
Brad Chamberlain

Cray Inc.

LLNL: December 14th, 2011

 A new parallel programming language

 Design and development led by Cray Inc.
 In collaboration with academics, labs, industry

 Initiated under the DARPA HPCS program

 Overall goal: Improve programmer productivity
 Improve the programmability of parallel computers

 Match or beat the performance of current programming models

 Support better portability than current programming models

 Improve the robustness of parallel codes

 A work-in-progress

2

 Being developed as open source at SourceForge

 Licensed as BSD software

 Target Architectures:
 multicore desktops and laptops

 commodity clusters

 Cray architectures

 systems from other vendors

 (in-progress: CPU+accelerator hybrids, manycore, …)

3

(Or perhaps: Partitioned Global Namespace Languages)

Concept:
 support a shared namespace

 “any parallel task can access any lexically visible variable”

 give each variable a well-defined affinity to a processor/node
 “local variables are cheaper to access than remote ones”

 founding members: UPC, Co-Array Fortran, Titanium

Strengths:
 permits users to specify what to transfer rather than how

 supports reasoning about locality/affinity to get scalability

Weaknesses (of traditional PGAS languages):
 restricted to SPMD programming and execution models

 limited support for distributed arrays

 Distinct concepts for parallelism vs. locality
 e.g., cobegin creates tasks, locale type represents locality

 Rich set of array types, potentially distributed

5

A

B

C
A

A

A

A

 General/dynamic/multithreaded parallelism

 Not to try and convince you to use Chapel today

 Rather, to see how we can maximize its future utility
to you
…as Chapel matures and hardens

…as you move to more advanced algorithms

…as you start dealing with next-generation architectures

 And to look for near-term collaborations to help us
reach that point in the best state possible

6

Chapel Context

Motivation

 Feature Tour

 Advanced Features / Research Topics

 Project Status and Overview

 Chapel and Exascale

7

• Static finite element analysis

1 GF – 1988: Cray Y-MP; 8 Processors

• Modeling of metallic magnet atoms

1 TF – 1998: Cray T3E; 1,024 Processors

• Superconductive materials

1 PF – 2008: Cray XT5; 150,000 Processors

• TBD

1 EF – ~2018: Cray ____; ~10,000,000 Processors

8

• Static finite element analysis

• Fortran77 + Cray autotasking + vectorization

1 GF – 1988: Cray Y-MP; 8 Processors

• Modeling of metallic magnet atoms

• Fortran + MPI (?)

1 TF – 1998: Cray T3E; 1,024 Processors

• Superconductive materials

• C++/Fortran + MPI + vectorization

1 PF – 2008: Cray XT5; 150,000 Processors

• TBD

• TBD: C/C++/Fortran + MPI + CUDA/OpenCL/OpenMP/OpenACC

1 EF – ~2018: Cray ____; ~10,000,000 Processors

9

Or Perhaps Something
Completely Different?

HPC has traditionally given users…
…low-level, control-centric programming models

…ones that are closely tied to the underlying hardware

Examples:

benefits: lots of control; decent generality; easy to implement

downsides: lots of user-managed detail; brittle to changes

10

HW Granularity Programming Model Unit of Parallelism

Inter-node MPI executable

Intra-node/multicore OpenMP/pthreads iteration/task

Instruction-level vectors/threads pragmas iteration

GPU/accelerator CUDA/OpenCL SIMD function

Given: m-element vectors A, B, C

Compute: i 1..m, Ai = Bi + α Ci

Pictorially:

A

B

C

alpha

=

+

*

Given: m-element vectors A, B, C

Compute: i 1..m, Ai = Bi + α Ci

Pictorially (in parallel):

A

B

C

alpha

=

+

*

=

+

*

=

+

*

=

+

*

=

+

*

#include <hpcc.h>

static int VectorSize;

static double *a, *b, *c;

int HPCC_StarStream(HPCC_Params *params) {

int myRank, commSize;

int rv, errCount;

MPI_Comm comm = MPI_COMM_WORLD;

MPI_Comm_size(comm, &commSize);

MPI_Comm_rank(comm, &myRank);

rv = HPCC_Stream(params, 0 == myRank);

MPI_Reduce(&rv, &errCount, 1, MPI_INT, MPI_SUM,

0, comm);

return errCount;

}

int HPCC_Stream(HPCC_Params *params, int doIO) {

register int j;

double scalar;

VectorSize = HPCC_LocalVectorSize(params, 3,

sizeof(double), 0);

a = HPCC_XMALLOC(double, VectorSize);

b = HPCC_XMALLOC(double, VectorSize);

c = HPCC_XMALLOC(double, VectorSize);

MPI
if (!a || !b || !c) {

if (c) HPCC_free(c);

if (b) HPCC_free(b);

if (a) HPCC_free(a);

if (doIO) {

fprintf(outFile, "Failed to allocate memory

(%d).\n", VectorSize);

fclose(outFile);

}

return 1;

}

for (j=0; j<VectorSize; j++) {

b[j] = 2.0;

c[j] = 0.0;

}

scalar = 3.0;

for (j=0; j<VectorSize; j++)

a[j] = b[j]+scalar*c[j];

HPCC_free(c);

HPCC_free(b);

HPCC_free(a);

return 0;

}

#include <hpcc.h>

#ifdef _OPENMP

#include <omp.h>

#endif

static int VectorSize;

static double *a, *b, *c;

int HPCC_StarStream(HPCC_Params *params) {

int myRank, commSize;

int rv, errCount;

MPI_Comm comm = MPI_COMM_WORLD;

MPI_Comm_size(comm, &commSize);

MPI_Comm_rank(comm, &myRank);

rv = HPCC_Stream(params, 0 == myRank);

MPI_Reduce(&rv, &errCount, 1, MPI_INT, MPI_SUM,

0, comm);

return errCount;

}

int HPCC_Stream(HPCC_Params *params, int doIO) {

register int j;

double scalar;

VectorSize = HPCC_LocalVectorSize(params, 3,

sizeof(double), 0);

a = HPCC_XMALLOC(double, VectorSize);

b = HPCC_XMALLOC(double, VectorSize);

c = HPCC_XMALLOC(double, VectorSize);

MPI + OpenMP
if (!a || !b || !c) {

if (c) HPCC_free(c);

if (b) HPCC_free(b);

if (a) HPCC_free(a);

if (doIO) {

fprintf(outFile, "Failed to allocate memory

(%d).\n", VectorSize);

fclose(outFile);

}

return 1;

}

#ifdef _OPENMP

#pragma omp parallel for

#endif

for (j=0; j<VectorSize; j++) {

b[j] = 2.0;

c[j] = 0.0;

}

scalar = 3.0;

#ifdef _OPENMP

#pragma omp parallel for

#endif

for (j=0; j<VectorSize; j++)

a[j] = b[j]+scalar*c[j];

HPCC_free(c);

HPCC_free(b);

HPCC_free(a);

return 0;

}

#define N 2000000

int main() {

float *d_a, *d_b, *d_c;

float scalar;

cudaMalloc((void**)&d_a, sizeof(float)*N);

cudaMalloc((void**)&d_b, sizeof(float)*N);

cudaMalloc((void**)&d_c, sizeof(float)*N);

dim3 dimBlock(128);

dim3 dimGrid(N/dimBlock.x);

if(N % dimBlock.x != 0) dimGrid.x+=1;

set_array<<<dimGrid,dimBlock>>>(d_b, .5f, N);

set_array<<<dimGrid,dimBlock>>>(d_c, .5f, N);

scalar=3.0f;

STREAM_Triad<<<dimGrid,dimBlock>>>(d_b, d_c, d_a, scalar, N);

cudaThreadSynchronize();

cudaFree(d_a);

cudaFree(d_b);

cudaFree(d_c);

}

__global__ void set_array(float *a, float value, int len) {

int idx = threadIdx.x + blockIdx.x * blockDim.x;

if (idx < len) a[idx] = value;

}

__global__ void STREAM_Triad(float *a, float *b, float *c,

float scalar, int len) {

int idx = threadIdx.x + blockIdx.x * blockDim.x;

if (idx < len) c[idx] = a[idx]+scalar*b[idx];

}

#include <hpcc.h>

#ifdef _OPENMP

#include <omp.h>

#endif

static int VectorSize;

static double *a, *b, *c;

int HPCC_StarStream(HPCC_Params *params) {

int myRank, commSize;

int rv, errCount;

MPI_Comm comm = MPI_COMM_WORLD;

MPI_Comm_size(comm, &commSize);

MPI_Comm_rank(comm, &myRank);

rv = HPCC_Stream(params, 0 == myRank);

MPI_Reduce(&rv, &errCount, 1, MPI_INT, MPI_SUM, 0, comm);

return errCount;

}

int HPCC_Stream(HPCC_Params *params, int doIO) {

register int j;

double scalar;

VectorSize = HPCC_LocalVectorSize(params, 3, sizeof(double), 0);

a = HPCC_XMALLOC(double, VectorSize);

b = HPCC_XMALLOC(double, VectorSize);

c = HPCC_XMALLOC(double, VectorSize);

if (!a || !b || !c) {

if (c) HPCC_free(c);

if (b) HPCC_free(b);

if (a) HPCC_free(a);

if (doIO) {

fprintf(outFile, "Failed to allocate memory (%d).\n", VectorSize);

fclose(outFile);

}

return 1;

}

#ifdef _OPENMP

#pragma omp parallel for

#endif

for (j=0; j<VectorSize; j++) {

b[j] = 2.0;

c[j] = 0.0;

}

scalar = 3.0;

#ifdef _OPENMP

#pragma omp parallel for

#endif

for (j=0; j<VectorSize; j++)

a[j] = b[j]+scalar*c[j];

HPCC_free(c);

HPCC_free(b);

HPCC_free(a);

return 0;

}

CUDAMPI + OpenMP

HPC suffers from too many distinct notations for expressing parallelism and locality

#define N 2000000

int main() {

float *d_a, *d_b, *d_c;

float scalar;

cudaMalloc((void**)&d_a, sizeof(float)*N);

cudaMalloc((void**)&d_b, sizeof(float)*N);

cudaMalloc((void**)&d_c, sizeof(float)*N);

dim3 dimBlock(128);

dim3 dimGrid(N/dimBlock.x);

if(N % dimBlock.x != 0) dimGrid.x+=1;

set_array<<<dimGrid,dimBlock>>>(d_b, .5f, N);

set_array<<<dimGrid,dimBlock>>>(d_c, .5f, N);

scalar=3.0f;

STREAM_Triad<<<dimGrid,dimBlock>>>(d_b, d_c, d_a, scalar, N);

cudaThreadSynchronize();

cudaFree(d_a);

cudaFree(d_b);

cudaFree(d_c);

}

__global__ void set_array(float *a, float value, int len) {

int idx = threadIdx.x + blockIdx.x * blockDim.x;

if (idx < len) a[idx] = value;

}

__global__ void STREAM_Triad(float *a, float *b, float *c,

float scalar, int len) {

int idx = threadIdx.x + blockIdx.x * blockDim.x;

if (idx < len) c[idx] = a[idx]+scalar*b[idx];

}

#include <hpcc.h>

#ifdef _OPENMP

#include <omp.h>

#endif

static int VectorSize;

static double *a, *b, *c;

int HPCC_StarStream(HPCC_Params *params) {

int myRank, commSize;

int rv, errCount;

MPI_Comm comm = MPI_COMM_WORLD;

MPI_Comm_size(comm, &commSize);

MPI_Comm_rank(comm, &myRank);

rv = HPCC_Stream(params, 0 == myRank);

MPI_Reduce(&rv, &errCount, 1, MPI_INT, MPI_SUM, 0, comm);

return errCount;

}

int HPCC_Stream(HPCC_Params *params, int doIO) {

register int j;

double scalar;

VectorSize = HPCC_LocalVectorSize(params, 3, sizeof(double), 0);

a = HPCC_XMALLOC(double, VectorSize);

b = HPCC_XMALLOC(double, VectorSize);

c = HPCC_XMALLOC(double, VectorSize);

if (!a || !b || !c) {

if (c) HPCC_free(c);

if (b) HPCC_free(b);

if (a) HPCC_free(a);

if (doIO) {

fprintf(outFile, "Failed to allocate memory (%d).\n", VectorSize);

fclose(outFile);

}

return 1;

}

#ifdef _OPENMP

#pragma omp parallel for

#endif

for (j=0; j<VectorSize; j++) {

b[j] = 2.0;

c[j] = 0.0;

}

scalar = 3.0;

#ifdef _OPENMP

#pragma omp parallel for

#endif

for (j=0; j<VectorSize; j++)

a[j] = b[j]+scalar*c[j];

HPCC_free(c);

HPCC_free(b);

HPCC_free(a);

return 0;

}

CUDAMPI + OpenMP

config const m = 1000,

alpha = 3.0;

const ProblemSpace = [1..m] dmapped …;

var A, B, C: [ProblemSpace] real;

B = …;

C = …;

A = B + alpha * C;

Chapel
the special

sauce

 Exascale is expected to bring new changes/challenges:
 increased sensitivity to locality within node architectures

 increased heterogeneity as well
 multiple processor types

 multiple memory types

 limited memory bandwidth, memory::FLOP ratio

 resiliency concerns

 power concerns

Exascale represents an opportunity to move to a programming
model that is less tied to architecture than those of the past

17

Chapel Context

Motivation

Feature Tour

 Base Language

 Locality

 Task Parallelism

 Data Parallelism

 Advanced Features / Research Topics

 Project Status and Overview

 Chapel and Exascale

18

19

MPI

OpenMP

Pthreads

Target Machine

Low-Level
Implementation

Concepts

“Why is everything so tedious/difficult?”

“Why don’t my programs port trivially?”
“Why don’t I have more control?”

ZPL

HPF

Target Machine

High-Level
Abstractions

Multiresolution Design: Support multiple tiers of features

 higher levels for programmability, productivity

 lower levels for greater degrees of control

 build the higher-level concepts in terms of the lower

 permit the user to intermix layers arbitrarily

20

Domain Maps

Data Parallelism

Task Parallelism

Base Language

Target Machine

Locality Control

Chapel language concepts

21

Domain Maps

Data Parallelism

Task Parallelism

Base Language

Target Machine

Locality Control

const pi = 3.14, // pi is a real

coord = 1.2 + 3.4i, // loc is a complex…

coord2 = pi*loc, // …as is loc2

name = “brad”, // name is a real

verbose = false; // verbose is boolean

proc addem(x, y) { // addem() is generic

return x + y;

}

var sum = addem(1, pi), // sum is a real

fullname = addem(name, “ford”); // fullname is a string

writeln((sum, fullname));

22

(4.14, bradford)

23

iter fibonacci(n) {

var current = 0,

next = 1;

for 1..n {

yield current;

current += next;

current <=> next;

}

}

for f in fibonacci(7) do

writeln(f);

0

1

1

2

3

5

8

iter tiledRMO(D, tilesize) {

const tile = [0..#tilesize,

0..#tilesize];

for base in D by tilesize do

for ij in D[tile + base] do

yield ij;

}

for ij in tiledRMO(D, 2) do

write(ij);

(1,1)(1,2)(2,1)(2,2)

(1,3)(1,4)(2,3)(2,4)

(1,5)(1,6)(2,5)(2,6)

…

(3,1)(3,2)(4,1)(4,2)

24

const r = 1..10;

printVals(r # 3);

printVals(r # -3);

printVals(r by 2);

printVals(r by 2 align 2);

printVals(r by -2);

printVals(r by 2 # 3);

printVals(r # 3 by 2);

def printVals(r) {

for i in r do

write(r, “ “);

writeln();

}

1 2 3

8 9 10

1 3 5 7 9

2 4 6 8 10

10 8 6 4 2

1 3 5

1 3

25

var A: [0..9] real;

for (a,i,j) in (A, 1..10, 2..20 by 2) do

a = j + i/10.0;

writeln(A);

2.1 4.2 6.3 8.4 10.5 12.6 14.7 16.8 18.9 21.0

 tuples types

 compile-time features for meta-programming
 e.g., compile-time functions to compute types, params

 rank-independent programming features

 value- and reference-based OOP

 argument intents, default values, match-by-name

 overloading, where clauses

 modules (for namespace management)

 …

29

Come to this afternoon’s tutorial for a slightly more in-depth survey

30

Domain Maps

Data Parallelism

Task Parallelism

Base Language

Target Machine

Locality Control

Definition:
 Abstract unit of target architecture

 Supports reasoning about locality

 Capable of running tasks and storing variables
 i.e., has processors and memory

Typically: A multi-core processor or SMP node

31

 Specify # of locales when running Chapel programs

 Chapel provides built-in locale variables

32

% a.out --numLocales=8

config const numLocales: int = …;

const LocaleSpace = [0..#numLocales];

const Locales: [LocaleSpace] locale;

L0 L1 L2 L3 L4 L5 L6 L7Locales:

% a.out –nl 8

 Locale methods support reasoning about machine
resources:

 On-clauses support placement of computations:

33

proc locale.physicalMemory(…) { … }

proc locale.numCores(…) { … }

proc locale.name(…) { … }

writeln(“on locale 0”);

on Locales[1] do

writeln(“now on locale 1”);

writeln(“on locale 0 again”);

on A[i,j] do

begin bigComputation(A);

on node.left do

begin search(node.left);

34

Domain Maps

Data Parallelism

Task Parallelism

Base Language

Target Machine

Locality Control

cobegin {

producer();

consumer();

}

// ‘sync’ types store full/empty state along with value

var buff$: [0..#buffersize] sync real;

proc producer() {

var i = 0;

for … {

i = (i+1) % buffersize;

buff$(i) = …; // reads block until empty, leave full

} }

proc consumer() {

var i = 0;

while … {

i= (i+1) % buffersize;

…buff$(i)…; // writes block until full, leave empty

} }

36

37

Domain Maps

Data Parallelism

Task Parallelism

Base Language

Target Machine

Locality Control

Chapel supports several types of domains and arrays:

“steve”
“lee”
“sung”
“david”
“jacob”
“albert”
“brad”

dense strided sparse

unstructured associative

38

 Parallel and Serial Iteration

 Array Slicing; Domain Algebra

 Promotion of Scalar Functions and Operators

 And several other operations: indexing, reallocation,
set operations, reindexing, aliasing, queries, …

39

4.3 4.44.1 4.2 4.5 4.6 4.7 4.8

1.3 1.41.1 1.2 1.5 1.6 1.7 1.8

2.3 2.42.1 2.2 2.5 2.6 2.7 2.8

3.3 3.43.1 3.2 3.5 3.6 3.7 3.8

A = forall (i,j) in D do (i + j/10.0);

A[InnerD] = B[InnerD+(0,1)]; =

A = B + alpha * C; A = exp(B, C);

Chapel Context

Motivation

Feature Tour

Advanced Features / Research Topics

 Domain Maps

 Leader-Follower Iterators

 Project Status and Overview

 Chapel and Exascale

40

Q1: How are arrays laid out in memory?
 Are regular arrays laid out in row- or column-major order? Or…?

 How are sparse arrays stored? (COO, CSR, CSC, block-structured, …?)

 What memories/memory types are used?

Q2: How are arrays distributed between locales/nodes?
 Completely local to one locale? Or distributed?

 If distributed… In a blocked manner? cyclically? block-cyclically?
recursively bisected? dynamically rebalanced? …?

41

dynamically

…?

…?

Q1: How are arrays laid out in memory?
 Are regular arrays laid out in row- or column-major order? Or…?

 How are sparse arrays stored? (COO, CSR, CSC, block-structured, …?)

 What memories/memory types are used?

Q2: How are arrays distributed between locales/nodes?
 Completely local to one locale? Or distributed?

 If distributed… In a blocked manner? cyclically? block-cyclically?
recursively bisected? dynamically rebalanced? …?

42

dynamically

…?

…?
A: Chapel’s domain maps are designed to give the

user full control over such decisions

const ProblemSpace = [1..m];

var A, B, C: [ProblemSpace] real;

A = B + alpha * C;

43

=

α·
+

const ProblemSpace = [1..m];

var A, B, C: [ProblemSpace] real;

A = B + alpha * C;

44

=

α·
+

No domain map specified => use default layout
• current locale owns all indices and values
• computation will execute using local processors only

const ProblemSpace = [1..m]

dmapped Block(boundingBox=[1..m]);

var A, B, C: [ProblemSpace] real;

A = B + alpha * C;

45

=

α·
+

const ProblemSpace = [1..m]

dmapped Cyclic(startIdx=1);

var A, B, C: [ProblemSpace] real;

A = B + alpha * C;

46

=

α·
+

startIdx = 1

Domain maps are “recipes” that instruct the compiler
how to map the global view of a computation…

47

=

+

α •

Locale 0

=

+

α •

=

+

α •

=

+

α •

Locale 1 Locale 2

…to the target locales’ memory and processors:

A = B + alpha * C;

Domain Maps: “recipes for implementing parallel/

distributed arrays and domains”

They define data storage:
 Mapping of domain indices and array elements to locales

 Layout of arrays and index sets in each locale’s memory

…as well as operations:
 random access, iteration, slicing, reindexing, rank change, …

 the Chapel compiler generates calls to these methods to
implement the user’s array operations

48

All Chapel domain types support domain maps

“steve”
“lee”
“sung”
“david”
“jacob”
“albert”
“brad”

dense strided sparse

unstructured associative

49

1

51

var Dom = [1..4, 1..8] dmapped Block([1..4, 1..8]);

1 8

4

distributed to

var Dom = [1..4, 1..8] dmapped Cyclic(startIdx=(1,1));

L0 L1 L2 L3

L4 L5 L6 L7

1
1

8

4

L0 L1 L2 L3

L4 L5 L6 L7
distributed to

1

52

53

1. Chapel provides a library of standard domain maps
 to support common array implementations effortlessly

2. Advanced users can write their own domain maps in Chapel
 to cope with shortcomings in our standard library

3. Chapel’s standard layouts and distributions will be written
using the same user-defined domain map framework
 to avoid a performance cliff between “built-in”/optimized domain maps

and user-defined

4. Domain maps should only affect implementation and
performance, not semantics
 to support switching between domain maps effortlessly

54

Domain Maps

Data Parallelism

Task Parallelism

Base Language

Locality Control

HotPAR’10: User-Defined Distributions and Layouts in Chapel
Chamberlain, Deitz, Iten, Choi; June 2010

CUG 2011: Authoring User-Defined Domain Maps in Chapel
Chamberlain, Choi, Deitz, Iten, Litvinov; May 2011

Chapel release:

 Technical notes detailing domain map interface for programmers:

$CHPL_HOME/doc/technotes/README.dsi

 Current domain maps:

$CHPL_HOME/modules/dists/*.chpl

layouts/*.chpl

internal/Default*.chpl

56

Q3: How are data parallel loops implemented?
forall i in B.domain do B[i] = i/10.0;

forall c in C do c = 3.0;

 How many tasks? Where do they execute?

 How is the iteration space divided between the tasks?

58

A B C

Q4: How are parallel zippered loops implemented?
forall (a,b,c) in (A,B,C) do

a = b + alpha * c;

 Particularly given that the iterands might have incompatible
distributions, memory layouts, and parallelization strategies

Q3: How are data parallel loops implemented?
forall i in B.domain do B[i] = i/10.0;

forall c in C do c = 3.0;

 How many tasks? Where do they execute?

 How is the iteration space divided between the tasks?

59

Q4: How are parallel zippered loops implemented?
forall (a,b,c) in (A,B,C) do

a = b + alpha * c;

 Particularly given that the iterands might have incompatible
distributions, memory layouts, and parallelization strategies

A: Chapel’s leader-follower iterators are designed to
give users full control over such decisions

60

 Chapel defines all zippered forall loops in terms of
leader-follower iterators:
 leader iterators: create parallelism, assign iterations to tasks

 follower iterators: serially execute work generated by leader

 Given…
forall (a,b,c) in (A,B,C) do

a = b + alpha * c;

…A is defined to be the leader

…A, B, and C are all defined to be followers

61

 Conceptually, the Chapel compiler translates:
forall (a,b,c) in (A,B,C) do

a = b + alpha * c;

into:

inlined A.lead() iterator, which yields work…

for (a,b,c) in (A.follow(work),

B.follow(work)

C.follow(work)) do

a = b + alpha * c;

Leader iterators are defined using task/locality features:
iter BlockArr.lead() {

coforall loc in Locales do

on loc do

coforall tid in here.numCores do

yield computeMyChunk(loc.id, tid);

}

Follower iterators simply use serial features:
iter BlockArr.follow(work) {

for i in work do

yield accessElement(i);

}

62

Domain Maps

Data Parallelism

Task Parallelism

Base Language

Target Machine

Locality Control

63

 Given the previous leader iterators…
forall (a,b,c) in (A,B,C) do

a = b + alpha * c;

…would get rewritten by the Chapel compiler as:
coforall loc in Locales do

on loc do

coforall tid in here.numCores {

const work = computeMyChunk(loc.id, tid);

for (a,b,c) in (A.follow(work),

B.follow(work)

C.follow(work)) do

a = b + alpha * c; }

=

α·
+

=

α·
+

…permit users to write high-level parallel loops…
 …without tripping over all of the low-level details

 while still able to reason about them semantically

 and to create new loop schedules without compiler mods

…provide clear answers to our questions:
 Chapel semantics define a leader for each data parallel loop

 Leader iterators decide…
 how many tasks to use

 where the tasks execute

 what work each task owns

 Followers are responsible for yielding corresponding
iterations – even if they aren’t local
 gives them control over communication granularity/approach

64

Q: “But what if I don’t like the approach implemented
by an array’s leader iterator?”

A: Several possibilities…

65

forall (b,a,c) in (B,A,C) do

a = b + alpha * c;

66

Make something else the leader.

const ProblemSize = [1..n] dmapped BlockCyclic(start=1,

blocksize=64);

var A, B, C: [ProblemSize] real;

forall (a,b,c) in (A,B,C) do

a = b + alpha * C;

67

Change the array’s default leader by changing its
domain map (perhaps to one that you wrote yourself).

forall (a,b,c) in (dynamic(A, chunk=64), B, C) do

a = b + alpha * c;

68

Invoke some other leader iterator explicitly
(perhaps one that you wrote yourself).

69

70

PGAS 2011: User-Defined Parallel Zippered Iterators in Chapel,
Chamberlain, Choi, Deitz, Navarro; October 2011

Chapel release:

 See the AdvancedIters module, described in the “Standard
Modules” section of the language specification for some
interesting leader-follower iterators:

 OpenMP-style dynamic schedules

 work-stealing iterators

71

 Chapel avoids locking crucial implementation
decisions for HPC into the language design
 local and distributed array implementations

 parallel loop implementations

 Instead, these can be…
…specified in the language by an advanced user

…switched between with minimal code changes

72

Chapel Context

Motivation

Feature Tour

Advanced Features / Research Topics

Project Status and Overview

Chapel and Exascale

73

In a nutshell:
 Most features work at a functional level

 Many performance optimizations remain

This is a good time to:
 Try out the language and compiler

 Give us feedback to improve Chapel

 Use Chapel for non-performance-critical projects

 Use Chapel for parallel programming education

74

Give Chapel a try to see whether it’s on a useful path
for your computational idioms
 if not, help us course correct

 pair programming with us is a good approach

 evaluate performance based on potential, not present

Let others know about your interest in Chapel
 your colleagues and management

 Cray leadership

 the broader parallel community (HPC and mainstream)

Contribute to the project

 code, collaborations, funding
75

 Cray:

 External

Collaborators:

 Interns:

7676

Brad Chamberlain Sung-Eun Choi Greg Titus Vass Litvinov

Albert Sidelnik

(UIUC)

Jonathan Turner

(CU Boulder)

Kyle Wheeler

(Sandia)

Jonathan Claridge

(UW)

Hannah Hemmaplardh

(UW)

Andy Stone

(Colorado State)
Jim Dinan

(OSU)

Rob Bocchino

(UIUC)

Mackale Joyner

(Rice)

You? Your

Friend/Student/

Colleague?

Tom Hildebrandt

??????

(open reqs)

???

 Tasking using Qthreads: Sandia (Rich Murphy, Kyle Wheeler, Dylan Stark)

 paper at CUG, May 2011

 Interoperability using Babel/BRAID: LLNL (Tom Epperly, Adrian Prantl, et al.)

 paper at PGAS, Oct 2011

 Dynamic Iterators:

 Bulk-Copy Opt: U Malaga (Rafael Asenjo, Maria Angeles Navarro, et al.)

 Parallel File I/O:
 paper at ParCo, Aug 2011

 Improved I/O & Data Channels: LTS (Michael Ferguson)

 CPU-GPU Computing: UIUC (David Padua, Albert Sidelnik, Maria Garzarán)

 tech report, April 2011

 Interfaces/Generics/OOP: CU Boulder (Jeremy Siek, Jonathan Turner)

 Tasking over Nanos++: BSC/UPC (Alex Duran)

 Tuning/Portability/Enhancements: ORNL (Matt Baker, Jeff Kuehn, Steve Poole)

 Chapel-MPI Compatibility: Argonne (Rusty Lusk, Pavan Balaji, Jim Dinan, et al.)

http://chapel.cray.com/collaborations.html

 memory management policies/mechanisms

 dynamic load balancing: task throttling and stealing

 parallel I/O and checkpointing

 exceptions; resiliency

 application studies and performance optimizations

 index/subdomain semantics and optimizations

 targeting different back-ends (LLVM, MS CLR, …)

 runtime compilation

 library support

 tools: debuggers, performance analysis, IDEs, interpreters, visualizers

 database-style programming

 autotuning

 (your ideas here…)

7878

http://chapel.cray.com/collaborations.html

 Exascale is expected to bring new changes/challenges:
 increased sensitivity to locality within node architectures

 increased heterogeneity as well
 multiple processor types

 multiple memory types

 limited memory bandwidth, memory::FLOP ratio

 resiliency concerns

 power concerns

Exascale represents an opportunity to move to a programming
model that is less tied to architecture than those of the past

79

 In many respects, Chapel is well-positioned for exascale:
 distinct concepts for parallelism and locality

 not particularly tied to any hardware architecture

 supports arbitrary nestings of data and task parallelism

 In others, it betrays that it was a petascale-era design
 locales currently only support a single level of hierarchy

 lack of fault tolerance/error handling/resilience

(these were both considered “version 2.0” features)

We are addressing these shortcomings as current/future work

80

Higher-level programming models can help insulate
science from implementation
 yet, without necessarily abandoning control

 Chapel does this via its multiresolution design

Exascale represents an opportunity to move to
architecture-independent programming models
 ones that support general styles of parallel programming

 ones that separate issues of locality from parallelism

81

No-brainers:

 Performance Optimizations

 Feature Improvements/Bug Fixes

 Support Users and Collaborations

More advanced topics:

 Hierarchical Locales to target manycore/CPU+GPUs
 additional hierarchy and heterogeneity warrants it

 Resiliency/Fault Tolerance

 Develop post-HPCS strategy/funding

82

 Advisory Board
 help steer Chapel team’s priorities on a regular basis

 performance vs. features vs. a mix of both

 which optimizations and features to prioritize

 which benchmarks, idioms to focus on

 Agile milestones rather than a priori
 dynamically react to community’s needs, R&D challenges

 Improve openness of project, transition to community

 Unified Chapel reporting
 rather than reporting to several programs, Chapel is the program

 reduces reporting burden, permitting team to focus more on work

 brings those interested in Chapel to a single meeting

84

trees

ivy

85

• low-level

• closely matches underlying structures

• easy to implement

• lots of user-managed detail

• resistant to changes

• somewhat insidious

86

• higher-level

• more elegant, structured

• requires a certain investment of

time and force of will to establish

Early HPCS years:

 “The HPC community tried to plant a tree once. It didn’t
survive. Nobody should ever bother planting one again.”

 “Why plant a tree when you can’t be assured it will grow?”

 “Why would anyone ever want anything other than ivy?”

 “We’re in the business of building treehouses that last 40 years;
we can’t afford to build one in the branches of your sapling.”

 “This sapling looks promising. I’d like to climb it now!”

87

88

If you don’t want only ivy forever, you need to plant trees

and be patient (or fertilize them well)

Note that supporting one need not preclude the other

Chapel project page: http://chapel.cray.com
 overview, papers, presentations, language spec, …

Chapel SourceForge page: https://sourceforge.net/projects/chapel/

 release downloads, public mailing lists, code repository, …

Mailing Lists:
 chapel_info@cray.com: contact the team

 chapel-users@lists.sourceforge.net: user-oriented discussion list

 chapel-developers@lists.sourceforge.net: dev.-oriented discussion

 chapel-education@lists.sourceforge.net: educator-oriented discussion

chapel-bugs@lists.sourceforge.net: public bug forum

 chapel_bugs@cray.com: private bug mailing list

89

http://chapel.cray.com/
https://sourceforge.net/projects/chapel/

http://sourceforge.net/projects/chapel/http://chapel.cray.com chapel-info@cray.com

http://sourceforge.net/projects/chapel/
http://chapel.cray.com/
mailto:chapel-info@cray.com
mailto:chapel-info@cray.com
mailto:chapel-info@cray.com

