Hewlett Packard
Enterprise

Tae -

USING CHAPEL

Brad Chamberlain & Michelle Strout
August 4, 2022

ol

PRODUCTIVE PARALLEL PROGRAMMING



WHAT IS CHAPEL?

Chapel: A modern parallel programming language N
e portable & scalable
e open-source & collaborative _,
Goals:

e Support general parallel programming
o Make parallel programming at scale far more productive
—-Python-like support for rapid prototyping
—-yet with the performance, scalability, portability of Fortran/C/C++, MPI, OpenMP, CUDA, ...

2



WHY CREATE A NEW LANGUAGE?

e Because parallel programmers deserve better
« the state of the art for HPC programming is a mash-up of libraries, pragmas, and extensions
« SPMD-based models are restrictive compared to having a global namespace and asynchrony
o parallelism and locality are concerns that deserve first-class language features

Why Consider New Languages at all?

Syntax

Performance

Algorithms

* High level, elegant syntax
e Improve programmer productivity

e Static analysis can help with correctness
e We need a compiler (front-end)

e |f optimizations are needed to get
performance

e We need a compiler (back-end)

e Language defines what is easy and hard
¢ Influences algorithmic thinking

[Image Source:
Kathy Yelick’s (UC Berkeley, LBNL)
CHIUW 2018 keynote:

Why Languages Matter More Than Ever,

used with permission]


https://chapel-lang.org/CHIUW2018.html
https://chapel-lang.org/CHIUW/2018/Yelick-Languages-CHIUW18.pdf

SCALABLE PARALLEL COMPUTING THAT’S ASEASY ASPYTHON?

Imagine having a programming language for parallel computing that was as...
...programmable as Python

..yet also as...
..fast as Fortran
...scalable as MPI

...GPU-ready as CUDA/OpenMP/OpenCL/OpenACC/...
...portable as C
...fun as [your favorite programming language]

This is our motivation for Chapel

4



OUTLINE

e Introductory Content

-*
-

?

is Chapel’
e Chapel Character

e What

ICS

ISt

<,

e Chapel Benchmarks & App

e Chapel vs. Standard Practice

e Further Details

(%]
)
—
>
—
(9]
)
L
)
Q
©
o=
O

S“
©
Yo
3 8
©
rnm&
&
e
O =
Sl
el
aa
|
U X
0 v
| (@©
o
(- )

ISM

Parallel

e Wrap-up

e Data




CHAPEL CHARACTERISTICS

P I



KEY CHARACTERISTICS OF CHAPEL

» compiled: to generate the best performance possible
» statically typed: to avoid simple errors after hours of execution

e interoperable: with C, Fortran, Python, ...
o portable: runs on laptops, clusters, the cloud, supercomputers
e open-source: o reduce barriers to adoption and leverage community contributions

7



WHAT DO CHAPEL PROGRAMS LOOK LIKE?

helloTaskPar.chpl: print a message from each core in the system

fillArray.chpl: declare and parallel-initialize a distributed array

coforall loc in {
on loc {
const numTasks = .maxTaskPar;
coforall tid in 1. .numTasks do

(

tid, numTasks, .name) ;

> chpl helloTaskPar.chpl

> ./helloTaskPar --numLocales=4
Hello from task of 4 on nl1032
Hello from task of 4 on nl1032
Hello from task of 4 on nl1034

Hello from task of on nl1032
Hello from task of on nl1033
Hello from task of on nl1034

use ;
config const n = 1000;
const D= {1l..n, 1..n}
dmapped (startIdx = (1,1));

var A: [D] real;

forall (i,]) in D do
Afi,j3] =1 + (3 - 0.5)/n;

(A) ;

chpl fillArray.chpl
./fillArray --n=5 --numLocales=4
1.3 1.5 1.7 1.9

2.7
3.7
4.7
5.7




CHAPEL RELEASES

Q: What is provided in a Chapel release?
A: Chapel releases contain...
...the Chapel compiler (‘chpl’): translates Chapel source code into optimized executables
...runtime libraries: help map Chapel programs to a system’s capabilities (e.g., processors, network, memory, ...)

...library modules: provide standard algorithms, data types, capabilities, ...
...documentation: also available online at: https://chapel-lang.org/docs/

..sample programs: primers, benchmarks, etc.

Q: How often is Chapel released? When is the next one?
A: Chapel is released every 3 months

 version 1.27.0 was released June 30, 2022
 version 1.28.0 is scheduled for September 17, 2022

9


https://chapel-lang.org/docs/

THE CHAPEL TEAM AT HPE

Our team consists of:

e 19 full-fime employees
e 3 summer interns

e our director

We also have:

e a visiting scholar joining
soon

e an open position

see: https://chapel-lang.org/contributors.html
and https://chapel-lang.org/jobs.html

IlO


https://chapel-lang.org/contributors.html
https://chapel-lang.org/jobs.html

CHAPEL BENCHMARKS AND
APPLICATIONS

e



FOR DESKTOP BENCHMARKS, CHAPEL IS COMPACT AND FAST

Execution Time
(normalized to fastest entry)

100

80 -

60 -

40 -

20 -

1.0

chapel
csharpcore
dartexe
erlang
fpascal
fsharpcore
gcc

ghc

gnat

go

gpp

ifc

java

julia

lua

node
ocaml

perl

php
python3
racket
ruby

rust

sbcl

swift

vw

[ ] gmean-smallest
O gmean-fastest

.
.
.
.,
N,
N
.,
N,
ma Ia X

Perl

Racket N

Dart .. B
PHP B
Javaserdfipt -

Julia B

Compressed Code Size (AnormaAIized to smallest entry)

[plot generated by summarizing data from https://benchmarksgame-team.pages.debian.net/benchmarksgame/index.html as of May 10, 2022]

12


https://benchmarksgame-team.pages.debian.net/benchmarksgame/index.html

FOR DESKTOP BENCHMARKS, CHAPEL IS COMPACT AND FAST (ZOOMED)

Execution Time
(normalized to fastest entry)

10 v S ¥

N
O Erlang

Haskell

® ® Go ® - @ Java
Chapel Julia Rust B o

ce

1 1 1 1 1
1.0 15 2.0 2.5 3.0

Compressed Code Sizé Cnormélized to smallest entry)

@ e
o Javaserdpl .

B chapel
Bl csharpcore
mam dartexe
EEm erlang
I fpascal
mmm fsharpcore
I gcc
BN ghc
EEm gnat
go
= gpp
ifc
 java
m julia
. lua Q
node  LLIS®
1 ocaml
mmm perl
B php
python3
mmm racket
BN ruby
Il rust
sbcl
swift
'Y

TS [:] gmean-smallest

O gmeafi-fastest

3.5

[plot generated by summarizing data from https://benchmarksgame-team.pages.debian.net/benchmarksgame/index.html as of May 10, 2022]

13


https://benchmarksgame-team.pages.debian.net/benchmarksgame/index.html

FOR HPC BENCHMARKS, CHAPEL TENDS TO BE CONCISE, CLEAR, AND COMPETITIVE

STREAM TRIAD: C + MPI + OPENMP

use BlockDist;

.| config const m = 1000,

alpha = 3.0;

const Dom = {1l..m} dmapped ..;

var A, B, C: [Dom] real;

B =2.0;
C =1.0

4

A = B + alpha * C;

HPCC RA: MPI KERNEL

GB/s

forall ( , r) in zip(Updates, RAStream()) do
T[r & indexMask].xor(r):;

30000
25000
20000
15000
10000

5000

14
12
10

GUPS

onNn A~ O

STREAM Performance (GB/s)

MPI+OpenMP —¢—
Chapel EP —e— — - == == == == === —mm - - - —
Chapel Global - -+ -

[
16 32 64 128 256
Locales (x 36 cores / locale)

RA Performance (GUPS)

16 32 64 128 256
Locales (x 36 cores / locale)



FLAGSHIP CHAPEL APPLICATIONS

CHAMPS: 3D Unstructured CFD

Eric Laurendeau, Simon Bourgault-C6té,
Matthieu Parenteau, et al.

Ecole Polytechnique Montréal

ChplUItra: Simulating Ultralight

Dark Matter
Nikhil Padmanabhan, J. Luna Zagorac, ef al.
Yale University / University of Auckland

Arkouda: NumPy at Massive Scale ChOp: Chapel-based Optimization

. . . - -.-X
Mike Merrill, Bill Reus, et al. '/X \ Tiago Carneiro, Nouredine Melab, et al.
$ g
fﬂ; US DoD #tonaet koxe INRIA Lille, France
CrayAl: Distributed Machine Learning ‘ """""""" : Your application here?
f Q “ € " e “ O " O ' Hewlett Packard Enterprise ?

: (images provided by their respective teams and used with permission) I 15



CHAMPS SUMMARY

What is it?
e 3D unstructured CFD framework for airplane simulation
e ~120k lines of Chapel written from scratch in ~3 years

Who wrote it?

« Professor Eric Laurendeau’s students + postdocs at Polytechnique Montreal

S /%% POLYTECHNIQUE R
5. MONTREAL

Why Chapel?
« performance and scalability competitive with MPI + C++
« students found it far more productive to use

P &
44
_.4.:[
—4

EEETTEY

: (images provided by the CHAMPS team and used with permission) I

T




CHAMPS: EXCERPT FROM ERIC’S CHIUW 2021 KEYNOTE (VIDEO)

HPC Lessons From 30 Years of Practice in CFD Towards Aircraft Design and Analysis

LAB HISTORY AT POLYTECHNIQUE

NSCODE (2012 - early 2020):
o Shared memory 2D/2.5D structured multi-physics solver written in

C/Python

~800 C/header files: ~120k lines of code

Run by Python interface using f2py (f90 APIs)

Difficult to maintain at the end or even to merge new developments

(U)VLM (2012 - now):
o ~5-6 versions in different languages (Matlab, Fortran, C++, Python,
Chapel)

o The latest version in Chapel is integrated in CHAMPS . . POLYTECHNIQUE
EULER2D (early 2019): - MONTREAL

o Copy in Chapel of a small version of NSCODE as benchmark between C
and Chapel that illustrated the Chapel language potential
7758
¥

o ~10 Chapel files: ~1750 lines of code

CHAMPS (mid 2019 - now):

o Distributed memory 3D/2D unstructured multi-physics solver written in
Chapel
o ~120 Chapel files: ~48k lines of code

https://youtu.be/wD-a KyB8al?t=1904

: (images provided by the CHAMPS team and used with permission) I 17



https://youtu.be/wD-a_KyB8aI?t=1904

CHAMPS: EXCERPT FROM ERIC’S CHIUW 2021 KEYNOTE (TRANSCRIPT)

HPC Lessons From 30 Years of Practice in CFD Towards Aircraft Design and Analysis (June 4, 2021)

“To show you what Chapel did in our lab... [our previous framework] ended up 120k lines.
And my students said, ‘We can't handle it anymore. It’s too complex, we lost track
of everything.” And today, they went from 120k lines to 48k lines, so 3x less.

But the code is not 2D, it’s 3D. And it’s not structured, it’s unstructured, which is way
more complex. And it’s multi-physics... So, Pve got industrial-type code in 48k lines.”

“[Chapel] promotes the programming efficiency ... We ask students at the master’s
degree to do stuff that would take 2 years and they do it in 3 months. So, if you

want to take a summer internship and you say, ‘program a new turbulence model,” well : f“;
they manage. And before, it was impossible to do.” R

POLYTECHNIQUE
MONTREAL

“So, for me, this is like the proof of the benefit of Chapel, plus the smiles | have on my students everyday in the lab
because they love Chapel as well. So that’s the key, that’s the takeaway.”

« Talk available online: https://youtu.be/wD-a KyB8al?t=1904 (hyperlink jumps to the section quoted here)

: (images provided by the CHAMPS team and used with permission) I 18



https://youtu.be/wD-a_KyB8aI?t=1904

RECENT CHAMPS HIGHLIGHTS

» CHAMPS 2.0 was released this year
« added many new capabilities and improvements

o grew from ~48k to ~120k lines

e Team gave 5-6 talks at 2022 AIAA AVIATION in June
 While on sabbatical this year, Eric presented at ONERA, DLR, U. de Strasbourg, T. U. Braunschweig

e Participated in the 4™ AIAA High-lift Prediction Workshop and 15' AIAA Ice Prediction Workshop
« Generating comparable results to high-profile sites: Boeing, Lockheed Martin, NASA, JAXA, Georgia Tech, ...

® Case 1b : Grid refinement study for a constant angle of attack of 7.05°;
® Results are in line with state of the art RANS solver.

N Co 5% 555 454353252 15 1 050 05 1
Adapted from Olivier-Gooch, C., Coder, J. 4th CFD High Lift Prediction Workshop, Fixed-Grid
RANS TFG, AIAA HLPW4

—

Application - First AIAA Ice Prediction Workshop

® Case 241 (left): Rime ice prediction on small NACA23012 airfoil (2D, low temp.);
® Case 363 (right): Glaze ice prediction on NACA0012 swept wing (3D, warmer temp.).

¥ (m)

X (Normal mlumnq edge at Aall;dd-m [m)

Case 241 (2D rime ice)

Numerical Verification

Pt I T o A TR S Y ) TRy AN
Fifth Dra :’J":*lflil-‘f:j|H\‘t"( shop (L N

® The pressure drag convergence of CHAMPS is similar to the workshop resultsJ

CHAMPS —e— CFL3D —* FUN3D —e—
NSU3D —e— FUN3D-V
0.0175 - 5
0.017
00165 {
0016 {
a 00155 {
S o015 % el
00145 v {
0014 |
00135 %% {
0013 )
00400 50005  1.0e-04 15604
h2 = (1N)23

(images taken from Eric Laurendeau’s SIAM PP22 talk, A Case Study on the Impact of Chapel within an Academic Computational Aerodynamic Laboratory, with permission) I 19



https://chapel-lang.org/presentations/SIAM_2022_P22_Laurendeau.pdf

CURRENT FLAGSHIP CHAPEL APPLICATIONS

CHAMPS: 3D Unstructured CFD

Eric Laurendeau, Simon Bourgault-C6té,
Matthieu Parenteau, et al.

Ecole Polytechnique Montréal

ChplUItra: Simulating Ultralight

Dark Matter
Nikhil Padmanabhan, J. Luna Zagorac, ef al.
Yale University / University of Auckland

'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII=
= : ¢ Arkouda: NumPy at Massive Scale - % ChOp: Chapel-based Optimization
E — Y - Mike Merrill, Bill Reus, et al. . '/X \ Tiago Carneiro, Nouredine Melab, et al.
Py == US DoD s bt INRIA Lille, France

CrayAl: Distributed Machine Learning ‘ """""""" Your application here?
‘9\ @ ‘@ “ O " O : Hewlett Packard Enterprise ?

: (images provided by their respective teams and used with permission) I 20



DATA SCIENCE INPYTHON AT SCALE?

Motivation: Say you’ve got...
...HPC-scale data science problems to solve
...a bunch of Python programmers

...access to HPC systems

———— 4

E%

] I

How will you leverage your Python programmers to get your work done?

— .



ARKOUDA'’S HIGH-LEVEL APPROACH

Arkouda Client Arkouda Server
(written in Python) (written in Chapel)
= '\
-
e
—

999999999999999999
9999999999999999

N

O User writes Python code in Jupyter,
ﬂ making familiar NumPy/Pandas calls
— -



ARKOUDA SUMMARY

What is it?
« A Python library supporting a key subset of NumPy and Pandas for Data Science

—Uses a Python-client/Chapel-server model to get scalability and performance
— Computes massive-scale results (multi-TB-scale arrays) within the human thought loop (seconds to a few minutes)

o ~22k lines of Chapel, largely written in 2019, continually improved since then

Who wrote it?

Arkouda Client Arkouda Server
« Mike Merrill, Bill Reus, et al., US DoD LentteniinEython)
« Open-source: https://github.com/Bears-R-Us/arkouda T -
Why Chapel?
« high-level language with performance and scalability N
° i O User writes Python code in Jupyter,
Close fo PYThOﬂIC ﬂ making NumPy/Pandas calls

—enabled writing Arkouda rapidly
—doesn’t repel Python users who look under the hood

« ports from laptop to supercomputer

— |

23


https://github.com/Bears-R-Us/arkouda

ARKOUDA PERFORMANCE COMPARED TO NUMPY

NumPy  Arkouda (serial) Arkouda (parallel) Arkouda (distributed)

0.75 GB 0.75 GB 0.75 GB 384 GB
benchmark 1 core, 1 node 36 cores x 1 node 36 cores x 512 nodes
0.03 GiB/s 0.05 GiB/s 0.50 GiB/s 55.12 GiB/s
argsort
-- 1.66x 16.7x 1837.3x
0.03 GiB/s 0.07 GiB/s 0.50 GiB/s 29.54 GiB/s
coargsort
-- 2.3x 16.7x 984.7x
1.15 GiB/s 0.45 GiB/s 13.45 GiB/s 539.52 GiB/s
gather
-- 0.4x 11.7x 4£69.1x
reduce Q.90 GiB/s 11.66 GiB/s 118.57 GiB/s 43683.00 GiB/s
-- 1.2x 12.0x L4412 .4X
scan 2.78 GiB/s 2.12 GiB/s 8.90 GiB/s 741.14 GiB/s
-- 0.8x 3.2x 266.6x
1.17 GiB/s 1.12 GiB/s 13.77 GiB/s 914.67 GiB/s
scafter
-- 1.0x 11.8x 781.8x
3.94 GiB/s 2.92 GiB/s 24.58 GiB/s 6266.22 GiB/s
stream
-- 0.7x 6.2x 1590.4x

24



ARKOUDA ARGSORT AT MASSIVE SCALE

e Ran on a large Apollo system, summer 2021

e 73,728 cores of AMD Rome
o 72 TiB of 8-byte values

« 480 GiB/s (2.5 minutes elapsed time) ggg

e ~100 lines of Chapel code 400
350
300
250
200
150
100

50

GiB/s

Arkouda Argsort Performance
HPE Apollo (HDR-100 IB)

64 128 256 512 576
Locales (x 128 cores / locale)

Close to world-record performance—quite likely a record for performance/SLOC

—

|25



OUTLINE/TIME CHECK

i ¥

e Infroductory Content =~
o What is Chapel? |
o Chapel Characteristics
e Chapel Benchmarks & Apps
 Chapel vs. Standard Practice L AR

e Further Details: Chapel Features | LA, LS S
» Base Language Features ' | s 3
e Task-Parallelism & Locality
o Data-Parallelism

o Wrap-up

—




CHAPEL VS. STANDARD PRACTICE:
PARALLELISM + LOCALITY,
SPMD VS. GLOBAL-VIEW

'.:.i , .



KEY CONCERNS FOR SCALABLE PARALLEL COMPUTING

1. parallelism: What tasks should run simultaneously?

2. locality: Where should tasks run? Where should data be allocated?

Processor Core

[ ]Memory

28



STREAM TRIAD: A TRIVIAL CASE OF PARALLELISM + LOCALITY

Given: m-element vectors A, B, C
Compute:Vie 1.m, A, =B; + a-C,

In pictures:

S A A
BT T TTTTTTTTITTTITTTTITTT]
+
COITTTTTTTTTTTTITTIITTITT]
o

— .



STREAM TRIAD: A TRIVIAL CASE OF PARALLELISM + LOCALITY

Given: m-element vectors A, B, C
Compute:Vie 1.m, A, =B; + a-C,

In pictures, in parallel (shared memory / multicore):

30



STREAM TRIAD: A TRIVIAL CASE OF PARALLELISM + LOCALITY

Given: m-element vectors A, B, C
Compute:Vie 1.m, A, =B; + a-C,

In pictures, in parallel (distributed memory):

— .



STREAM TRIAD: A TRIVIAL CASE OF PARALLELISM + LOCALITY

Given: m-element vectors A, B, C
Compute:Vie 1.m, A, =B; + a-C,

In pictures, in parallel (distributed memory multicore):

— .



STREAM TRIAD IN CONVENTIONAL HPC PROGRAMMING MODELS

Many Disparate Notations for Expressing Parallelism + Locality

#include <hpcc.h> m

static int VectorSize;
static double *a, *b, *c;

int HPCC_StarStream (HPCC_Params *params) {
int myRank, commSize;
int rv, errCount;
MPI_Comm comm = MPI_COMM WORLD ;

MPI Comm size( comm, &commSize );
MPI Comm_ rank( comm, &myRank );

rv = HPCC_Stream( params, 0 == myRank);
MPI_Reduce( &rv, &errCount, 1, MPI_INT, MPI_SUM,
0, comm ) ;

return errCount;

}

int HPCC_Stream (HPCC_Params *params, int doIO) {
register int j;
double scalar;

VectorSize = HPCC_LocalVectorSize( params, 3,
sizeof (double), 0 );

a = HPCC_XMALLOC( double, VectorSize );
b = HPCC_XMALLOC( double, VectorSize );
c = HPCC_XMALLOC( double, VectorSize );

if (ta || 'b |] 'e) {
if (c) HPCC_free(c);
if (b) HPCC free(b);
if (a) HPCC_free(a);
if (doIO) {
fprintf( outFile, "Failed to
allocate memory (%d).\n",
VectorSize ) ;
fclose( outFile );
}

return 1;

for (j=0; j<VectorSize; j++) {
blj] = 2.
clj] = 1.
}

scalar = 3.0;

0;
0;

for (j=0; j<VectorSize; j++)
a[j] = b[jl+scalar*c[j];

HPCC_free(c) ;
HPCC_free (b) ;
HPCC_free(a);

return 0; }

33




STREAM TRIAD IN CONVENTIONAL HPC PROGRAMMING MODELS

Many Disparate Notations for Expressing Parallelism + Locality

#include <hpcc.h> MPI + OpenMP

#ifdef _OPENMP
#include <omp.h>
#endif

static int VectorSize;
static double *a, *b, *c;

int HPCC_StarStream (HPCC_Params *params) {
1 1 1 int myRank, commSize;
: : 1 int rv, errCount;

. 0 0 HEEComn comn = MEL_ComLIORD!

= = MPI Comm size( comm, &commSize );

1 1 1
B[ T T T T I T T T T T 111 MPI_Comm_rank ( comm, &myRank ) ;
+ + 1+ + 1+ + !+ + rv = HPCC_Stream( params, 0 == myRank);
C I | | i | | | | i | | | | ] | | | | 1 | | | MPI_Reduce( &rv, &errCount, 1, MPI_INT, MPI_SUM,
0, comm ) ;

[:] return errCount;
}

O
O
O

int HPCC_Stream (HPCC_Params *params, int doIO) {
register int j;
double scalar;

VectorSize = HPCC_LocalVectorSize( params, 3,
sizeof (double), 0 );

a = HPCC_XMALLOC( double, VectorSize );
b = HPCC_XMALLOC( double, VectorSize );
c = HPCC_XMALLOC( double, VectorSize );

if ('a || 'D || 'e) {
if (c) HPCC_free(c);
if (b) HPCC free(b);
if (a) HPcc:free(a);
if (doIO) {
fprintf( outFile, "Failed to
allocate memory (%d).\n",
VectorSize );
fclose( outFile );
}
return 1;

}

#ifdef _OPENMP
#pragma omp parallel for

#endif
for (j=0; j<VectorSize; j++) {
b[j] = 2.0;
c[j] = 1.0;

}

scalar = 3.0;

#ifdef _OPENMP
#pragma omp parallel for
#endif
for (j=0; j<VectorSize; j++)
a[j] = b[jl+scalar*c[j];

HPCC_free(c) ;
HPCC_free (b) ;
HPCC_free(a);

return 0; }

#define N 2000000 CUDA

int main() {

}

float *d a, *d b, *d c;
float scalar;

cudaMalloc ((void**) &d a, sizeof (float)*N);
cudaMalloc ((void**) &d b, sizeof (float) *N);
cudaMalloc ((void**) &d c, sizeof (float)*N);

dim3 dimBlock (128) ;
dim3 dimGrid (N/dimBlock.x ) ;
if( N % dimBlock.x !'= 0 ) dimGrid

set_array<<<dimGrid,dimBlock>>>(d b, .5f, N);
set_array<<<dimGrid,dimBlock>>>(d ¢, .5f, N);

scalar=3.0f;
STREAM Triad<<<dimGrid,dimBlock>>>(d b, d ¢, d a, scalar, N);
cudaThreadSynchronize () ;

cudaFree(d_a) ;
cudaFree(d b) ;
cudaFree(d c) ;

global  void set_array(float *a, float value, int len) {
int idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < len) a[idx] = value;

global  void STREAM Triad( float *a, float *b, float *c,
float scalar, int len) {

int idx = threadIdx.x + blockIdx.x * blockDim.x;

if (idx < len) c[idx] = a[idx]+scalar*b[idx]; }

Note: This is a trivial parallel computation—imagine the additional complexity for something more realistic...

Challenge: Can we do better?

—

|34




SPMD VS. GLOBAL-VIEW ACCOUNTS FOR MUCH OF CODE SIZE DIFFERENCES HERE

STREAM TRIAD: C + MPI + OPENMP

use BlockDist;

| config const m = 1000,
alpha = 3.0;

const Dom = {l..m} dmapped ..; |
var A, B, C: [Dom] real; o
B = 2.0;
C =1.0;

A = B + alpha * C;

HPCC RA: MPI KERNEL

forall ( , r) in zip(Updates, RAStream()) do
T[r & indexMask].xor(r):;

30000
25000
20000
15000
10000

5000

14
12
10

GUPS

onNn A~ O

STREAM Performance (GB/s)

MPI+OpenMP —¢—
Chapel EP —e— — - == == == == === —mm - - - —
Chapel Global - -+ -

[
16 32 64 128 256
Locales (x 36 cores / locale)

RA Performance (GUPS)

16 32 64 128 256
Locales (x 36 cores / locale)



CHAPEL SUPPORTS GLOBAL-VIEW / POST-SPMD PROGRAMMING

e “Apply a 3-point stencil to a vector”

Global-View

)2

.......

.......

.......

.......

36



CHAPEL SUPPORTS GLOBAL-VIEW / POST-SPMD PROGRAMMING

e “Apply a 3-point stencil to a vector”

Global-View SPMD

+ )/2

j
=

[ [
I I
[ I
I |
+ )21 + )21 + /2
[ |
I I
[ I
[ [

— .



CHAPEL SUPPORTS GLOBAL-VIEW / POST-SPMD PROGRAMMING

' : ” § PMD MPI-
e “Apply a 3-point stencil to a vector SPMD pseudocode (MPI-esque)

proc main () {
. var n = 1000;
Global-View Chapel code var p = numProcs (),

me = myProc(),
\\\\\ { myN = n/p,

bproc main ()

myLo = 1
var n = 1000; myHi = myN;
const D = {l1..n} dmapped ..; var A, B: [0..myN+1] real;

var A, B: [D] real;

if (me < p-1) {
send (me+1, A[myN]);
recv (me+l, A[myN+1]);
} else
myHi = myN-1;
if (me > 0) {
send (me-1, A[l]):;

recv (me-1, A[0]);

forall i in D[2..n-1] do
B[i] = (A[i-1] + A[i+1])/2;

} else
myLo = 2;
forall i in mylLo..myHi do
B[i] = (A[i-1] + A[i+1])/2;
}

38



TWO QUICK SIDEBARS TO ROUND OUT THIS SECTION

1. Doing SPMD programming in Chapel
2. lllustrating Chapel’s global namespace

— .



SIDEBAR 1: CHAPEL SUPPORTS SPMD PROGRAMMING AS WELL

» Being a general-purpose language, Chapel doesn’t preclude you from writing SPMD patterns in Chapel:

coforall loc in Locales do
on loc do
myMain () ;

proc myMain () {
// ... write your SPMD computation here ...

}

— o



SIDEBAR 2: CHAPEL’S GLOBAL NAMESPACE

Note 1: Variables are allocated on the locale where the task is running

onClause.chpl

config const verbose = false;
var total = O,
done = false;

locale O

on Locales|[1] {
var x, y, z: int;




SIDEBAR 2: CHAPEL’S GLOBAL NAMESPACE

Note 2: Tasks can refer to visible variables, whether local or remote

onClause.chpl

config const verbose = false;
var total = O,
done = false;

on Locales|[1] {
if !done {
if verbose then
writef ("Adding locale 1’s contribution");
total += computeMyContribution() ;

code runs on locale 1,

but refers to values

locale O stored on locale O

if !done {
if verbose then

writef ("Adding..

total += computi..

}

locale 1

I 42



OUTLINE/TIME CHECK

e Introductory Content

o What is Chapel?
Chapel Characteristics

Chapel Benchmarks & Apps
Chapel vs. Standard Practice

Base Language Features

\."5 ’

P LR



FURTHER DETAILS:
OVERVIEW OF CHAPEL FEATURES

'.:.i , .



CHAPEL FEATURE AREAS

Chapel language concepts

«

Domain Maps
Data Parallelism

Task Parallelism

Base Language

Locality Control

Target System

»,

45



BASE LANGUAGE

Chapel language concepts

«

Domain Maps

Data Parallelism

Base Language

Locality Control

Target System

p»,

“Lower-level” Chapel

L6



A TOY COMPUTATION: THE FIBONACCI SEQUENCE

e QOur first program shows a stylized way of computing n values of the Fibonacci sequence in Chapel...

« This is admittedly an artificial example, but you might imagine replacing it with the code required to...
..fraverse your data structure
...iterate in a tiled manner over your array
...or any other iteration pattern that you'd like to paramterize, reuse, or abstract away from your primary computations

e The Fibonacci Sequence:
e First two items:
0
1
» Successive terms found by adding the previous two terms
1 (0O+1)
2 1+1)
3 (A+2)
5 2+3)
8 (3+5)

47



FIBONACCI ITERATION

fib.chpl

config const n = 10;

for £ in fib(n) do
writeln (f) ;

iter fib(x) {
var current = 0,
next = 1;

for 1 in 1..x {

yield current;
current += next;

current <=> next;

prompt> chpl fib.chpl
prompt>

48



FIBONACCI ITERATION

fib.chpl

config const n = 10;

for £ in fib(n)
writeln (f) ;

iter fib(x) {
var current = 0,
next = 1;

for 1 in 1..x {
yield current;
current += next;
current <=> next;

Drive this loop
by invoking fib(n)

prompt> chpl fib.chpl
prompt> ./£fib

49



FIBONACCI ITERATION

fib.chpl

config const n = 10;

iter fib(x) {
var current = 0,
next = 1;

for 1 in 1..x {
yield current;
current += next;
current <=> next;

Execute the loop’s body

for that value

‘vield’ this expression back
to the loop’s index variable

prompt> chpl fib.chpl
prompt> ./£fib
0

50



FIBONACCI ITERATION

fib.chpl

config const n =

for £ in fib(n)
writeln (f) ;

iter fib(x) {
var current = 0,
next = 1;

for 1 in 1..x {
yield current;
current += next;
current <=> next;

prompt> chpl fib.chpl
prompt> ./£fib

Execute the loop’s body
for that value

Then continue the iterator
from where it left off

Repeating until we fall
out of it (or return)




FIBONACCI ITERATION

fib.chpl

config const n = 10;

for £ in fib(n)
writeln (f);

iter fib(x) {
var current = 0,
next = 1;

for 1 in 1..x {
yield current;
current += next;
current <=> next;

Configlurable] declarations
support command-line overrides

prompt> chpl fib.chpl
prompt> ./£fib --n=1000

52



FIBONACCI ITERATION

fib.chpl

config const n = 10;

for £ i ' Static type inference for:
writeln * constants / variables

* arguments
iter fib (x) * return types

var current
next =

Explicit typing also supported
for 1 1n 1..x {

yield current;
current += next;
current <=> next;

prompt> chpl fib.chpl
./fib --n=1000

prompt>

53



FIBONACCI ITERATION

fib.chpl

config const n: int = 10;

for £ in fib(n) do
writeln (f) ;

iter fib(x:
var current: int =
next: int = 1;

for 1 in 1..x {
yield current;
current += next;
current <=> next;

int) : int {

0,

Explicit typing also supported

prompt> chpl fib.chpl
prompt> ./£fib --n=1000

54



FIBONACCI ITERATION

fib.chpl prompt> chpl fib.chpl
config const n = 10; Zippered prompt> ./£ib --n=1000
iteration fib #0 1s
for (i,f) in zip(0..<n, fib(n)) do fib #1 1is
writeln ("fib #", i, " is ", f); fib #2 is
fib #3 1s
iter fib(x) { fib #4 1is
var current = 0, fib #5 is
next = 1; fib #6 1is
fib #7 1is
for i in 1..x { f%b #8 ?s
yield current; fib #9 is
current += next; fib #10 1is
current <=> next; fib #11 1is
| fib #12 is
\ fib #13 is

fib #14 1is




FIBONACCI ITERATION

fib.chpl

config const n = 10;

for (1,f) in zip(0..<n,
writeln("fib #",

iter fib(x) {
var current =
next = 1;

for 1 in 1..x {

yield current;
current += next;
current <=> next;

Range types
and operators

prompt> chpl fib.chpl
prompt> ./£fib --n=1000
fib #0 1is

fib #1 is

fib #2 is

fib #3 1is

fib #4 is

fib #5 1is

fib #6 1is

fib #7 is

fib #8 1is

fib #9 is

fib #10 is

fib #11 is

fib #12 is

fib #13 is

fib #14 is

56



OTHER BASE LANGUAGE FEATURES

 Various basic types: bool(w), int(w), uint(w), real(w), imag(w), complex(w), enums, tuples
e Object-oriented programming

» Value-based records (like C structs supporting methods, generic fields, etc.)

« Reference-based classes (somewhat like Java classes or C++ pointers-to-classes)

—Nilable vs. non-nilable variants

- Memory-management strategies (shared, owned, borrowed, unmanaged)
— Lifetime checking

 Error-handling

e Generic programming / polymorphism
o Compile-time meta-programming

e Modules (supporting namespaces)

» Procedure overloading / filtering

o Arguments: default values, intents, name-based matching, type queries
e and more...

— .



TASK PARALLELISM AND LOCALITY CONTROL

Chapel language concepts

«
—
—

Domain Maps

Data Parallelism

Base Language

Locality Control

Target System

p»,

“Lower-level” Chapel

58



THE LOCALE: CHAPEL'’S KEY FEATURE FOR LOCALITY

e locale: a unit of the target architecture that can run tasks and store variables
e Think “compute node” on a typical HPC system

prompt> ./myChapelProgram --numLocales=4

# or ‘"nl 4

Locales array:

Locale O

Locale 1

Locale 2

Locale 3

User’s program starts running as a single task on locale O

59



TASK-PARALLEL “HELLO WORLD”

helloTaskPar.chpl

const numTasks = here.maxTaskPar;
coforall tid in 1..numTasks do
writef ("Hello from task %n of %n on %$s\n"
tid, numTasks, here.name) ;




TASK-PARALLEL “HELLO WORLD”

helloTaskPar.chpl

‘here’ refers to the locale on which
this code is currently running

coforall tid in 1..numTasks do
writef ("Hello from task %n

const numTasks = here.maxTaskPar;

how many parallel tasks can my
locale run at once?

%$n on %s\n",

tid, numTasks, here.name) ; what’s my locale’s name?

61



TASK-PARALLEL “HELLO WORLD”

helloTaskPar.chpl

const numTasks = here.maxTaskPar;

coforall tid in 1..numTasks do

writef ("Hello from task %$n of %$n on %s\n",
tid, numTasks, here.name) ;

a 'coforall’ loop executes each
iteration as an independent task

prompt> chpl helloTaskPar.

prompt> ./helloTaskPar
Hello from task 1 of 4
Hello from task 4 of 4
Hello from task 3 of 4
Hello from task 2 of 4

— .



TASK-PARALLEL “HELLO WORLD”

helloTaskPar.chpl

const numTasks = here.maxTaskPar;
coforall tid in 1..numTasks do
writef ("Hello from task %$n of %$n on %s\n",
tid, numTasks, here.name) ;

prompt> chpl helloTaskPar.

prompt> ./helloTaskPar
Hello from task 1 of 4
Hello from task 4 of 4
Hello from task 3 of 4
Hello from task 2 of 4

So far, this is a shared-memory program

Nothing refers to remote locales,
explicitly or implicitly

— .




TASK-PARALLEL “HELLO WORLD”

helloTaskPar.chpl

const numTasks = here.maxTaskPar;
coforall tid in 1..numTasks do
writef ("Hello from task %n of %n on %$s\n"
tid, numTasks, here.name) ;




TASK-PARALLEL “HELLO WORLD” (DISTRIBUTED VERSION)

helloTaskPar.chpl

coforall loc in Locales {
on loc {
const numTasks = here.maxTaskPar;
coforall tid in 1..numTasks do
writef ("Hello from task %n of %n on %s\n",
tid, numTasks, here.name) ;

65



TASK-PARALLEL “HELLO WORLD” (DISTRIBUTED VERSION)

helloTaskPar.chpl

coforall loc in Locales {

on loc {
const numTasks = here.maxTaskPar; the array of locales we're running on
coforall tid in 1. .numTasks do (introduced a few slides back)

writef ("Hello from task %$n of %$n on %s\n",
tid, numTasks, here.name) ;

Locale O Locale 1 Locale 2 Locale 3

Locales array:




TASK-PARALLEL “HELLO WORLD” (DISTRIBUTED VERSION)

helloTaskPar.chpl create a task per locale
on which the program is running

coforall loc in Locales {
on loc {
const numTasks = here.maxTaskPar;
coforall tid in 1..numTasks do
writef ("Hello from task %n of %n on %s\n"

tid, numTasks, here.name) ;

have each task run ‘on’ its locale

then print a message per core,
as before

} prompt> chpl helloTaskPar.chpl
} prompt> ./helloTaskPar —numLocales=4
Hello from task 1 of 4 on nl032
Hello from task 4 of 4 on nl032
Hello from task 1 of on nl1034

Hello from task of on nl1032
Hello from task of on nl033
Hello from task of on nl1034
Hello from task of on nl035

— .



TASK-PARALLEL “HELLO WORLD” (DISTRIBUTED VERSION)

helloTaskPar.chpl

coforall loc in Locales {
on loc {
const numTasks = here.maxTaskPar;
coforall tid in 1..numTasks do
writef ( ’
tid, numTasks, here.name) ;
} prompt> chpl helloTaskPar.chpl
} prompt> ./helloTaskPar —numLocales=4

Hello from task 1 of 4 on nl032
Hello from task of on nl1032
Hello from task of on nl1034

Hello from task of on nl1032
Hello from task of on nl033
Hello from task of on nl1034
Hello from task of on nl035

— -



CHAPEL FEATURE AREAS

Chapel language concepts

«

Domain Maps
Data Parallelism

Task Parallelism

Base Language

Locality Control

Target System

»,

69



DATA PARALLELISM AND DOMAIN MAPS

Chapel language concepts

«

Domain Maps
Data Parallelism

Task Parallelism

Base Language

Locality Control

Target System

»,

Higher-level Chapel

70



DATA-PARALLEL ARRAY FILL

fillArray.chpl

config const n = 1000;
const D = {l..n, 1..n};
var A: [D] real;

forall (i,J) in D do
Ali,j] =1 + (J - 0.5)/n;

writeln (A7) ;

71



DATA-PARALLEL ARRAY FILL

fillArray.chpl
config const n = 1000;
const D = {l..n, 1..n};

var A: [D] real;

forall (i,J) in D do
Ali,j] =1 + (J - 0.5)/n;

writeln (A7) ;

D A

declare a domain, a first-class index set

declare an array over that domain

72



DATA-PARALLEL ARRAY FILL

fillArray.chpl

config const n = 1000;
D A

const D .. .. . declare a domain, a first-class index set

var A: ; declare an array over that domain

forall (i,7) 1 iterate over the domain’s indices in parallel,
Ali,J] ' ] ) . assigning to the corresponding array elements

writeln (A7) ;




DATA-PARALLEL ARRAY FILL

: 11(13|15|15(1.9
f|”Array_chp| ........ I —3hso e

PP P P PR PR

3.1(3.3(3.5|3.7|3.9
41| 43| 45|47 |49
51|5.3|15.5|5.7(5.9

PP TP P PR SRR SRR

config const n = 1000;
9 D A
const D = {1l..n, 1..n};
prompt> chpl dataParallel.chpl
var A: [D] real; prompt> ./dataParallel --n=5

1.1 1.3 1.5 1.7 1.9

forall (i,j) in D do 2.1 2. 2.7 2.

Ali,3] =1 + (J - 0.5)/n; 3.1 3. 3.7 3.
4.1 4 4.7 4
5.1 5 5.7 5

writeln (A7) ;

So far, this is a shared-memory program

Nothing refers to remote locales,
explicitly or implicitly




DATA-PARALLEL ARRAY FILL

fillArray.chpl
config const n = 1000; ~
locale O
const D = {1l..n, 1..n};
prompt> chpl dataParallel.chpl
var A: [D] real; prompt> ./dataParallel --n=5

1.1 1.3 1.5 1.7 1.9

forall (i,j) in D do 2.1 2. 2.7 2.

Ali,3] =1 + (J - 0.5)/n; 3.1 3. 3.7 3.
4.1 4 4.7 4
5.1 5 5.7 5

writeln (A7) ;

So far, this is a shared-memory program

Nothing refers to remote locales,
explicitly or implicitly




DATA-PARALLEL ARRAY FILL

fillArray.chpl

config const n = 1000;
const D = {l..n, 1..n};
var A: [D] real;

forall (i,J) in D do
Ali,j] =1 + (J - 0.5)/n;

writeln (A7) ;

76



DATA-PARALLEL ARRAY FILL (DISTRIBUTED

fillArray.chpl

VERSION)

use CyclicDist;
config const n = 1000;
const D = {l1..n, 1..n}
dmapped Cyclic (startlIdx =

var A: [D] real;

forall (i,J) in D do
Ali,j] =1 + (J - 0.5)/n;

writeln (A7) ;

(1,1))7

11

13

15

15

19

21

2.3

25

2.7

2.9

31

3.3

3.5

37

3.9

41

4.3

4.5

4.7

4.9

51

5.3

5.5

57

5.9

77



DATA-PARALLEL ARRAY FILL (DISTRIBUTED VERSION)

111.3|15|15|19
2112.3|25|2.7 (2.9
31(3.3|35|3.7|3.9
41| 43| 45|47 |49
51|5.3|15.5|5.7(5.9

fillArray.chpl

use CyclicDist;

config const n = 1000;

const D = {l..n, 1..n} apply a domain map, specifying how to implement...
dmapped Cyclic(startIdx = (1,1)); ..the domain’s indices,
var A: [D] real; ...the array’s elements,
...the loop’s iterations,
forall (i,j) in D do ...on the program’s locales
Ali,j] =1 + (3 - 0.5)/n;

writeln (A7) ;

Locale O Locale 1 Locale 2 Locale 3

Locales array:




DATA-PARALLEL ARRAY FILL (DISTRIBUTED VERSION)

: T 11{13|15|15(1.9
f|”Array_chp| ........ I —ahshohe

use CyclicDist; | | % ........ % ........ %% ........ ........

PETPPPPI: PP R SRR SRR

locale O

31(3.3|35|3.7|3.9
41| 43| 45|47 (4.9
51|5.3|15.5|5.7(5.9

config const n = 1000;
const D = {1l..n, 1..n}
dmapped Cyclic(startIdx = (1,1)); chpl dataParallel.chpl
var A: [D] real; ./dataParallel --n=5 --numLocales=1

.5 1.7 1.9

forall (i,j) in D do 7

A[i,3] =i + (3 - 0.5)/n; 7
.
.

writeln (A7) ;

Because this computation is independent of the locales,

changing the number of locales or distribution doesn’t affect the output

— .



DATA-PARALLEL ARRAY FILL (DISTRIBUTED VERSION)

11/1.3|15|15|19

fl”Array.ChpI ........ ‘ ........ ’. ........ | 21. 25 .29 |Oca|e O |oca|e 1
use CyclicDist; ........ ........ ’ ........ L
41 4.5 4.9
config const n = 1000; VD ' A locale 2
const D = {1l..n, 1..n}
dmapped Cyclic(startIdx = (1,1)); chpl dataParallel.chpl
var A: [D] real; ./dataParallel --n=5 --numLocales=4

SO 1.7 1.9
forall (i,j) in D do 7

A[i,3] =i + (3 - 0.5)/n; 7
.
.

writeln (A7) ;

Because this computation is independent of the locales,

changing the number of locales or distribution doesn’t affect the output

— .



DATA-PARALLEL ARRAY FILL (DISTRIBUTED VERSION)

fillArray.chpl ocale O
use CyclicDist;
config const n = 1000;
const D = {1l..n, 1..n}
dmapped Cyclic(startIdx = (1,1)); chpl dataParallel.chpl
var A: [D] real; ./dataParallel --n=5 --numLocales=1
13.1 14.1 15.1
forall (i,7j) in D do . .1 23.1 24.1 25.1
Ali,J] = 1*10 + J + (here.id+1)/10.0; . .1 33.1 34.1 35.1
. .1 43.1 44.1 45.1
writeln (A7) ; . .1 53.1 54.1 55.1

If we make it sensitive to the locales,

the output varies with the distribution details

— .



DATA-PARALLEL ARRAY FILL (DISTRIBUTED VERSION)

e e locale O locale 1
use CyclicDist;
config const n = 1000; locale 2
const D = {1l..n, 1..n}
dmapped Cyclic(startIdx = (1,1)); chpl dataParallel.chpl
var A: [D] real; ./dataParallel --n=5 --numlLocales=4
13.1 14.2 15.1
forall (i,7j) in D do . 4 23.3 24.4 25.3
Ali,J] = 1*10 + J + (here.id+1)/10.0; . .2 33.1 34.2 35.1
. . 43.3 44, 45.3
writeln (A7) ; . .2 53.1 54.2 55.1

If we make it sensitive to the locales,

the output varies with the distribution details

— .



DATA-PARALLEL ARRAY FILL (DISTRIBUTED VERSION)

fillArray.chpl

use CyclicDist;
config const n = 1000;
const D = {1l..n, 1..n}
dmapped Cyclic(startIdx = (1,1));

var A: [D] real;

forall (i,J) in D do
Ali,j] = 1*10 + 7 + (here.id+1)/10.0;

writeln (A7) ;

83






SUMMARY

Chapel is unique among programming languages

« built-in features for scalable parallel computing make it HPC-ready
» supports clean, concise code relative to conventional approaches
» ports and scales from laptops to supercomputers

Chapel is being used for productive parallel computing at scale

e users are reaping its benefits in practical, cutting-edge applications
« applicable to domains as diverse as physical simulations and data science f

If you’re interested in taking Chapel for a spin, let us know!

« we're happy to work with users and user groups to help ease the learning curve
« we're discussing holding a day-long tutorial for you with hands-on, pending interest

—

use BlockDist;

config const m = 1000,

alpha = 3.0;
const Dom = {1..m} dmapped ..;
var A, B, C: [Dom] real;

B
C

2.0;
1155

A =B + alpha * C;

Python3 Client

GB/s

STREAM Performance (GB/s)

MMMMMMMMM

30000
25000
20000
15000
10000

5000

0 Il Il Il )
16 32 64 128 256
Locales (x 36 cores / locale)

|85



CHAPEL RESOURCES

Chapel homepage: hitps://chapel-lang.org
 (points to all other resources)

Social Media:

o Twitter: @ChapelLanguage
e Facebook: @ChapelLanguage

e YouTube: http://www.youtube.com/c/ChapelParallelProgramminglLangquage

Community Discussion / Support:

e Discourse: https://chapel.discourse.group/
o Gitter: https://gitter.im/chapel-lang/chapel

o Stack Overflow: https://stackoverflow.com/questions/tagged/chapel

o GitHub Issues: https://github.com/chapel-lang/chapel/issues

—

What is Chapel?
What's New?

Upcoming Events
Job Opportunities

How Can | Learn Chapel?
Contributing to Chapel

Download Chapel
Try Chapel Online

Documentation
Release Notes

Performance
Powered by Chapel

User Resources
Developer Resources

Social Media / Blog Posts
Press

Presentations
Papers / Publications

CHIuw
CHUG

Contributors / Credits

chapel_info@cray.com

O - A
vyEHD

What is Chapel?

Chapel is a programming language designed for productive parallel computing at scale.

Why Chapel? Because it simplifies parallel programming through elegant support for:

« distributed arrays that can leverage thousands of nodes' memories and cores

« a global namespace supporting direct access to local or remote variables

« data parallelism to trivially use the cores of a laptop, cluster, or supercomputer
« task parallelism to create concurrency within a node or across the system

Chapel Characteristics

« productive: code tends to be similarly readable/writable as Python
« scalable: runs on laptops, clusters, the cloud, and HPC systems

« fast: performance competes with or beats C/C++ & MPI & OpenMP
« portable: compiles and runs in virtually any *nix environment

* open-source: hosted on GitHub, permissively licensed

New to Chapel?

As an introduction to Chapel, you may want to...

« watch an overview talk or browse its slides

read a blog-length or chapter-length introduction to Chapel
learn about projects powered by Chapel

check out performance highlights like these:

PRK Stencil Performance (Glop's) NPB-FT Performance (Gop's)

Giop/'s
) §
L A\“‘ evi
\ |
\
Gopis
st
\
1

Locales (x 36 cores / locale) Locales (x 36 cores / locale)

* browse sample programs or learn how to write distributed programs like this one:

use CyclicDist; // use the Cyclic distribution Llibrary
config const n = 100; // use --n=<val> when executing to override this default

forall i in {1..n} dmapped Cyclic(startIdx=1) do
writeln("Hello from iteration ", i, " of ", n,

" running on node ", here.id);

C e The Chapel Parallel Programming Language
| [ =

86



https://chapel-lang.org/
https://twitter.com/ChapelLanguage
https://www.facebook.com/ChapelLanguage/
http://www.youtube.com/c/ChapelParallelProgrammingLanguage
https://chapel.discourse.group/
https://gitter.im/chapel-lang/chapel
https://stackoverflow.com/questions/tagged/chapel
https://github.com/chapel-lang/chapel/issues

THANK YOU

https://chapel-lang.org
@ChapelLanguage

P LR



BACKUP SLIDES: CHAPEL ON GPUS

e



CHAPEL ON GPUS

Background:

e GPUs have become a key feature in many HPC systems
« We have long described Chapel’s goal as being “any parallel algorithm on any parallel hardware”

e Yet, historically, Chapel releases have only supported GPUs via interoperability
—i.e., call GPU code written in CUDA, OpenCL, OpenMP, ... as an extern routine

What’s New?
o Lots of progress in the past year...

— .



CHAPEL FOR GPUS: CHAPEL 1.24.0

Targeting GPUs with Chapel was possible for the first time, but very low-level:

pragma '"codegen for GPU" extern {
export proc add nums (A: c ptr(real(64))) { #define FATBIN FILE "chpl gpu.fatbin"
A[0] = A[0]+5; double createFunction () {
} fatbinBuffer = <read FATBIN FILE into buffer>

cuModuleLoadData(&cudaModulg, fatbinBuffer);
cuModuleGetFunction (&function, cudaModule,

var funcPtr = createFunction();
var A = [1, 2, 3, 4, 5]; add_nums*™) ;)
__primitive ("gpu kernel launch", funcPtr, }

<grid and block size>, ..,
c ptrTo(A), ..);
writeln (A) ;




CHAPEL FOR GPUS: CHAPEL 1.25.0

Raised the level of abstraction significantly, yet with significant restrictions:

 only relatively simple computations
« single GPU only
e single locale only

‘on’ statement controls the execution/allocation policy
on here.gpus[0] {
var A: [0..<n] int; . . — .
: ‘A’ will be allocated in the Unified Virtual Memory
foreach a in A do

a += 1;

¥ ‘foreach’ will turn into a GPU kernel

91



CHAPEL FOR GPUS: CHAPEL 1.26.0

Improved generality: computational styles, multiple GPUs, CPU+GPU parallelism

cobegin {

{A[O..<Cpu8ize] += 1; }. CPU works on its part
Two

concurrent
tasks coforall subloc in 1..numGPUs do on here.getChild(subloc) {
const myShare = cpuSize+gpuSize* (subloc-1)..#gpuSize;
var AonThisGPU = A[myShare]; .
. GPUs work on their part
AonThisGPU += 1; and copy the result back
A[myShare] = AonThisGPU;

— .



CHAPEL FOR GPUS: CHAPEL 1.27.0

Added support for using the GPUs of multiple locales simultaneously, improved sublocale abstractions

config const n=1000, alpha=0.5;

coforall loc in Locales do on loc {
coforall gpu in here.gpus do on gpu {
var A, B, C: [1l..n] real;
A =B + alpha * C;

— .



CHAPEL FOR GPUS: WHAT’S NEXT?

e Performance Analysis & Improvements
» Portability to additional vendors
e GPU participation in inter-node communication

— ,%



