papers/publications available at https://chapel-lang.org/papers.html

https://mitpress.mit.edu/programming
https://chapel-lang.org/publications/PMfPC-Chapel.pdf
https://chapel-lang.org/papers.html

Suggested Reading (short attention spans) —_P-CUy

(Y \
S \
\

CHIUW 2017: Surveying the Chapel Landscape, Cray Blog, July 2017.
e arun-down of recent events

Chapel: Productive Parallel Programming, Cray Blog, May 2013.
e a short-and-sweet introduction to Chapel
Six Ways to Say “Hello” in Chapel (parts 1, 2, 3), Cray Blog, Sep-Oct 2015.
e a series of articles illustrating the basics of parallelism and locality in Chapel
Why Chapel? (parts 1, 2, 3), Cray Blog, Jun-Oct 2014.

e a Series of articles answering common questions about why we are pursuing Chapel in
spite of the inherent challenges

[Ten] Myths About Scalable Programming Languages, |EEE TCSC Blog

(index available on chapel-lang.org “blog posts” page), Apr-Nov 2012.

e a series of technical opinion pieces designed to argue against standard reasons given for
not developing high-level parallel languages

(C\\
@
= Copyright 2018 Cray Inc.

http://www.cray.com/blog/chiuw-2017-surveying-chapel-landscape/
http://blog.cray.com/
http://blog.cray.com/?p=5889
http://blog.cray.com/
http://www.cray.com/blog/six-ways-to-say-hello-in-chapel-part-1/
http://www.cray.com/blog/six-ways-to-say-hello-in-chapel-part-1/
http://www.cray.com/blog/six-ways-to-say-hello-in-chapel-part-2/
http://www.cray.com/blog/six-ways-to-say-hello-in-chapel-part-3/
http://blog.cray.com/
http://blog.cray.com/?p=6877
http://blog.cray.com/?p=6877
http://blog.cray.com/?p=6908
http://blog.cray.com/?p=7060
http://blog.cray.com/
https://www.ieeetcsc.org/activities/blog
http://chapel-lang.org/media.html

Chapel StackOverflow and GitHub Issues

NS
='ctackoverflow Questions Jobs Documentation Tags Users Q_ [chapel]
O This repository Pull requests Issues Marketplace Gist A 4+~ " v
Tagged Questions nfo newest frequent votes adt
a4 O - v
Chapel, the Cascade High Productivity Language, is a parallel programming language developed by Cray. - cha pel lang / Chapel © Watch a5 % Unstar | 455 ? Fork | 145
learn more... top users synonyms \
1 Code @ Issues 292 Pull requests 26 Projects 0 Settings Insights ~
2 Can one generate a grid of the Locales where a Distribution is mapped? i o) i
votes))) Filters ~ is:issue is:open Labels Milestones New issue
If | run the following code: use BlockDist; config const dimension: int = 5; const space = {0..#
0..#di ion}); const i domain(2) ingl jpace) = space
chapel asked 13 hours @ .) .
ba @® 292 0Open v 77 Closed Author ~ Labels v Projects v Milestones v Assignee v Sort v
22 views . s
52 02
@® Implement "bounded-coforall" optimization for remote coforalls area: Compiler
3 Is “[<var> in <distributed variable>]" equivalent to “forall'? YRR
1 #6357 13 hi h
vores | noticed something in a snippet of code | was given: var D: domain(2) IO T
= Space; var A: [D] int; [a in A] a = a.locale.id; Is [a in A] equivalent to forallain A a = . . .
(® Consider using processor atomics for remote coforalls EndCount area: Compiler 313
syntax chapel asked 15 hours @ 7W
N barrymoo:
24 views . a2 of #6356 opened 13 hours ago by ronawho 0of6
(® make uninstall area: BTR |type: Feature Request
2 Get Non-primitive Variables from within a Cobegin - Chapel #6353 opened 14 hours ago by mppf
votes
| want to compute some information in parallel and use the result outside the cobegin. To be 2 "
my requirement is to retrieve a domain (and other non primitive types) like this var a,b: ... © make check doesn't work with ./configure area: BTR 7
e asked Apr 18.a #6352 opened 16 hours ago by mppf
- . PPRETEY . . 3 .
45 views 4v> ’:?:”D;‘ (@ Passing variable via in intent to a forall loop seems to create an iteration-private variable, (2
not a task-private one area: Compiler |type: Bug
#6351 opened a day ago by cassella
3 Is there a default String conversion method in Chapel?
voes Is there a default method that gets called when | try to cast an object into a string? (E.g. toSH| (@ Remove chpl_comm_make_progress area: Runtime easy |type: Design 1
_n __str__in Python.) | want to be able to do the following with an array of Objects, ... #6349 opened a day ago by sungeunchoi
® Runtime error after make on Linux Mint area: BTR user issue s
#6348 opened a day ago by danindiana

Copyright 2018 Cray Inc.

Where to..

Submit bug reports:
GitHub issues for chapel-lang/chapel: public bug forum
chapel_bugs@cray.com: for reporting non-public bugs

Ask User-Oriented Questions:
StackOverflow: when appropriate / other users might care
#chapel-users (irc.freenode.net): user-oriented IRC channel
chapel-users@lists.sourceforge.net: user discussions

Discuss Chapel development
chapel-developers@lists.sourceforge.net: developer discussions
#chapel-developers (irc.freenode.net): developer-oriented IRC channel

Discuss Chapel’s use in education
chapel-education@lists.sourceforge.net: educator discussions

Directly contact Chapel team at Cray: chapel info@cray.com

¢

Copyright 2018 Cray Inc.

Questions?

\
Legal Disclaimer SRR

Information in this document is provided in connection with Cray Inc. products. No license, express or implied, to any intellectual property o \

rights is granted by this document.
Cray Inc. may make changes to specifications and product descriptions at any time, without notice.
All products, dates and figures specified are preliminary based on current expectations, and are subject to change without notice. \

Cray hardware and software products may contain design defects or errors known as errata, which may cause the product to deviate from
published specifications. Current characterized errata are available on request.

Cray uses codenames internally to identify products that are in development and not yet publically announced for release. Customers and
other third parties are not authorized by Cray Inc. to use codenames in advertising, promotion or marketing and any use of Cray Inc.
internal codenames is at the sole risk of the user.

Performance tests and ratings are measured using specific systems and/or components and reflect the approximate performance of Cray
Inc. products as measured by those tests. Any difference in system hardware or software design or configuration may affect actual
performance.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY and design, SONEXION, and
URIKA. The following are trademarks of Cray Inc.. ACE, APPRENTICE2, CHAPEL, CLUSTER CONNECT, CRAYPAT, CRAYPORT,
ECOPHLEX; LIBSCI, NODEKARE, THREADSTORM. The following system family marks, and associated model number marks, are
trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT, and XT. The registered trademark LINUX is used pursuant to a sublicense from LMI,
the exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis. Other trademarks used in this document are the
property of their respective owners.

(C\\
@
= Copyright 2018 Cray Inc.

=

cRasyr
CcCHARPEL
—

