Chapel: Overview and
Features for Heterogeneity

Brad Chamberlain, Chapel Team, Cray Inc.

Heterogeneous C++ Working Group
February 5, 2013

@;;

Safe Harbor Statement

~

Kl'his presentation may contain forward-looking statements that are
based on our current expectations. Forward looking statements
may include statements about our financial guidance and expected
operating results, our opportunities and future potential, our product
development and new product introduction plans, our ability to
expand and penetrate our addressable markets and other
statements that are not historical facts. These statements are only
predictions and actual results may materially vary from those
projected. Please refer to Cray's documents filed with the SEC from
time to time concerning factors that could affect the Company and

these forward-looking statements.
_ . Y

Copyright 2018 Cray Inc.

\
Plan for this morning CRANT,

e Chapel context

e Overview of example core Chapel features ‘
e Additional detail on features related to heterogeneity

e Feel free to interrupt for Questions / Discussion

Copyright 2018 Cray Inc. Q

Chapel and Heterogeneity in a Nutshell e

(Y \
S \
\

e Chapel’s design supports hardware heterogeneity
e and in a way that is user-extensible without compiler changes \
e That said, in practice...

...virtually all of our work has been on homogeneous cases

...we haven'’t spend much time on many of the hardest cases
e e.g., no FPGA work, less GPU work than we'd like

= Copyright 2018 Cray Inc. @

What is Chapel?

What is Chapel? cRasy

Chapel: A productive parallel programming language

e portable
e open-source
e a collaborative effort 7N\
CRANY
‘ CHAPEL
Goals: =

e Support general parallel programming -
e “any parallel algorithm on any parallel hardware”

e Make parallel programming at scale far more productive

Copyright 2018 Cray Inc.

\
Scalable Parallel Programming Concerns et

)
S \
\

Q: What do HPC programmers need from a language?
A: Software engineering and performance ‘
What should execute simultaneously?
Locality: Where should those tasks execute?
Mapping: How to map the program to the system?
Separation of Concerns: Decouple these issues

Chapel is a language designed to address these needs
from first principles

Chapel and Other Languages

Chapel strives to be as...
...programmable as Python
...fast as Fortran
...scalable as MPI, SHMEM, or UPC
...portable as C
...flexible as C++
...fun as [your favorite programming language]

= Copyright 2018 Cray Inc.

CLBG Cross-Language Summary e e il
(Oct 2017 standings) «

W csharpcore
. cart
Wl crlang
W fpascal
N fsharp \
El gcc
N hec
. gnat
£o
e
N hack
ifc
. java
BN jruby
UL
node
. ccaml
- perl
. = php
. pythonl

."
o ~._JRuby

- Ruby "
Python Perl

s . racket
Smalltalk” - - g mm rust
- sbel
. - scala

OCaml jm] RaCk.é;t\ PHP W typescript

i - v
Dartw . g9 ® © e
¢ . an-sma es
Javaseript g - L Lﬂ@[@ e

Typescript oy ‘.&-. N ®

Execution Time
(normalized to fastest entry)
o

Compressed Code Size (normalized to smallest entry)

=

CLBG Cross-Language Summary
(Oct 2017 standings, zoomed in)

Execution Time
(normalized to fastest entry)

£

=

O
Typescript m- o ® \
Javaseript
- OCaml
. .
Scala
Haskell ® ‘F#
. o
a Java
*~._ . M Pascal :
e \.C#
Go % °
Ny
o "R
*@_"-:Rust
@ -
L CH+

C e

Compressed Code Size (normalized to smallest entry)

BN csharpcore
. dart
N erlang
. fpascal
. fsharp \
N pcc
. ghe
. gnat
g0
— cep
¥ hack
ife
. java
. jruby
- lua
node
m ocaml
. perl
. php
python3
N racket
- rust
sbel
. scala
swift
N typescript
W

“E. yarv

L | gmean-smallest
gmean-fasfest

CLBG Cross-Language Summary
(Oct 2017 standings, zoomed in)

Execution Time
(normalized to fastest entry)

£

=

il
Typescript m- o ® \
Javaseript
- OCaml
. .
Scala
Haskell ® ‘F#
. o
a Java
*~._ . M Pascal :
e \.C#
Go ® °
Ny
u| o B
Chapel ~@_"--:Rust
@ -.
e
C e

Compressed Code Size (normalized to smallest entry)

M chapel
BN csharpcore
. dart
N erlang
. fpascal
. fsharp \
N pcc
. ghe
. gnat
g0
— cep
¥ hack
ife
. java
. jruby
- lua
node
m ocaml
. perl
. php
python3
N racket
- rust
sbel
. scala
swift
N typescript
LI

“E. yarv

L | gmean-smallest
gmean-fasfest

CLBG Cross-Language Summary
(Oct 2017 standings)

£

=

Execution Time
(normalized to fastest entry)

Javaseript
Typescript

Dart m
nlnn

Chapel “ ®

Compressed Code Size (normalized to smallest entry)

.-‘
a ~._JRuby
- Ruby .
Python Perl
-
L e
Lua’ = g
° G
—~ . Erlang
N
°
OCami g Racket 11

Smalltalk - ‘s

B chapel
W csharpcore
. cart
Wl crlang
W fpascal
N fsharp
El gcc
N hec
. gnat
£o
e
N hack
ifc
. java
BN jruby
UL
node
. ccaml
- perl
. php
pythonl
W racket
. rust
sbel
- scala
swift
W typescript
LI
. yarv
[peean-smallest
peean-fastest

Chapel Performance: HPC Benchmarks .

LCALS: Chapel vs. C + OpenMP C.‘a"*f" LCALS H PCC RA HPCC RA Performance: Chapel vs. MPI :‘nA:Y"‘

Shared memory performance competitive with hand-coded

Performance of RA (atomics)

i' IilllllI-“I-IIIIIIIIIIIIJIIIIIII

! STREAM PRK R
Triad ISx Stencil L€

GUP/s

ref MPl bucketing —=— 1.15 +q oversubscribed -+

- - -
\ \ \
HPCC Stream Triad: Chapel vs. MPI+OpenMP = =Ras Isx Peformance: Chapel vs. MPI, SHMEM R Stencil PRK Scalability e
. \ . \ Stencil PRK Performance (weak scaling) .
\ \
[P0V o
Performance of STREAM I1Sx weakiSO Total Time
i 14 i LENON i
25000
20000 e 12 L, 000 e
e & 1
. M g T S
& 15000 L £, s
O 10000 El SHVEM R
5000 — g j —Chapel
= —MPI = 2000 - T
0 1 1 J) g
1632 64 128 256 2 P = L L)
0 16 32 64 128 256
Locales 1 2 4 8 16 32 64 Locales
R:«:ﬁ..;; : . chllze:: - 1.12 Global e Nodes (x 36 cores per node) PSPt —— Chapel ——
C @ C

<\ Nightly performance graphs online
N\ at: https://chapel-lang.org/perf

14 full-time employees + 2 summer interns + 2-4 GSoC students

Chapel Community Partners

- -
clEm OOl e £
COLLEGE AMD 3::::?::2 WESTERN

WASHINGTON UNIVERSITY

sk B ogpice MAR%%?AND

THE UNIVERSITY OF TOKYO
THE UNIVERSITY
OF ARIZONA

-~

: A
rreeee '"I

B Lawrence Livermore
National Laboratory

BERKELEY LAB
Lawrence Berkeley Sandia National Laboratories

National Laboratory

(and several others...)

https://chapel-lang.org/collaborations.htmi

{
@

Introduction to Chapel, by Example

(

Chapel language feature areas

=~

Chapel language concepts

Domain Maps

Task Parallelism
Base Language
Locality Control

Base Language

=~

C Domain Maps
Data Parallelism
Task Parallelism

b1 Base Language
Locality Control

Lower-level Chapel

Base Language Features, by example

iter fib(n) { config const n = 10;
var current = 0,
next = 1; for £ in fib(n) do

writeln () ;
for i in 1..n {
yield current;
current += next;
current <=> next;

Base Language Features, by example

=~

iter fib(n) {
var current = 0,
next = 1;

~

for i in 1..n {
yield current;
current += next;
current <=> next;

Configuration
(to avoid command-lin

declarations
e argument parsing)

./a.out —--n=1000000

‘ -
config const n =

for £ in fib (n)
writeln (f);

10;

do

Base Language Features, by example

Modern iterators

iter fib(n) { sufig const n = 10;
var current = 0,
next = 1; for £ in fib(n) do

writeln () ;
for i in 1..n {
yield current;
current += next;
current <=> next;

Base Language Features, by example

Static type inference for:
« arguments
* return types
« variables

iter fib(n)! \ \ config ¢dnst n = 10;
var current = 0,
next = 1; for £7in fib(n) do
writeln () ;

for i in 1..n {
yield current;
current += next;
current <=> next;

Base Language Features, by example cRas

Zippered iteration

iter fib(n) { config const n =[10;
var current = 0,
next = 1; for (i,f) in zip(0..#n, fib(n)) do
writeln("fib #", i, " is ", f);

for i in 1..n {
yield current;
current += next;
current <=> next;

Base Language Features, by example cRas

Range types and
operators

iter fib(n) { config const n
var current = 0
next = 1; for (i,f) in zip(0..#n, fib(n)) do

writeln("fib #", i, " is ", f);
for i in 1..n {
yield current;
current += next;
current <=> next;

Base Language Features, by example

iter fib(n) {
var current = 0,
next = 1;

for i in 1..n {
yield current;
current += next;
current <=> next;

configfconst n = 10;
for (i,f) in zip(0..#n,
writeln (;1

Base Language Features, by example

iter fib(n) {
var current = 0,
next = 1;

for i in 1..n {
yield current;
current += next;
current <=> next;

config const n = 10;
for (i,f) in zip(0..#n,
writeln (;1

(

Data Parallelism in Chapel AN

Chapel language concepts

C Domain Maps
D Higher-level
 Task Parallelism Chapel

Base Language
Locality Control

£

Data Parallelism, by example

dataParallel.chpl

config const n = 1000;

var D = {1..n, 1..n};

var A: [D] real;
forall (i,j) in D do

Ali,j] =1 + (3 - 0.5)/n;

writeln (A);

prompt> chpl dataParallel.chpl -o dataParallel

prompt>
1.

1
.1
1
1

1

1.3 1.51.7 1.9

2
3.
4
5

2.7
3.7
4.7
5.7

./dataParallel --n=5

\
Data Parallelism, by example CRAY

Domains (Index Sets) dataParallel.chpl

config const n = 1000;
var D = {1l..n, 1..n};

var A: [D] real;
forall (i,j) in D do

Ali,Jj] =1 4+ (J - 0.5)/n;
writeln (A);

prompt> chpl dataParallel.chpl -o dataParallel
prompt> ./dataParallel --n=5
1.1 1.3 1.5 1.7 1.9

12
.1 3.
1 4
15

2.7
3.7
4.7
5.7

\
Data Parallelism, by example CRAY

dataParallel.chpl

config const n = 1000;

var D = {1..n, 1..n};

var A: [D] real;
forall (i,j) in D do

Ali,j] =1 + (J - 0.5)/n;
writeln (A);

prompt> chpl dataParallel.chpl -o dataParallel
prompt> ./dataParallel --n=5
1.1 1.3 1.5 1.7 1.9

12
.1 3.
1 4
15

2.7
3.7
4.7
5.7

\
Data Parallelism, by example CRAY

dataParallel.chpl

config const n = 1000;
var D = {1l..n, 1..n};

Data-Parallel Forall Loops

var A: [D] real;
forall (i,j) in D do

Ali,Jj] =1 4+ (J - 0.5)/n;
writeln (A);

prompt> chpl dataParallel.chpl -o dataParallel
prompt> ./dataParallel --n=5
1.1 1.3 1.5 1.7 1.9

12
.1 3.
1 4
15

2.7
3.7
4.7
5.7

\
Data Parallelism, by example CRAY

dataParallel.chpl

config const n = 1000;

var D = {1..n, 1..n};
This is a shared memory program var A: [D] real;
Nothing has referred to remote forall (i,3j) in D do
locales, explicitly or implicitly Ali,j] =i + (3 - 0.5)/n;

writeln (2) ;

prompt> chpl dataParallel.chpl -o dataParallel
prompt> ./dataParallel --n=5
1.1 1.3 1.5 1.7 1.9

12
.1 3.
1 4
15

2.7
3.7
4.7
5.7

\
Locales ¢=I=A:Yf '

S \
\

e Unit of the target system useful for reasoning about locality

e Each locale can run tasks and store variables \
e Has processors and memory (or can defer to something that does)

e For most HPC systems, locale == compute node

Locales:
Iocale\ locale locale locale

0 1 2 3
User’s main() executes on locale #0

f ,/"\

\
Data Parallelism, by example CRAY

dataParallel.chpl

config const n = 1000;

var D = {1..n, 1..n};
This is a shared memory program var A: [D] real;
Nothing has referred to remote forall (i,3j) in D do
locales, explicitly or implicitly Ali,j] =i + (3 - 0.5)/n;

writeln (2) ;

prompt> chpl dataParallel.chpl -o dataParallel
prompt> ./dataParallel --n=5
1.1 1.3 1.5 1.7 1.9

12
.1 3.
1 4
15

2.7
3.7
4.7
5.7

Distributed Data Parallelism, by example A~

dataParallel.chpl

use CyclicDist;
config const n = 1000;

var D = {1l..n, 1..n}
dmapped Cyclic(startIdx = (1,1));

var #4: [D] real;

Domain Maps éil/(i,j) in D do
(Map Data Parallelism to the System) Ali,j] =i + (3 - 0.5)/n;

writeln (2) ;

prompt> chpl dataParallel.chpl -o dataParallel
prompt> ./dataParallel --n=5 --numLocales=4
1.1 1.3 1.5 1.7 1.9

12
.1 3.
1 4
15

2.7
3.7
4.7
5.7

Distributed Data Parallelism, by example A~

magic? | HPF-like? dataParallel.chpl
o use CyclicDist;
descriptive? config const n = 1000;

var D = {1l..n, 1..n}
O dmapped Cyclic(startIdx = (1,1));
O var A: [D] real;

forall (i,j) in D do

Not in the slightest... Ali,3] =i+ (3 - 0.5)/n;

.) i writeln (A);
» Lowering of code is well-defined
e User can control details prompt> chpl dataParallel.chpl -o dataParallel

e Part of Chapel‘s multiresolution prompt> ./dataParallel --n=5 --numLocales=4
phl/OSOphy 1.1 1.3 1.51.7 1.9

12
.1 3.
1 4
15

2.7
3.7
4.7
5.7

Chapel’s Multiresolution Design: Motivation =Rac

| HPF [High-Level
EZZ8l—| Abstractions

Low-Level m
Implementation OpenMP
Concepts Pthreads

Target Machine Target Machine

“Why is everything so tedious/difficult?”

“‘Why don’t I have more control?”

“‘Why don’t my programes trivially port
to new systems?”

Chapel’s Multiresolution Philosophy — Yo

e \
S \
\

Multiresolution Design: Support multiple tiers of features
e higher levels for programmability, productivity \
e lower levels for greater degrees of control

Domain Maps

Task Parallelism

Base Language
Locality Control

e build the higher-level concepts in terms of the lower
e permit users to intermix layers arbitrarily

7\
|
<\/

\
Domain Maps: A Multiresolution Feature CRANY

e \
S \
\

Domain maps are “recipes” that instruct the compiler
how to map the global view of a computation... \

A = B + alpha * C;

...to the target locales’ memory and processors:
I I

+ 1

-+

a a

+ 1

Locale 1 Locale 2

I /‘\
{{(}

Authoring Domain Maps —_P-CUy

e Users can write their own domain maps

e Implemented within Chapel itself \
e Create an object type per concept:

e The domain map itself

Ad _ Note: all Chapel arrays

° Adoman are implemented this way

e An array
e Make them satisfy a standard interface

e e.g., arrays must support iteration, random access, etc.
e Compiler targets this interface in implementing the language
e Goal: make the language flexible, future-proof

=
e/ Copyright 2018 Cray Inc. Q

Distributed Data Parallelism, by example A~

dataParallel.chpl

use CyclicDist;

config const n = 1000;
var D = {1l..n, 1..n}
dmapped Cyclic(startIdx = (1,1));

var A: [D] real;
forall (i,j) in D do

Ali,j] =1 + (J - 0.5)/n;
writeln (A);

prompt> chpl dataParallel.chpl -o dataParallel
prompt> ./dataParallel --n=5 --numLocales=4
1.1 1.3 1.5 1.7 1.9

12
.1 3.
1 4
15

2.7
3.7
4.7
5.7

Task Parallelism and Locality Control

«
—)

——)

Domain Maps
Data Parallelism
Task Parallelism
Base Language
Locality Control

Task Parallelism and Locality, by example o

taskParallel.chpl

coforall loc in Locales do
on loc {
const numTasks = here.numPUs () ;
coforall tid in 1..numTasks do
writef ("Hello from task %$n of %n "+
"running on %s\n",

tid, numTasks, here.name);

prompt> chpl taskParallel.chpl -o taskParallel
prompt> ./taskParallel —--numLocales=2
Hello from task 1 of 2 running on nl033

Hello from task 2 of running on nl032

2
Hello from task 2 of 2 running on nl033
Hello from task 1 of 2

running on nl032

Task Parallelism and Locality, by example

Abstraction of

System Resources

taskParallel.chpl

on loc
const numTasks =

coforall loc in Locales do

here.numPUs () ;

coforall tid in 1..numTasks do
writef ("Hello from task %n of %n
"running on %s\n",

tid, numTasks, here.name);

promp
promp
Hello
Hello
Hello
Hello

t> chpl taskParallel.chpl -o taskParallel
t>

from

./taskParallel —--numLocales=2

task 1 of 2 nl1033
task 2 of 2 nl1032
task 2 of 2 nl033
task 1 of 2 nl1032

running on

from running on

from running on

from

running

on

Task Parallelism and Locality, by example

High-Level

Task Parallelism taskParallel.chpl

-coforall loc in Locales do
on loc {
const numTasks = here.numPUs () ;
coforall tid in 1..numTasks do
writef ("Hello from task %$n of %n "+
"running on %s\n",

tid, numTasks, here.name);

prompt> chpl taskParallel.chpl -o taskParallel
prompt> ./taskParallel —--numLocales=2
Hello from task 1 of 2 running on nl033

Hello from task 2 of running on nl032

2
Hello from task 2 of 2 running on nl033
Hello from task 1 of 2

running on nl032

Task Parallelism and Locality, by example

Control of Locality/Affinity

taskParallel.chpl

coforall loc in Locales do
on loc {
const numTasks = here.numPUs () ;
coforall tid in 1..numTasks do
writef ("Hello from task %n of %n

"running on %s\n",

tid, numTasks, here.name);

prompt> chpl taskParallel.chpl -o taskParallel

prompt> ./taskParallel —--numLocales=2
Hello from task 1 of 2 running on nl033

Hello from task 2 of running on nl032

2
Hello from task 2 of 2 running on nl033
Hello from task 1 of 2

running on nl032

Task Parallelism and Locality, by example

Abstraction of

System Resources

taskParallel.chpl

coforall loc in Locales do
on loc {

const numTasks = here.numPUs () ;

coforall tid in 1..numTasks do
jtef ("Hello from task %n of %n

T $s\n",

tid,

on

numTasks, here.name) ;

prompt> chpl taskParallel.chpl -o taskParallel

./taskParallel —--numLocales=2

task 1 of 2 nl1033
task 2 of 2 nl1032
task 2 of 2 nl033
task 1 of 2 nl1032

prompt>
Hello
Hello
Hello
Hello

from running on

from running on

from running on

from running on

Task Parallelism and Locality, by example e

High-Level

Task Parallelism

taskParallel.chpl

coforall loc in Locales do
on loc {
const numTasks = here.numPUs () ;
\\\\'coforall tid in 1..numTasks do
writef ("Hello from task %$n of %n "+
"running on %s\n",

tid, numTasks, here.name);

prompt> chpl taskParallel.chpl -o taskParallel
prompt> ./taskParallel --numLocales=2
Hello from task 1 of 2 running on nl033

Hello from task 2 of running on nl032

2
Hello from task 2 of 2 running on nl033
Hello from task 1 of 2

running on nl032

Task Parallelism and Locality, by example e

taskParallel.chpl

coforall loc in Locales do
on loc {
const numTasks = here.numPUs () ;
coforall tid in 1..numTasks do

writef ("Hello from task %$n of %n "+

Not seen here:

"running on %s\n",
Data-centric task coordination tid, numTasks, here.name);
via atomic and full/empty vars }

prompt> chpl taskParallel.chpl -o taskParallel
prompt> ./taskParallel --numLocales=2
Hello from task 1 of 2 running on nl033

Hello from task 2 of running on nl032

2
Hello from task 2 of 2 running on nl033
Hello from task 1 of 2

running on nl032

B
<\./

Task Parallelism and Locality, by example o

taskParallel.chpl

coforall loc in Locales do
on loc {
const numTasks = here.numPUs () ;
coforall tid in 1..numTasks do
writef ("Hello from task %$n of %n "+
"running on %s\n",

tid, numTasks, here.name);

prompt> chpl taskParallel.chpl -o taskParallel
prompt> ./taskParallel --numLocales=2
Hello from task 1 of 2 running on nl033

Hello from task 2 of running on nl032

2
Hello from task 2 of 2 running on nl033
Hello from task 1 of 2

running on nl032

Parallelism and Locality: Distinct in Chapel

e This is a parallel, but local program:

coforall i in 1..msgs do
writeln (“Hello from task ”, 1)

e This is a distributed, but serial program:

writeln (“Hello from locale 0!”);
on Locales[l] do writeln(“Hello from locale 1!7);
on Locales[2] do writeln(“Hello from locale 2!”)

:

e This Is a distributed parallel program:

coforall i in 1..msgs do
on Locales[i%numLocales] do
writeln (“Hello from task ”, i,
“ running on locale ”, here.id);

Copyright 2018 Cray Inc.

®
\
CR=RAY |
[\

S \
\

Chapel: Scoping and Locality

var i: int;

Locales (think: “compute nodes”)

1{
-

Copyright 2018 Cray Inc.

Chapel: Scoping and Locality

var i: int;
on Locales[1l] {

Locales (think: “compute nodes”)

1{
-

Copyright 2018 Cray Inc.

Chapel: Scoping and Locality

var i: int;
on Locales[1l] {
var j: int;

Locales (think: “compute nodes”)

1{
-

Copyright 2018 Cray Inc.

Chapel: Scoping and Locality

var i: int;
on Locales[1] {
var j: int;
coforall loc in Locales {
on loc {

Locales (think: “compute nodes”)

Copyright 2018 Cray Inc.

Chapel: Scoping and Locality

var i: int;
on Locales[1l] {
var j: int;
coforall loc in Locales {
on loc {
var k: int;

Locales (think: “compute nodes”)

Copyright 2018 Cray Inc.

Chapel: Scoping and Locality

var i: int;
on Locales[1l] {
var j: int;
coforall loc in Locales {
on loc {
var k: int;
k = 2%1 + 73,

OK to access i, j, and k
) wherever they live

Locales (think: “compute nodes”)

Copyright 2018 Cray Inc.

Chapel: Scoping and Locality

var i: int;
on Locales[1l] {
var j: int;
coforall loc in Locales {
on loc {
var k: int;
k = 2%1 + 73,

here, i and j are remote, so

the compiler + runtime will

} transfer their values

Locales (think: “compute nodes”)

=\
I 7
1'\\ (\

=

Copyright 2018 Cray Inc.

Chapel: Locality queries

var i: int;
on Locales[1l] {
var j: int;
coforall loc in Locales {
on loc {
.here... // query the locale on which this task is running
..J.locale.. //query the locale on which jis stored
.here.physicalMemory (..).. / query system characteristics
.here.runningTasks () .. // query runtime characteristics

Locales (think: “compute nodes”)

1{
-

Copyright 2018 Cray Inc.

Classic Locales

e Historically, Chapel’s locales were black boxes
e Intra-node concerns handled by compiler, runtime, OS

e This was sufficient when compute nodes were simple

cpu

cpu

cpu cpu

cpu
locale locale locale locale

cpu

COMPUTE | STORE | ANALYZE
Copyright 2018 Cray Inc.

O

Classic Locales

(o)

locale

locale

locale

locale

COMPUTE

STORE

Copyright 2018 Cray Inc.

ANALYZE

\
Classic Locales (] — PGS

[\
S \
\

Classic model breaks down for more complex cases
E.g. multiple flavors of memory or processors \

— NUMA domain
accelerator
cpu | cpu
mem cpu| cpu
cpu | cpu
cpul qpu .
locale locale locale i i
L cpu | cpu :
mem .
|| [epu] cpu |
Could hope compilers will “simply get smart enough” F NUMA domain
q
...but seems naive and doesn’t match Chapel’s philosophy (locale
e DU DU CpU| | |
locale locale locale locale

Hierarchical Locales

e So, we made locales hierarchical

‘gz ; COMPUTE | STORE | ANALYZE
Copyright 2018 Cray Inc.

Hierarchical Locales

e So, we made locales hierarchical

e Locales can now themselves contain locales \
e E.g., an accelerator sub-locale, a scratchpad memory sub-locale

sub-locale
A

sub-locale
A

sub-locale
A

sub-locale
A

[c][c][D][E]

sub-locale B

[c][c][D][E]

sub-locale B

[c][c][D][E]

sub-locale B

[c][c][D][E]

sub-locale B

locale

locale

locale

locale

e Target sub-locales with on-clauses, as before
on Locales[0].GPU do computationThatLikesGPUs () ;

e |deally, hide such logic in abstractions: domain maps, parallel iterators
e Introduced a new multiresolution type: locale models

{{(}
@

\
Chapel’s Locale Models cRAY

e User-specified type representing locales

e Similar goals to domain maps:
e Support user implementation of key high-level abstractions
e Make language future-proof (w.r.t. emerging architectures)

Copyright 2018 Cray Inc.

Authoring a Locale Model — VN

e Creating a locale model:

e Create a top-level locale object type
e In turn, it can contain fields representing sub-locales

e Each locale / sub-locale type must meet a required interface:
e Memory: How is it managed? (malloc, realloc, free)
e Tasking: How do | launch and synchronize tasks?

e Communication: How are data & control transferred between locales?
e gets, puts, active messages
e widening of pointers

Copyright 2018 Cray Inc.

An Example: The numa Locale Model

£

=

A=

quinyy,Bdl-diyo-ge-uoex-eiul-z6 | L £g/sebewi/eipaw/woo Bewod: | mmmy/:dny

physical

conceptual
NUMA domain
cpu|cpu
mem
cpu|cpu
cpu|cpu
mem
cpu|cpu
NUMA domain

NUMA compute node

-
]
CRAY

[\
S \
$CHPL_HOME/modules/.../numa/LocaleModel.chpl \
class NumaDomain : AbstractLocaleModel ({
const sid: chpl sublocID_t;
}
// The node model \

class LocaleModel : AbstractLocaleModel ({
const numSublocales: int;
var childSpace: domain (1) ;
var childLocales: [childSpace] NumaDomain;

}

// support for memory management
proc chpl here alloc(size:int, md:int(16)) { .. }

// support for "on" statements
proc chpl executeOn
(loc: chpl localeID t, // target locale

fn: int, // on-body func idx
args: c_void ptr, // func args
args size: int(32) // args size

) { .}

// support for tasking stmts: begin, cobegin, coforall
proc chpl taskListAddCoStmt

(subloc id: int, // target subloc
fn: ing, // body func idx
args: c_void ptr, // func args

ref tlist: _Eask_list, // task list

tlist node_id: int // task list owner

) { .}

\
Locale Models: Status {ed — PPV

e All Chapel compilations use a locale model
e Set via environment variable or compiler flag
e Current locale models:
e flat: the default, has no sublocales (as in the classic model)

e numa: supports a sub-locale per NUMA domain within the node
e knl: for Intel® Xeon Phi™: numa w/ sublocale for HBM/MCDRAM

e In practice...
e we use the ‘flat’ locale model almost exclusively

(@

Copyright 2018 Cray Inc.

\
Performance: ‘numa’ vs. ‘flat’ CRANY |

e Using ‘numa’ leads to performance overheads
e Local arrays must be “chunked” between the numa sublocales
e Indexing must do extra work to pick the right chunk

e Though ‘flat’ has no sub-locales, it’s also NUMA-aware
e First-touch heuristics used to map sub-arrays to NUMA domains
e Yet array remains contiguous in memory = simple indexing

e As a result, ‘numa’ rarely outperforms ‘flat’

Copyright 2018 Cray Inc.

Challenges: Static analysis & locality AN

Q \
S \
\

e Local vs. Remote Locales (distributed or shared memory?)

e |n general, given: \
on x.locale ..

can't statically tell whether locale shares memory with "here’ or not

e May result in overheads due to conservatism
e “Assuming it's remote, I'll introduce wide pointers & communication, ...”

= Copyright 2018 Cray Inc.

\
Challenges: Memory-only locales cRAaY

e What if a locale only represents memory? (say)

e Have interface run tasks on other locales with processors
e Choice of policy is up to locale model author
e Round-robin, dynamic load-balance, nearest, ...

=/ Copyright 2018 Cray Inc.

Wrapping Up

\
Summary cRAY |

(Y \
S \
\

e Chapel’s design uses a multiresolution philosophy
e High-level for productivity \
e Low-level for control
o User-extensible for flexibility, future-proof design
e Locale models support mapping to new architectures
e Provide bridge from compiler to system resources
e Enables targeting of heterogeneous resources
e Chapel performance can match C+MPI+OpenMP

o With improvements in readability, writability, code size

= Copyright 2018 Cray Inc. @

Possible Discussion Topics

e Error-handling / Exceptions

2N
| {1}
@

|
@

Chapel Resources

Chapel Central: https://chapel-lang.org/

The Chapel Parallel Programming Language

What is Chapel?

Chapel is a modern programming language that is..

« paraliel: contains first-class concepts for concurrent and parallel computation
productive: designed with programmability and performance in mind
portable: runs on laptops, clusters, the doud, and HPC systems

scalable: supports locality-oriented features for distributed memory systems
open-source: hosted on GitHub, permissively |icensed

.
.
.
.

New to Chapel?

As an introduction to Chapel, you may want to...

* read a Diog article or Dook chapter

watch an overview talk or browse its slides

gownload the release

browse sampie Programs

view gther resources to leamn how to trivially write distributed programs like this:

use Cyclicdist; /7 use the Cyelic distridution (lbrory
config const n « 109; /7 wse .Ja.owt --necvals to override this defoult

forall | in (1..n) dmapped Cyclic(starticxs1) do
writels{"Hello from iteration *, 1, * of “, n, * rusning on node “, here.ld);

What's Hot?

Chapel 1.16 is now avallable—download a copy today!
The CHIUW 2018 call for participation is now available!

* Arecent Cray blog post reports on highlights from CHIUW 2017.
« Chapel is now one of the supported languages on Try It Online!

.

Watch talks from ACCU 2017, CHIUW 2017, and ATPESC 2016 on YouTube.
Browse sides from PADAL, EAGE, EMBRACE, ACCU, and other recent talks.
See also: What's New?

.

Copyright 2018 Cray Inc.

How to Track Chapel e

http://facebook.com/ChapelLanguage
http://twitter.com/ChapelLanquage
https://www.youtube.com/channel/lUCHMmM27bYjhknK5mU7ZzPGsQ/
chapel-announce@llsts sourceforge.net

?‘- W

The 2nd Annual c

s e

. =0

= Copyright 2018 Cray Inc. @

Suggested Reading (healthy attention spans) Cl:oA‘Y:“‘ '

S \
\

Chapel chapter from Programming Models for Parallel Computing
a detailed overview of Chapel’s history, motivating themes, features \
published by MIT Press, November 2015
edited by Pavan Balaji (Argonne)
chapter is now also available online

Other Chapel papers/publications available at https://chapel-lang.org/papers.html

~
|
N\ =

Suggested Reading (short attention spans) =Ra~

(Y \
S \
\

CHIUW 2017: Surveying the Chapel Landscape, Cray Blog, July 2017.
e a run-down of recent events

Chapel: Productive Parallel Programming, Cray Blog, May 2013.
e a short-and-sweet introduction to Chapel

Six Ways to Say “Hello” in Chapel (parts 1, 2, 3), Cray Blog, Sep-Oct 2015.
e a Series of articles illustrating the basics of parallelism and locality in Chapel

Why Chapel? (parts 1, 2, 3), Cray Blog, Jun-Oct 2014.

e a series of articles answering common questions about why we are pursuing Chapel in
spite of the inherent challenges

[Ten] Myths About Scalable Programming Languages, |EEE TCSC Blog

(index available on chapel-lang.org “blog posts” page), Apr-Nov 2012.

e a series of technical opinion pieces designed to argue against standard reasons given for
not developing high-level parallel languages

=N

/6\
C
k.// Copyright 2018 Cray Inc. Q

Chapel StackOverflow and GitHub Issues

Tagged Questions Sewest

4
Crapel. P Cancade Mgh Productivity Language, & 8 paralel programming lnguasge developed by Cray

o™ more 0D Users FyNONYMS.

Can one generate a grid of the Locales where a Distribution is mapped?

¥ | run e following code: use SlockDist, config const dimension: int = & const space = (0.8
-]) const doman(2) wBaxssgace) «

ace wed 13 hoursll

tamymog
522

Is “[<var> in <distributed variable>]" equivalent to “forall"?

fotced something 0 a snigpet of code | was gven: var D: domain(2) dmagped BlockRoun
= Spece var A (D] it [a n Al & = alocale it s [a 0 A] equivalent o forsl ain A g =

sytas chapel oed 15 hounl
barymog
5242

Get Non-primitive Variables from within a Cobegin - Chapel

wart 1 compute some information In paralel and use the result outside ™e cobegn. To bel

My fQUrement i 10 feEve & SOmar (and oher NON prirmitive tyDed) ihe the var ad

race wed Acr 18 ol
<‘ ool
w 151 «%

Is there a default String conversion method in Chapel?

s Pare & default method that gets called when | Iry 1o cast an object into a string? (E g 108l
s __ e Pyihon.) | want 15 be abie 10 @0 the folowing with an array of Objects,

[/ chapel-lang / chapel

Filters ~

©OWatch~ 48

Code (issues 292 Pull requests 26 Projects 0 Settings Insights «
is:issue is:open Labels Milestones
@ 2920pen v 77 Closed Author « Labels ~ Projects

Implement “bounded-coforall* optimization for remote coforalls area: Compller

#6357 opened 13 hours ago by ronawho

Consider using pr ics forr coforalls EndCount area: Complier

#6356 opened 13 hours 390 by ronawho Dot

make uninstall ares: BTR type: Feature Aeguest

#6353 opened 14 hours 890 by mppl

make check doesn't work with . /configure ares: 8TR

#6352 opened 16 howrs ago by mppl

Passing variable via in intent to a forall loop seems to create an iteration-private variable,
not a task-private one area: Compiler types Big

#6351 cpened a day ago by cassela

Remove chpl_comm_make_progress area: Runtime ecasy type: Design

#6349 opened a day ago by sungeunchol

Runtime error after make on Linux Mint ares: BTR user issue

#6348 opened a day g0 by danindiana

o Unstar 488

Milestones ~

Yrork 148

Assignee ~ Sort~

Copyright 2018 Cray Inc.

Where to..

Submit bug reports:
GitHub issues for chapel-lang/chapel: public bug forum
chapel_bugs@cray.com: for reporting non-public bugs

Ask User-Oriented Questions:
StackOverflow: when appropriate / other users might care
#chapel-users (irc.freenode.net): user-oriented IRC channel
chapel-users@lists.sourceforge.net: user discussions

Discuss Chapel development
chapel-developers@lists.sourceforge.net: developer discussions
#chapel-developers (irc.freenode.net): developer-oriented IRC channel

Discuss Chapel’s use in education
chapel-education@lists.sourceforge.net: educator discussions

Directly contact Chapel team at Cray: chapel info@cray.com

e

Copyright 2018 Cray Inc.

{
@

Questions?

\
Legal Disclaimer SRSy

Information in this document is provided in connection with Cray Inc. products. No license, express or implied, to any intellectual property o \

rights is granted by this document.
Cray Inc. may make changes to specifications and product descriptions at any time, without notice.
All products, dates and figures specified are preliminary based on current expectations, and are subject to change without notice. \

Cray hardware and software products may contain design defects or errors known as errata, which may cause the product to deviate from
published specifications. Current characterized errata are available on request.

Cray uses codenames internally to identify products that are in development and not yet publically announced for release. Customers and
other third parties are not authorized by Cray Inc. to use codenames in advertising, promotion or marketing and any use of Cray Inc.
internal codenames is at the sole risk of the user.

Performance tests and ratings are measured using specific systems and/or components and reflect the approximate performance of Cray
Inc. products as measured by those tests. Any difference in system hardware or software design or configuration may affect actual
performance.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY and design, SONEXION, and
URIKA. The following are trademarks of Cray Inc.. ACE, APPRENTICE2, CHAPEL, CLUSTER CONNECT, CRAYPAT, CRAYPORT,
ECOPHLEX; LIBSCI, NODEKARE, THREADSTORM. The following system family marks, and associated model number marks, are
trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT, and XT. The registered trademark LINUX is used pursuant to a sublicense from LMI,
the exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis. Other trademarks used in this document are the
property of their respective owners.

,/E&\\
C
k.// Copyright 2018 Cray Inc. Q

