Chapel:

Productive Parallel Programming at Scale

Brad Chamberlain, Chapel Team, Cray Inc.
Northwest C++ Users Group
October 19t 2016

=

=Rasyr
cCcHAaARPRPEL
—

=/

COMPUTE STORE | ANALYZE

Safe Harbor Statement .

(?\.
(
\

~

Kl'his presentation may contain forward-looking statements that are
based on our current expectations. Forward looking statements
may include statements about our financial guidance and expected
operating results, our opportunities and future potential, our product
development and new product introduction plans, our ability to
expand and penetrate our addressable markets and other
statements that are not historical facts. These statements are only
predictions and actual results may materially vary from those
projected. Please refer to Cray's documents filed with the SEC from
time to time concerning factors that could affect the Company and

these forward-looking statements. y

_

Copyright 2016 Cray Inc. Q

Cray: The Supercomputing Company . o

1972: Seymour Cray founded Cray
Research

2000: Tera purchased Cray Research from
SGI and formed Cray Inc.

e corporate headquarters based in Seattle, WA

Technology Focus Areas:
o Computation
o Storage
e Analytics

Vision: Provide the systems and tools that
our customers need to solve the
world’s hardest problems.

High Performance Computing (HPC)
Programming Models by Example

STREAM Triad: a trivial parallel computation

Given: m-element vectors A, B, C

Compute: Vi € 1.m, A; = B; + o-C,

In pictures:
7 A
BITTTTITTTTTTTTTITTTTTITTTIT]

.|.
COITTTTITITTTITTITTITITTITTITITTI
o [l

®
!
CRAaY |

STREAM Triad: a trivial parallel computation . o

S \
\

Given: m-element vectors A, B, C
Compute: Vi e 1.m, A, =B, + a.-C;

In pictures, in parallel:

STREAM Triad: a trivial parallel computation

Given: m-element vectors A, B, C
Compute: Vi e 1.m, A, =B, + a.-C;

In pictures, in parallel (distributed memory):

| | |

| | |

| | |
« @ ! B | =B | B

®
!
CRAaY |

STREAM Triad: a trivial parallel computation . o

S \
\

Given: m-element vectors A, B, C
Compute: Vi e 1.m, A, =B, + a.-C;

In pictures, in parallel (distributed memory multicore):

| | |

| L |

| | |
« @ | B | ®H | B

(@ ®

STREAM Triad: MPI

#include <hpcc.h>

static int VectorSize;
static double *a, *b, *c;

int HPCC_StarStream(HPCC Params *params) {

}

int myRank, commSize;
int rv, errCount;
MPI Comm comm = MPI COMM WORLD;

MPI Comm size(comm, &commSize);
MPI Comm rank(comm, &myRank);

rv = HPCC Stream(params, 0 == myRank);
MPI Reduce(&rv, &errCount, 1, MPI_INT, MPI SUM,

0, comm) ;

return errCount;

int HPCC_ Stream (HPCC Params *params, int doIO) {

register int j;
double scalar;

VectorSize = HPCC_LocalVectorSize(params, 3,
sizeof (double), 0);

a = HPCC_XMALLOC(double, VectorSize);
b = HPCC_XMALLOC(double, VectorSize);
¢ = HPCC_XMALLOC(double, VectorSize);

if ('a || 'b || 'e) {
if (c) HPCC free(c);
if (b) HPCC free(b);
if (a) HPCC free(a);
if (doIO) {
fprintf(outFile, "Failed to allocate memory
(3d) .\n", VectorSize);
fclose(outFile);

}

return 1;

for (j=0; j<VectorSize; j++) {

b[j] = 2.0;
c[j] = 0.0;
}
scalar = 3.0;

for (j=0; j<VectorSize; j++)
a[j] = b[jl+scalar*c[j];

HPCC free(c);
HPCC free(b);
HPCC_free(a) ;

STREAM Triad: MPI+OpenMP

#include <hpcc.h>

#ifdef OPENMP
#include <omp.h>
#endif

static int VectorSize;
static double *a, *b, *c;

int HPCC_StarStream(HPCC Params *params) {

}

int myRank, commSize;
int rv, errCount;
MPI Comm comm = MPI COMM WORLD;

MPI Comm size(comm, &commSize);
MPI Comm rank(comm, &myRank);

rv = HPCC Stream(params, 0 == myRank);
MPI Reduce(&rv, &errCount, 1, MPI_INT, MPI SUM,

0, comm) ;

return errCount;

int HPCC_ Stream (HPCC Params *params, int doIO) {

register int j;
double scalar;

VectorSize = HPCC_LocalVectorSize(params, 3,
sizeof (double), 0);

HPCC_XMALLOC(double, VectorSize);
HPCC_XMALLOC(double, VectorSize);
¢ = HPCC_XMALLOC(double, VectorSize);

oo

if ('a || 'b |] 'e) {
if (c) HPCC_free(c);
if (b) HPCC_free (b);
if (a) HPCC free(a);
if (doIO) {

fprintf(outFile, "Failed to allocate memory

(3d) .\n", VectorSize);
fclose(outFile);

}

return 1;

}

#ifdef _OPENMP
#fpragma omp parallel for
#endif
for (j=0; j<VectorSize; j++) ({

b[j] = 2.0;
c[j] = 0.0;
}
scalar = 3.0;

#ifdef OPENMP
#pragma omp parallel for
#endif
for (j=0; j<VectorSize; j++)
alj] = b[jl+scalar*c[]];

HPCC free(c);
HPCC free(b);
HPCC_free(a) ;

STREAM Triad: MPI+OpenMP vs. CUDA 0N

MP1 + OpenMP I#
o m i m e e m e m o m

#ifdef _OPENMP
#include <omp.h>

#endif

static int VectorSize; - - - -

static double *a, *b, *c; . I . I . I .
]]]

int HPCC_StarStream(HPCC_Params *params) {
int myRank, commSize;
int rv, errCount;
MPI_Comm comm = MPI_COMM WORLD;

MPI_Comm size(comm, &commSize);
MPI_Comm_rank(comm, &myRank);

rv = HPCC_Stream(params, 0 == myRank);
MPI_Reduce(&rv, &errCount, 1, MPI_INT, MPI_SUM, 0, comm) ;

return errCount;

.
CUDA % %
o m i m e e m e m o m

#define N 2000000

int main() {
float *d_a, *d b, *d c; a1 81 81 0 \
float scalar;

cudaMalloc((void**)&d a, sizeof (float) *N);
cudaMalloc((void**) &d b, sizeof (float) *N);
cudaMalloc((void**) &d c, sizeof (float) *N);

A A ar_ w1 _ _1_r1Aan

HPC suffers from too many distinct notations for expressing parallelism and locality

VectorSize = HPCC_LocalVectorSize(params, 3, sizeof(double), 0);

a = HPCC_XMALLOC(double, VectorSize);
b = HPCC_XMALLOC(double, VectorSize);
c = HPCC_XMALLOC(double, VectorSize);
if (ta |l 'b || 'e) {

if (c) HPCC_free(c);

if (b) HPCC_free (b) ;

if (a) HPCC_free(a);

if (doIO) {
fprintf (outFile, "Failed to allocate memory (%d).\n", VectorSize);
fclose(outFile);

return 1;

}

#ifdef _OPENMP
#pragma omp parallel for
#endif

for (j=0; j<VectorSize; j++) {
b[j] = 2.0;
c[j] = 0.0;

}

scalar = 3.0;

#ifdef _OPENMP
#pragma omp parallel for

#endif
for (j=0; j<VectorSize; j++)
a[j] = b[jl+scalar*c[]];

HPCC_free(c) ;
HPCC_free (b) ;
HPCC_free(a);

return 0;

set_array<<<dimGrid,dimBlock>>>(d b, .5f, N);
set_array<<<dimGrid,dimBlock>>>(d ¢, .5f, N);

scalar=3.0f;
STREAM Triad<<<dimGrid,dimBlock>>>(d_b, d_c, d_a, scalar, N);
cudaThreadSynchronize () ;

cudaFree (d_a);
cudaFree (d_b) ;
cudaFree (d_c);

__global _ void set_array(float *a, float value, int len) {
int idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < len) a[idx] = wvalue;

}
__global void STREAM Triad(float *a, float *b, float *c,
float scalar, int len) {
int idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < len) c[idx] = a[idx]+scalar*b[idx];
}

Why so many programming models? o

HPC tends to approach programming models bottom-up: \

Given a system and its core capabilities...
...provide features that can access the available performance.
e portability? generality? programmability? ...not strictly required.

Type of HW Parallelism Programming Model Unit of Parallelism

Inter-node MPI executable
Intra-node/multicore OpenMP / pthreads iteration/task
Instruction-level vectors/threads pragmas iteration
GPU/accelerator CUDA / Open[CL|MPJACC] SIMD function/task

benefits: lots of control; decent generality; easy to implement
downsides: lots of user-managed detail; brittle to changes

@ ®

Motivation for Chapel

Q: Can a single language be...
...as productive as Python?
...as fast as Fortran?
...as portable as C?
...as scalable as MPI?
...as fun as <your favorite language here>?

A: We believe so.

/C‘\ COMPUTE | STORE |
—

=~/ Copyright 2014 Cray Inc.

ANALYZE

The Challenge

Q: So why don’t we have such languages already?

e Wwhile they exist, we don’t think this is the main issue...

A: Due to a lack of...
...long-term efforts
...resources
...community will
...co-design between developers and users

...patience

Chapel is our attempt to reverse this trend

N COMPUTE | STORE | ANALYZE

= Copyright 2016 Cray Inc.

What is Chapel?

Chapel: A productive parallel programming language
extensible

portable

open-source

a collaborative effort

a work-in-progress

Goals:

e Support general parallel programming
e “any parallel algorithm on any parallel hardware”

e Make parallel programming far more productive

/C“\ COMPUTE | STORE | ANALYZE

=/ Copyright 2016 Cray Inc.

What does “Productivity” mean to you?

Recent Graduates:
“something similar to what | used in school: Python, Matlab, Java, ...”

Seasoned HPC Programmers:

“that sugary stuff that | don’t need because | was-berna-to-suffer-
want full control

to ensure performance’

H

Computational Scientists:
“something that lets me express my parallel computations
without having to wrestle with architecture-specific details”

Chapel Team:
“something that lets computational scientists express what they want,
without taking away the control that HPC programmers need,
implemented in a language as attractive as recent graduates want.”

/C‘\ COMPUTE | STORE | ANALYZE
—

= Copyright 2016 Cray Inc.

Rewinding a few slides...

MP1 + OpenMP I#
o m i m e e m e m o m

#ifdef _OPENMP
#include <omp.h>

#endif

static int VectorSize; - - - -

static double *a, *b, *c; . I . I . I .
]]]

int HPCC_StarStream(HPCC_Params *params) {
int myRank, commSize;
int rv, errCount;
MPI_Comm comm = MPI_COMM WORLD;

MPI_Comm size(comm, &commSize);
MPI_Comm_rank(comm, &myRank);

rv = HPCC_Stream(params, 0 == myRank);
MPI_Reduce(&rv, &errCount, 1, MPI_INT, MPI_SUM, 0, comm) ;

return errCount;

e \
e \
CUDA % y
#define N 2000000 o i i i m i m

int main() { v v v v
float *d_a, *d b, *d c; a1 81 81 0 \
float scalar;

cudaMalloc((void**)&d a, sizeof (float) *N);
cudaMalloc((void**) &d b, sizeof (float) *N);
cudaMalloc((void**) &d c, sizeof (float) *N);

A A ar_ w1 _ _1_r1Aan

HPC suffers from too many distinct notations for expressing parallelism and locality

VectorSize = HPCC_LocalVectorSize(params, 3, sizeof(double), 0);

a = HPCC_XMALLOC(double, VectorSize);
b = HPCC_XMALLOC(double, VectorSize);
c = HPCC_XMALLOC(double, VectorSize);
if (ta |l 'b || 'e) {

if (c) HPCC_free(c);

if (b) HPCC_free (b) ;

if (a) HPCC_free(a);

if (doIO) {
fprintf (outFile, "Failed to allocate memory (%d).\n", VectorSize);
fclose(outFile);

return 1;

}

#ifdef _OPENMP
#pragma omp parallel for

#endif
for (j=0; j<VectorSize; j++) {
b[j] = 2.0;
c[j] = 0.0;

}

scalar = 3.0;

#ifdef _OPENMP
#pragma omp parallel for

#endif
for (j=0; j<VectorSize; j++)
a[j] = b[jl+scalar*c[]];

HPCC_free(c) ;
HPCC_free (b) ;
HPCC_free(a);

return 0;

set_array<<<dimGrid,dimBlock>>>(d b, .5f, N);
set_array<<<dimGrid,dimBlock>>>(d ¢, .5f, N);

scalar=3.0f;
STREAM Triad<<<dimGrid,dimBlock>>>(d_b, d_c, d_a, scalar, N);
cudaThreadSynchronize () ;

cudaFree (d_a);
cudaFree (d_b) ;
cudaFree (d_c);

__global _ void set_array(float *a, float value, int len) {
int idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < len) a[idx] = wvalue;

}
__global void STREAM Triad(float *a, float *b, float *c,
float scalar, int len) {
int idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < len) c[idx] = a[idx]+scalar*b[idx];
}

STREAM Triad: Chapel KO
~

config const m = 1000,
alpha = 3.0;

const ProblemSpace = {1..m) dmapped . . the special

sauce

var A, B, C: [ProblemSpace] real;

B = 2.0;

C = 3.0;

A =B + alpha * C;

| | | | | | | | |
OO | (D | | ST | | e I T
o | | e | | e || e
OOy | | OO IO T T | | S I T IO I‘I‘I‘-*-*-F-h- ooo
a a (- I - B - B - (- IO - IR - B -

Philosophy: Good, top-down language design can tease system-specific

implementation details away from an algorithm, permitting the compiler,
runtime, applied scientist, and HPC expert to each focus on their strengths.

@ ®

Outline

v Motivation for Chapel
» Survey of Chapel Concepts
e Chapel Project and Characterizations

e Chapel Resources

/C':R COMPUTE | STORE | ANALYZE
—

=~/ Copyright 2014 Cray Inc.

Chapel’s Multiresolution Philosophy .o

Multiresolution Design: Support multiple tiers of features \
e higher levels for programmability, productivity
e lower levels for greater degrees of control
Chapel language concepts

Domain Maps

Task Parallelism
Base Language
Locality Control

Target Machine

e build the higher-level concepts in terms of the lower
e permit the user to intermix layers arbitrarily

Base Language

(Domain Maps
Data Parallelism
Task Parallelism

) _____ 1 Base Language
Locality Control

Target Machine

Lower-level Chapel

Base Language Features, by example .

iter fib(n) { config const n = 10;
var current = 0,
next = 1; for f in fib(n) do

writeln (f);

for i in 1..n {
yield current;
current += next;
current <=> next;

,/‘\
\

Base Language Features, by example .

CLU-style iterators

iter fib(n) { config const n = 10;
var current = 0,
next = 1; for f in fib(n) do

writeln (f);

for i in 1..n {
yield current;
current += next;
current <=> next;

\
N—

Base Language Features, by example .

Configuration declarations

(to avoid command-line argument parsing)
./a.out -n=1000000

iter fib(n) { config const n = 10;
var current = 0,
next = 1; for f in fib(n) do

writeln (f) ;

for i in 1..n {
yield current;
current += next;
current <=> next;

Base Language Features, by example

Static type inference for:
e arguments
* return types
« variables

iter fib (n) onst n =

var current

writeln (f) ;
for i in 1..n {
yield current;
current += next;
current <=> next;

10;

do

Base Language Features, by example .

iter fib(n) { config const n =(10;
var current = 0,
next = 1; for (i,f) in zip(0..#n, fib(n)) do
writeln (, 1, , f);

for i in 1..n {
yield current;
current += next;
current <=> next;

‘

Base Language Features, by example .

Range types and
operators

iter fib(n) { config const
var current = 0
next = 1; for (i,f) in zip(0..#n, fib(n)) do

writeln (, 1, , f);
for i in 1..n {
yield current;
current += next;
current <=> next;

\
N—

Base Language Features, by example

iter fib (n) {
var current = 0,
next = 1;

for 1 in 1..n {
yield current;
current += next;
current <=> next;

(?\.
(
N—

config /const

for (1, 1)
writeln (

in

n = 10;
zip (0. .#n,
14 i/

Base Language Features, by example

iter fib (n) {
var current = 0,
next = 1;

for 1 in 1..n {
yield current;
current += next;
current <=> next;

C\
\ !

config const

for (1, 1)
writeln (

in

n = 10;
zip (0. .#n,
14 i/

Ot

her Base Language Features o

interoperability features \
OOP (value- and reference-based)

overloading, where clauses

argument intents, default values, match-by-name

compile-time features for meta-programming
e €.g., compile-time functions to compute types, values; reflection

modules (for namespace management)

rank-independent programming features

Task Parallelism

C Domain Maps D
Data Parallelism

 mmmd Task Parallelism
Base Language
Locality Control

Target Machine

Task Parallelism: Begin Statements

// create a fire-and-forget task for a statement
begin writeln (“hello world”);
writeln (Ygoodbye”) ;

Possible outputs:

hello world goodbye
goodbye hello world

Task Parallelism: Coforall Loops

// create a task per iteration
coforall t in O..#numTasks {

writeln (“Hello from task ”, t, ™ of ”, numTasks);
} // implicit join of the numTasks tasks here

writeln (YAll tasks done”);

Sample output:

Hello from task 2
Hello from task O
Hello from task 3

Hello from task 1
All tasks done

(?\.
(
\

\
. . . . =AY |
Task Parallelism: Data-Driven Synchronization o

e \
\

e atomic variables: support atomic operations \
e e.g., compare-and-swap; atomic sum, multiply, etc.
e similarto C/C++

e sync variables: store full-empty state along with value
e by default, reads/writes block until full/lempty, leave in opposite state

/C‘\ COMPUTE | STORE | ANALYZE
—

= Copyright 2016 Cray Inc.

Bounded Buffer Producer/Consumer Example SRS

begin producer () ;
consumer () ;

// ‘sync’ types store full/empty state along with value

var buff$: [0..#buffersize] sync real;
proc producer () {
var 1 = 0;
for .. {
1 = (1i+1l) % buffersize;
buffs(i] = ..; // writes block until empty, leave full
bl
proc consumer () {
var 1 = 0;
while .. {
i= (i1+1) % buffersize;

Louffs[il..; // reads block until full, leave empty

Other Task Parallel Concepts

e cobegins: create tasks using compound statements
¢ single variables: like sync variables, but write-once

e sync statements: join unstructured tasks

e serial statements: conditionally squash parallelism

Locality Control

Domain Maps D

Data Parallelism
Task Parallelism
Base Language

Locality Control

Target Machine

The Locale Type

Definition:
e Abstract unit of target architecture

e Supports reasoning about locality
e defines “here vs. there” / “local vs. remote”

e Capable of running tasks and storing variables
e i.e., has processors and memory

Typically: A compute node (multicore processor or SMP)

/C“\ COMPUTE | STORE | ANALYZE

=/ Copyright 2016 Cray Inc.

Getting started with locales

e Specify # of locales when running Chapel programs

% a.out —-—-numLocales=8 % a.out —nl 8

e Chapel provides built-in locale variables

const Locales: [0O..#numlLocales] locale = ..;

config const numlLocales: int = .; }

Locales LO L1 L2 L3 L4 L5 L6 L7

e main () starts execution as a task on locale #0

Locale Operations . o

e Locale methods support queries about the target system: .

proc locale.physicalMemory(..) { .. f\
proc locale.numCores { .. }

proc locale.id { .. }

proc locale.name { .. }

e On-clauses support placement of computations:

writeln (Yon locale 07); \\ on A[i,j] do)

bigComputation (A) ;
on Locales[1l] do

writeln (“now on locale 17); on node.left do
search (node.left) ;

writeln (“on locale 0 again”);

Parallelism and Locality: Orthogonal in Chapel SR

e This is a parallel, but local program: |

coforall i in 1..msgs do
writeln (“Hello from task 7, 1i);

e This is a distributed, but serial program:

writeln (“Hello from locale 0!”);
on Locales[l] do writeln(“Hello from locale 1!”);
on Locales[2] do writeln(“Hello from locale 2!7);

e This is a distributed parallel program:

coforall i in 1..msgs do)
on Locales[i%numLocales] do
writeln (“Hello from task ”, 1i,
“ running on locale ”, here.id);

Chapel: Scoping and Locality

var 1: int;

Locales (think: “compute nodes”)

Chapel: Scoping and Locality

var i: int;
on Locales[1l] {

Locales (think: “compute nodes”)

Chapel: Scoping and Locality

var 1: int;
on Locales[1l] {
var J: int;

Locales (think: “compute nodes”)

Chapel: Scoping and Locality

var i: int;
on Locales[1l] {
var J: int;
coforall loc in Locales {
on loc {

Locales (think: “compute nodes”)

Chapel: Scoping and Locality

var i: int;
on Locales[1l] {
var J: int;
coforall loc in Locales {
on loc {
var k: int;

Locales (think: “compute nodes”)

Chapel: Scoping and Locality

var i: int;
on Locales[1l] {
var J: int;
coforall loc in Locales {
on loc {
var k: int;
k = 2*%1 + 733

} OKto access /, J, and k
wherever they live

Locales (think: “compute nodes”)

Chapel: Scoping and Locality

var 1: int;
on Locales[1l] {
var J: int;
coforall loc in Locales {
on loc {
var k: int;
k = 2*%1 + 733

} here, i and j are remote, so

J the compiler + runtime will \\\\“k = 2*i + J;

transfer their values

Locales (think: “compute nodes”)

Chapel: Locality queries . o

var i: int; «
on Locales[1l] {
var J: int;
coforall loc in Locales {
on loc {
var k: int;

.here.. // query the locale on which this task is running
..J.locale.. //query the locale on which j is stored

Locales (think: “compute nodes”)

(@ ®

Data Parallelism

—

Domain Mais
Base Language
Locality Control

Target Machine

) Higher-level Chapel

Data Parallelism By Example: STREAM Triad

const ProblemSpace = {1..m};

var A, B, C: [ProblemSpace] real;

+ 1l

a .

forall (a,b,c) in zip(A,B,C) do
a = b + alpha*c;

®
!
CRAaY |

Data Parallelism By Example: STREAM Triad o

const ProblemSpace = {1..m};

var A, B, C: [ProblemSpace] real;

+ 1l

a .

A =B + alpha * C; // equivalent to the zippered forall

Other Data Parallel Features .

e Rich Domain/Array Types:
e multidimensional
e strided
e sSparse
e associative

e Slicing: Refer to subarrays using ranges/domains
.. A[2..n-1, lo..#b] ..
. A[ElementsOfInterest] ..

e Promotion: Call scalar functions with array arguments
. pow (A, B).. [lequivalentto: forall (a,b) in zip(A,B) do pow(a,b)

e Reductions/Scans: Apply operations across collections

. + reduce A ..
.. myReduceOp reduce A ..

Domain Maps

Domain Mais
Base Language
Locality Control

Target Machine

) Higher-level Chapel

STREAM Triad: Chapel (multicore) .o

const ProblemSpace = {1..m};

HEN//SEEEEEEEEEEEEEEEEEEE

var A, B, C: Space] real;

A = B + alpha/* C;
No domain map specified = use default layout

« current locale owns all domain indices and array values
« computation will execute using local processors only

<~
__
X
©
-—
| -
©
-
(75}

{1..m}
dmapped Cyclic(startIdx=1);

const ProblemSpace

°
O
>
o
%}
©
O
o
=
-
s
[
Q.
©
e
O
o
S
—
I
=
<
L
14
-
/)

real;

4

[ProblemSpace]

B, C:
B + alpha * C;

var A,

A

\
. . CRAY |
STREAM Triad: Chapel (multilocale, blocked) .o
Q
i
QO TITITITT] |;|||||;|||| |;||||||||| [TT11]C \
const ProblemSpace = {1..m}

dmapped Block (boundingBox={1l..m});
i

var A, B, C: [ProblemSpace] real;

+ 1l

o L T e T T T T T

A =B + alpha * C;

STREAM Triad: Chapel KO
~

config const m = 1000,
alpha = 3.0;

const ProblemSpace = {1..m) dmapped . . the special

sauce

var A, B, C: [ProblemSpace] real;

B = 2.0;

C = 3.0;

A =B + alpha * C;

| | | | | | | | |
OO | (D | | ST | | e I T
o | | e | | e || e
OOy | | OO IO T T | | S I T IO I‘I‘I‘-*-*-F-h- ooo
a a (- I - B - B - (- IO - IR - B -

Philosophy: Good, top-down language design can tease system-specific

implementation details away from an algorithm, permitting the compiler,
runtime, applied scientist, and HPC expert to each focus on their strengths.

@ ®

Chapel is Extensible . o

Advanced users can create their own... \
...domain maps (array layouts and distributions)...
...parallel loop schedules...
...models of the target architecture...

...as Chapel code, without modifying the compiler.

Why? To create a future-proof language.

This has been our main R&D challenge: How to create a
language that does not lock these policies into the
implementation without sacrificing performance?

(@ ©®

Language Summary .

Parallel programmers deserve better programming models

Higher-level programming models can help insulate
algorithms from parallel implementation deftails

e yet, without necessarily abdicating control
e Chapel does this via its multiresolution design

We believe Chapel can greatly improve productivity
...for current and emerging parallel architectures
...for HPC users as well as mainstream uses of parallelism

/C‘\ COMPUTE | STORE | ANALYZE
—

=/ Copyright 2016 Cray Inc.

Outline

v Motivation for Chapel
v Survey of Chapel Concepts
» Chapel Project and Characterizations

e Chapel Resources

/é\ COMPUTE | STORE | ANALYZE

_j// Copyright 2016 Cray Inc.

Chapel is Portable

e Chapel is designed to be hardware-independent

e The current release requires:

a C/C++ compiler

a *NIX environment (Linux, OS X, BSD, Cygwin, ...)

POSIX threads

RDMA, MPI, or UDP (for distributed memory execution)

e Chapel can run on...
...laptops and workstations
...commodity clusters
...the cloud

...HPC systems from Cray and other vendors

...modern processors like Intel Xeon Phi, GPUs*, etc.
* = academic work only; not yet supported in the official release

COMPUTE

STORE

Copyright 2016 Cray Inc.

ANALYZE

Chapel is Open-Source

e Chapel’s development is hosted at GitHub
e https://github.com/chapel-lang

e Chapel is licensed as Apache v2.0 software

e Instructions for download + install are online
e see http://chapel.cray.com/download.html to get started

14 full-time employees + 2 summer interns + 1 visiting professor

(one of each started after this photo was taken)

Chapel is a Collaborative Effort S

HERIOT | Q:‘THEGEORGE ‘//‘/\ |
BuArT b R EEE wEER

UNIVERSITY WASHINGTON UNIVERSITY
NN
N . \)
E*i k fﬁé [N ’ ggig
(’ UR T @RICE UNIVERSI/TY OF
THE UNIVERSITY OF 10KYO [/
= Co&gdo MARYLAND

University

-~

A
(Creeeer '"I

B Lawrence Livermore
National Laboratory

BERKELEY LAB HAVE R_F O RD

Lawrence Berkeley Sandia National Laboratories COLLEGE

National Laboratory

(and several others...)

http://chapel.cray.com/collaborations.html

C)

Chapel is a Work-in-Progress

e Currently being picked up by early adopters
e over two releases, 3000+ downloads per year
e Users who try it generally like what they see

/C‘\ COMPUTE | STORE | ANALYZE
—

= Copyright 2016 Cray Inc.

A notable early adopter R
Chapel in the (Cosmological) Wild 1:00 — 2:00 .

Nikhil Padmanabhan, Yale University Professor, Physics & Astronomy

Abstract: This talk aims to present my personal experiences using Chapel in my
research. My research interests are in observational cosmology; more
specifically, | use large surveys of galaxies to constrain the evolution of the

Y()u Search Q

@ Chapel Parallel Programming Language Videos Playlists Channels

CHIUW 2016 keynote: "Chapel in the (Cosmological) Wild",
Nikhil Padmanabhan

Chapel Parallel Programming Language

1T month ago * 86 views

This is Nikhil Padmanabhan's keynote talk from CHIUW 2016: the 3rd
Annual Chapel Implementers and Users workshop. The slides are availabl...

©

Chapel is a Work-in-Progress .

e Most current features are functional and working well
e some areas need improvements, e.g., error-handling, constructors

e Performance varies, but is continually improving
e shared memory performance is typically competitive with C+OpenMP
e distributed memory performance tends to be more hit-and-miss

e We are actively working to address these lacks

/C‘\ COMPUTE | STORE | ANALYZE
—

= Copyright 2016 Cray Inc.

Outline

v Motivation for Chapel
v Survey of Chapel Concepts
v Chapel Project and Characterizations

» Chapel Resources

/C‘\ COMPUTE | STORE | ANALYZE
=

= Copyright 2016 Cray Inc.

Chapel Websites .

Project page: http://chapel.cray.com
e oQverview, papers, presentations, language spec, ...

GitHub: https://github.com/chapel-lang
e download Chapel; browse source repository; contribute code

Facebook: https://www.facebook.com/ChapelLanguage

Twitter: https://twitter.com/ChapelLanguage

facebook

(__ Chapel highlights
taskParallel.chpl Chapel Programming Language

Ncoforall 1o in zees IS ON Facebook.
1
>:u rrasks « 10 connect with Chapel Programming Language, sign up for Facebook today.
cof

Tweets Tweets &replies Photos & videos

allel

R et L | | programming language designedfor " Performance wins ensu:

Yer A J hapel. ge.net/perf/chapcs/?s...
=Ghapel-Programming SRS
Compdters/Technology i
t
Timeline About Photos Likes Videos T \

Suggested Reading KOO

Chapel chapter from Programming Models for Parallel Computing \
e a detailed overview of Chapel’s history, motivating themes, features
e published by MIT Press, November 2015
e edited by Pavan Balaji (Argonne)
e chapter is now also available online

PROGRANMMING
MODELS
FOR PARALLEI

COMPUTING

epiTep Y PAVAN BALAJ

Other Chapel papers/publications available at http://chapel.cray.com/papers.html

@ @

Chapel Blog Articles .o

Chapel: Productive Parallel Programming, Cray Blog, May 2013. \
e a short-and-sweet introduction to Chapel

Chapel Springs into a Summer of Code, Cray Blog, April 2016.
e coverage of recent events

Six Ways to Say “Hello” in Chapel (parts 1, 2, 3), Cray Blog, Sep-Oct 2015.
e a series of articles illustrating the basics of parallelism and locality in Chapel

Why Chapel? (parts 1, 2, 3), Cray Blog, Jun-Oct 2014.
e a series of articles answering common questions about why we are pursuing
Chapel in spite of the inherent challenges

[Ten] Myths About Scalable Programming Languages, IEEE TCSC Blog

(index available on chapel.cray.com “blog articles” page), Apr-Nov 2012.
e a series of technical opinion pieces designed to arque against standard
reasons given for not developing high-level parallel languages

/C‘\ COMPUTE | STORE | ANALYZE
=/ Copyright 2016 Cray Inc. @

Chapel Mailing Lists .

low-traffic / read-only:
chapel-announce@lists.sourceforge.net: announcements about Chapel

community lists:
chapel-users@lists.sourceforge.net: user-oriented discussion list
chapel-developers@lists.sourceforge.net: developer discussions
chapel-education@lists.sourceforge.net: educator discussions
chapel-bugs@lists.sourceforge.net: public bug forum

(subscribe at SourceForge: http://sourceforge.net/p/chapel/mailman/)

To mail the Cray team:
chapel_info@cray.com: contact the team at Cray
chapel _bugs@cray.com: for reporting non-public bugs

or use IRC (#chapel on chat.freenode.net) or StackOverflow

Current Events:
Computer Language Benchmark Game

Computer Language Benchmarks Game .

Chapel was recently added
to the game:

As of Oct 17th:

e for performance:
1 top entries: pidigits
2 top-5 entries: meteor, thread-ring
2 top-10 entries: fannkuch-redux,
chameneos-redux
3 top-20 entries: n-body, spectral-
norm, binary-trees

e for code compactness:
2 top entries: n-body, thread-ring
2 top-5 entries: spectral-norm, pidigits
4 top-20 entries: mandelbrot, regex-
dna, chameneos-redux, meteor

The Computer Language
Benchmarks Game

64-bit quad core data set

Will your toy benchmark program be faster if you write it in
a different programming language? It depends how you write
it!

Which programs are fast?
Which are succinct? Which are efficient?

Ada C Chapel Clojure C# C++
Dart Erlang Fi# Fortran Go Hack
Haskell Java JavaScript Lisp Lua

OCaml Pascal Perl PHP Python
Racket Ruby JRuby Rust Scala
Smalltalk Swift TypeScript

Computer Language Benchmarks Game .

The Computer Language
Chapel was recently added | ENE ok

to the game:

64-bit quad core data set
o ~ thl Ay
‘l\ss £f Nt 417

—in
rite
° 19 we want easy answers, but easy answers are often
incomplete or wrong. You and I know, there's more we

should understand:

-

[&%

r stories details fast? conclusions "

o fci { for researchers } _

4 top-20 entries: mandelbrot, regex- Racket ~ Ruby JRuby Rust Scala
dna, chameneos-redux, meteor

Smalltalk Swift TypeScript

Chapel:

Productive Parallel Programming at Scale

Questions?

=

=Rasyr
cCcHAaARPRPEL
—

=/

COMPUTE | STORE | ANALYZE

Copyright 2016 Cray Inc.

