—1

Hewlett Packard
Enterprise

~
MAKING PARALLEL COMPUTING ™ /\\
AS EASY AS PY(THON), W
FROM LAPTOPS TO SUPERCOMPUTERS N\
— A
Brad Chamberlain, distinguished technologist R
HPE Dev Munch & Learn
April 20, 2022 /‘) -

PARALLEL COMPUTING BASICS

Q: What is parallel computing? HPC =

A: Running an application using multiple processors in order to... High Performance Computing
..run it faster and/or... (parallel computing at the
..run it using larger data sefs... largest scales)

...than you could with just a single processor.

Q: Where can | run parallel programs?

A: These days, everywhere:
« multi-core processors in laptops
o commodity clusters
» the cloud

« enterprise servers and supercomputers
—HPE Apollo, HPE Superdome Flex, HPE Cray EX, ...

Q: What are the main barriers to doing parallel computing?
A: Writing parallel programs is challenging by nature—and even more so for distributed memory systems

—

PARALLEL COMPUTING THAT’S ASEASY AS PYTHON?

Imagine having a programming language for parallel computing that was as...
...programmable as Python

..yet also as...
...Fast as Fortfran
...scalable as MP| or SHMEM
...portable as C
...flexible as C++
..Iype-safe as Fortran, C, C++, ...
...fun as [your favorite programming language]

This is the motivation for the Chapel language

WHAT IS CHAPEL?

Chapel: A modern parallel programming language N
e portable & scalable
e open-source & collaborative _,
Goals:

e Support general parallel programming
o Make parallel programming at scale far more productive

WHAT DO CHAPEL PROGRAMS LOOK LIKE?

helloTaskPar.chpl: print a message from each core in the system

fillArray.chpl: declare and initialize a distributed array

coforall loc in {
on loc {
const numTasks = .maxTaskPar;
coforall tid in 1. .numTasks do

(

tid, numTasks, .name) ;

> chpl helloTaskPar.chpl

> ./helloTaskPar --numLocales=4
Hello from task of 4 on nl1032
Hello from task of 4 on nl1032
Hello from task of 4 on nl1034

Hello from task of on nl1032
Hello from task of on nl1033
Hello from task of on nl1034

use ;
config const n = 1000;
const D= {1l..n, 1..n}
dmapped (startIdx = (1,1));

var A: [D] real;

forall (i,]) in D do
Afi,j3] =1 + (3 - 0.5)/n;

(A) ;

chpl fillArray.chpl
./fillArray --n=5 --numLocales=4
1.3 1.5 1.7 1.9

2.7
3.7
4.7
5.7

KEY CHARACTERISTICS OF CHAPEL

» compiled: to generate the best performance possible
» statically typed: to avoid simple errors after hours of execution

e interoperable: with C, Fortran, Python, ...
o portable: runs on laptops, clusters, the cloud, supercomputers
e open-source: fo lower barriers to adoption and leverage community contributions

CHAPEL RELEASES

Q: What is provided in a Chapel release?
A: Chapel releases contain...
...the Chapel compiler (‘chpl’): translates Chapel source code into optimized executables
...runtime libraries: help map Chapel programs to a system’s capabilities (e.g., processors, network, memory, ...)

...library modules: provide standard algorithms, data types, capabilities, ...
...documentation: also available online at: https://chapel-lang.org/docs/

..sample programs: primers, benchmarks, etc.

Q: How often is Chapel released? When is the next one?
A: New Chapel releases are made available every 3-6 months
 version 1.26.0 was released March 31, 2022

https://chapel-lang.org/docs/

D A
HOW DOES CHAPEL COMPARE Nt §
TO OTHER PROGRAMMING
LANGUAGES? A
L 4

FOR DESKTOP BENCHMARKS, CHAPEL TENDS TO BE COMPACT AND FAST

100
mm chapel

I csharpcore
mam dartexe
EEm erlang
I fpascal
mmm fsharpcore
I gcc
BN ghc
N gnat

go
. gpp

ifc
. java
m julia
. lua

node
. ocaml
mmm perl
B php

Pytion =
O B ruby

A RUby \\\\ BN rust
Rackef . socl

swift

= S [] gmean-smallest

Dal"l' T i = \\\\\\\ Erlang () gmean-fastest
20 - DJ@W@@@?ﬂ[@ﬁ 5
Julia B -

80 -

J
\
3
;
<
3
8
8
Ilt I \\
\ . Smalltalk ™.
y
\ » 0y
5
N 32 e
60 - \ N 2
\ ;
:
e N,
5

40 -

Execution Time
(normalized to fastest entry)
.
o
o

1
1.0 15 2.0 2.5 3.0 3.5

Compressed Code Size (AnormaAIized to smallest entry)

: (graph generated by scraping and summarizing data from the Computer Language Benchmarks Game on April 18, 2022)

https://benchmarksgame-team.pages.debian.net/benchmarksgame/index.html

FOR DESKTOP BENCHMARKS, CHAPEL TENDS TO BE COMPACT AND FAST

10
chapel
csharpcore
dartexe
erlang
fpascal
fsharpcore
gcc
ghc
gnat
go
app
ifc
iava [L{iSm
julia
lua
node
ocaml
perl
php
X . Al python3
racket
ruby
rust

S Petaml o Jeveserdpt
it G2 ‘\\\\\ sbcl

Pascal \\\‘Q :\‘?:::‘ \\\‘\\\ \\\\\ D gmean-smallest

\ CH+ ®
‘ o Dart

Execution Time
/III IARRRRRRERRRRRRER

(normalized to fastest entry)

@ ® T ‘ Java (O gmean-fastest

° o S~ F# T il
Chapel jylia R = o C#

1.0 15 2.0 2.5 3.0 3.5

Compressed Code Sizé Cnormélized to smallest entry)

: (graph generated by scraping and summarizing data from the Computer Language Benchmarks Game on April 18, 2022)

https://benchmarksgame-team.pages.debian.net/benchmarksgame/index.html

-~ \
'@
HOW DOES CHAPEL COMPARE - N
TO PROGRAMMING APPROACHES
USED FOR HPC? A
W

KEY CONCERNS FOR SCALABLE PARALLEL COMPUTING

1. parallelism: What tasks should run simultaneously?
2. locality: Where should tasks run? Where should data be allocated?

Locale O

oo
o O

Locale 1

dhe
O O

Locale 2

oo
oo

Processor Core

[]Memory

STREAM TRIAD: A TRIVIAL CASE OF PARALLELISM + LOCALITY

Given: m-element vectors A, B, C
Compute:Vie 1.m, A, =B; + a-C,

In pictures:

S A A
BT T TTTTTTTTITTTITTTTITTT]
+
COITTTTTTTTTTTTITTIITTITT]
o

STREAM TRIAD: A TRIVIAL CASE OF PARALLELISM + LOCALITY

Given: m-element vectors A, B, C
Compute:Vie 1.m, A, =B; + a-C,

In pictures, in parallel (shared memory / multicore):

STREAM TRIAD: A TRIVIAL CASE OF PARALLELISM + LOCALITY

Given: m-element vectors A, B, C
Compute:Vie 1.m, A, =B; + a-C,

In pictures, in parallel (distributed memory):

STREAM TRIAD: A TRIVIAL CASE OF PARALLELISM + LOCALITY

Given: m-element vectors A, B, C
Compute:Vie 1.m, A, =B; + a-C,

In pictures, in parallel (distributed memory multicore):

STREAM TRIAD IN CONVENTIONAL HPC PROGRAMMING MODELS

Many Disparate Notations for Expressing Parallelism + Locality

#include <hpcc.h> m

static int VectorSize;
static double *a, *b, *c;

int HPCC_StarStream (HPCC_Params *params) {
int myRank, commSize;
int rv, errCount;
MPI_Comm comm = MPI_COMM WORLD ;

MPI Comm size(comm, &commSize);
MPI Comm_ rank(comm, &myRank);

rv = HPCC_Stream(params, 0 == myRank);
MPI_Reduce(&rv, &errCount, 1, MPI_INT, MPI_SUM,
0, comm) ;

return errCount;

}

int HPCC_Stream (HPCC_Params *params, int doIO) {
register int j;
double scalar;

VectorSize = HPCC_LocalVectorSize(params, 3,
sizeof (double), 0);

a = HPCC_XMALLOC(double, VectorSize);
b = HPCC_XMALLOC(double, VectorSize);
c = HPCC_XMALLOC(double, VectorSize);

if (ta || 'b |] 'e) {
if (c) HPCC_free(c);
if (b) HPCC free(b);
if (a) HPCC_free(a);
if (doIO) {
fprintf(outFile, "Failed to
allocate memory (%d).\n",
VectorSize) ;
fclose(outFile);
}

return 1;

for (j=0; j<VectorSize; j++) {
blj] = 2.
clj] = 1.
}

scalar = 3.0;

0;
0;

for (j=0; j<VectorSize; j++)
a[j] = b[jl+scalar*c[j];

HPCC_free(c) ;
HPCC_free (b) ;
HPCC_free(a);

return 0; }

STREAM TRIAD IN CONVENTIONAL HPC PROGRAMMING MODELS

Many Disparate Notations for Expressing Parallelism + Locality

#include <hpcc.h> MPI + OpenMP

#ifdef _OPENMP
#include <omp.h>
#endif

static int VectorSize;
static double *a, *b, *c;

int HPCC_StarStream (HPCC_Params *params) {
1 1 1 int myRank, commSize;
: : 1 int rv, errCount;

. 0 0 HEEComn comn = MEL_ComLIORD!

= = MPI Comm size(comm, &commSize);

1 1 1
B[T T T T I T T T T T 111 MPI_Comm_rank (comm, &myRank) ;
+ + 1+ + 1+ + !+ + rv = HPCC_Stream(params, 0 == myRank);
C I | | i | | | | i | | | |] | | | | 1 | | | MPI_Reduce(&rv, &errCount, 1, MPI_INT, MPI_SUM,
0, comm) ;

[:] return errCount;
}

O
O
O

int HPCC_Stream (HPCC_Params *params, int doIO) {
register int j;
double scalar;

VectorSize = HPCC_LocalVectorSize(params, 3,
sizeof (double), 0);

a = HPCC_XMALLOC(double, VectorSize);
b = HPCC_XMALLOC(double, VectorSize);
c = HPCC_XMALLOC(double, VectorSize);

if ('a || 'D || 'e) {
if (c) HPCC_free(c);
if (b) HPCC free(b);
if (a) HPcc:free(a);
if (doIO) {
fprintf(outFile, "Failed to
allocate memory (%d).\n",
VectorSize);
fclose(outFile);
}
return 1;

}

#ifdef _OPENMP
#pragma omp parallel for

#endif
for (j=0; j<VectorSize; j++) {
b[j] = 2.0;
c[j] = 1.0;

}

scalar = 3.0;

#ifdef _OPENMP
#pragma omp parallel for
#endif
for (j=0; j<VectorSize; j++)
a[j] = b[jl+scalar*c[j];

HPCC_free(c) ;
HPCC_free (b) ;
HPCC_free(a);

return 0; }

#define N 2000000 CUDA

int main() {

}

float *d a, *d b, *d c;
float scalar;

cudaMalloc ((void**) &d a, sizeof (float)*N);
cudaMalloc ((void**) &d b, sizeof (float) *N);
cudaMalloc ((void**) &d c, sizeof (float)*N);

dim3 dimBlock (128) ;
dim3 dimGrid (N/dimBlock.x) ;
if(N % dimBlock.x !'= 0) dimGrid

set_array<<<dimGrid,dimBlock>>>(d b, .5f, N);
set_array<<<dimGrid,dimBlock>>>(d ¢, .5f, N);

scalar=3.0f;
STREAM Triad<<<dimGrid,dimBlock>>>(d b, d ¢, d a, scalar, N);
cudaThreadSynchronize () ;

cudaFree(d_a) ;
cudaFree(d b) ;
cudaFree(d c) ;

global void set_array(float *a, float value, int len) {
int idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < len) a[idx] = value;

global void STREAM Triad(float *a, float *b, float *c,
float scalar, int len) {

int idx = threadIdx.x + blockIdx.x * blockDim.x;

if (idx < len) c[idx] = a[idx]+scalar*b[idx]; }

Note: This is a trivial parallel computation—imagine the additional complexity for something more realistic...

Challenge: Can we do better?

—

FOR HPC BENCHMARKS, CHAPEL TENDS TO BE CONCISE, CLEAR, AND SCALABLE

STREAM TRIAD: C + MPI + OPENMP

use BlockDist;

| config const m = 1000,

alpha = 3.0;

const Dom = {1l..m} dmapped ..;

var A, B, C: [Dom] real;

0;
O.

4

B = 2.
C =1.

A = B + alpha * C;

HPCC RA: MPI KERNEL

GB/s

forall (, r) in zip(Updates, RAStream()) do
T[r & indexMask].xor(r):;

30000
25000
20000
15000
10000

5000

14
12
10

GUPS

onNn A~ O

STREAM Performance (GB/s)

MPI+OpenMP —¢—
= Chapel EP —¢— -~~~ -~~~ ----~--~-~~-=---=-~- ~2
Chapel Global - -+ -

16 32 64 128 256
Locales (x 36 cores / locale)
Cray XC (Aries)

RA Performance (GUPS)

16 32 64 128 256

Locales (x 36 cores / locale)
Cray XC (Aries)

HOW IS CHAPEL BEING USED
IN THE FIELD?

CURRENT FLAGSHIP CHAPEL APPLICATIONS

CHAMPS: 3D Unstructured CFD

Eric Laurendeau, Simon Bourgault-C6té,
Matthieu Parenteau, et al.

Ecole Polytechnique Montréal

ChplUItra: Simulating Ultralight

Dark Matter
Nikhil Padmanabhan, J. Luna Zagorac, ef al.
Yale University / University of Auckland

'II=
= : ¢ Arkouda: NumPy at Massive Scale - % ChOp: Chapel-based Optimization
E — Y - Mike Merrill, Bill Reus, et al. . '/X \ Tiago Carneiro, Nouredine Melab, et al.
Py == US DoD s bt INRIA Lille, France

CrayAl: Distributed Machine Learning ‘ """""""" Your application here?
‘9\ @ ‘@ “ O " O : Hewlett Packard Enterprise ?

: (images provided by their respective teams and used with permission) I 21

PARALLEL COMPUTING IN PYTHON?

Motivation: Say you’ve got...
...HPC-scale data science problems to solve
...a bunch of Python programmers
...access to HPC systems

——— . SN

PN B, 3
2 1 i 3
i § ; ——
i
o £ — -
| :
j 2 Nummel hgaes 14 » j
3 p T — i
3 2 i) el
3 ¥ | i====1 k=2 il 1
TR w IR
’ |
)
|
| I |

]

—

ARKOUDA'’S HIGH-LEVEL APPROACH

Arkouda Client Arkouda Server
_(written in Python) (written in Chapel)
e %
e
—

sssssssssssssssssssssss

N

O User writes Python code in Jupyter,
ﬂ making NumPy/Pandas calls

ARKOUDA SUMMARY

What is it?
« A Python library supporting a key subset of NumPy and Pandas for Data Science

—Uses a Python-client/Chapel-server model to get scalability and performance
— Computes massive-scale results (multi-TB-scale arrays) within the human thought loop (seconds to a few minutes)

o ~20k lines of Chapel, largely written in 2019, continually improved since then

Who wrote it?

Arkouda Client Arkouda Server
« Mike Merrill, Bill Reus, et al., US DoD (written in Python)
« Open-source: hitps://github.com/Bears-R-Us/arkouda = N
i —
Why Chapel? =
« high-level language with performance and scalability N
° i QO user writes Python code in Jupyter,
C|OS€ fo PYThOﬂIC ﬂ making NumPy/Pandas calls

—enabled writing Arkouda rapidly
—doesn’t repel Python users who look under the hood

« ports from laptop to supercomputer

—

https://github.com/Bears-R-Us/arkouda

ARKOUDA PERFORMANCE COMPARED TO NUMPY

NumPy Arkouda (serial) Arkouda (parallel) Arkouda (distributed)

0.75 GB 0.75 GB 0.75 GB 384 GB
benchmark 1 core, 1 node 36 cores x 1 node 36 cores x 512 nodes
0.03 GiB/s 0.05 GiB/s 0.50 GiB/s 55.12 GiB/s
argsort
-- 1.66x 16.7x 1837.3x
0.03 GiB/s 0.07 GiB/s 0.50 GiB/s 29.54 GiB/s
coargsort
-- 2.3x 16.7x 984.7x
1.15 GiB/s 0.45 GiB/s 13.45 GiB/s 539.52 GiB/s
gather
-- 0.4x 11.7x 4£69.1x
reduce Q.90 GiB/s 11.66 GiB/s 118.57 GiB/s 43683.00 GiB/s
-- 1.2x 12.0x L4412 .4X
scan 2.78 GiB/s 2.12 GiB/s 8.90 GiB/s 741.14 GiB/s
-- 0.8x 3.2x 266.6x
1.17 GiB/s 1.12 GiB/s 13.77 GiB/s 914.67 GiB/s
scafter
-- 1.0x 11.8x 781.8x
3.94 GiB/s 2.92 GiB/s 24.58 GiB/s 6266.22 GiB/s
stream
-- 0.7x 6.2x 1590.4x

ARKOUDA ARGSORT AT MASSIVE SCALES

e Run on a large Apollo system, summer 2022

73,728 cores of AMD Rome Arkouda Argsort Performance
« 72 TiB of 8-byte values HPE Apollo (HDR-100 IB)

« 480 GiB/s (2.5 minutes elapsed time) ggg [T TTTTTTTTTommmToommTmmmmmTonmmono g

e ~100 lines of Chapel code 400
390 - T e
300" e e
250 - e
200 [0 1N ittt
10p----"--"-"-_»»-""-""""-"""""""""""-""“"-"-"-"-"-"---------
100p---—p~~-""""""""""""""""“"“"“"-"“"“"-"“"-"-"-"-"-"--"-"----

5101 u ittt

64 128 256 512 576
Locales (x 128 cores / locale)

GiB/s

Close to world-record performance—quite likely a record for performance/SLOC

—

CURRENT FLAGSHIP CHAPEL APPLICATIONS

CHAMPS: 3D Unstructured CFD

Eric Laurendeau, Simon Bourgault-C6té,
Matthieu Parenteau, et al.

Ecole Polytechnique Montréal

ChplUItra: Simulating Ultralight

Dark Matter
Nikhil Padmanabhan, J. Luna Zagorac, ef al.
Yale University / University of Auckland

Arkouda: NumPy at Massive Scale 5 ChOp: Chapel-based Optimization
Mike Merrill, Bill Reus, ef al. ‘/>($(Tiago Carneiro, Nouredine Melab, et al.
* US DoD A teses oxe INRIA Lille, France
CrayAl Distributed Machine Learning : . Your application here?
NYYAY Y R - R T
Q N) 7 e g O y © " Hewlett Packard Enterprise : :

: (images provided by their respective teams and used with permission) I 27

CHAMPS SUMMARY

What is it?
e 3D unstructured CFD framework for airplane simulation
e ~100k lines of Chapel written from scratch in ~3 years

Who wrote it? |
« Professor Eric Laurendeau’s students + postdocs at Polytechnique Montreal
S /%% POLYTECHNIQUE SEReSnasE

B MONTREAL

Why Chapel?
« performance and scalability competitive with MPI + C++
« students found it far more productive to use

—4

P &
44
_.4.:[

EEETTEY

: (images provided by the CHAMPS team and used with permission)

CHAMPS: EXCERPT FROM ERIC’S CHIUW 2021 KEYNOTE

HPC Lessons From 30 Years of Practice in CFD Towards Aircraft Design and Analysis (June 4, 2021)

“To show you what Chapel did in our lab... [our previous framework] ended up 120k lines. | w L
And my students said, ‘We can't handle it anymore. It’s too complex, we lost track ‘

of everything.” And today, they went from 120k lines to 48k lines, so 3x less.

But the code is not 2D, it’s 3D. And it’s not structured, it’s unstructured, which is way
more complex. And it’s multi-physics... So, Pve got industrial-type code in 48k lines.”

“[Chapel] promotes the programming efficiency ... We ask students at the master’s R | .{f " ,\
degree to do stuff that would take 2 years and they do it in 3 months. So, if you = |

want to take a summer internship and you say, ‘program a new turbulence model,’ well f; POLYTECHNIQUE
they manage. And before, it was impossible to do.” m-i:- MONTREAL

“So, for me, this is like the proof of the benefit of Chapel, plus the smiles | have on my students everyday in the lab
because they love Chapel as well. So that’s the key, that’s the takeaway.”

» Talk available online: https://youtu.be/wD-a KyB8al?t=1904 Chyperlink jumps to the section quoted here)

—

https://youtu.be/wD-a_KyB8aI?t=1904

CHAMPS HIGHLIGHTS IN 2021

Presented at CASI/IASC Aero 21 Conference
e Presented to CFD Society of Canada (CFDSC)

e Participated in 4™ AIAA High-lift Prediction Workshops, 15* AIAA Ice Prediction Workshop

e Reproduced results from 5™ AIAA Drag Prediction Workshop

Con [

Application - First AIAA Ice Prediction Workshop
® Case 1b : Grid refinement study for a constant angle of attack of 7.05°;
& Rt e i e STa o e S RANS SaNas. Case 241 (I?ft), Rime u:? predlct.lort on small NACA23012 auf"ml (2D, low temp.);
® Case 363 (right): Glaze ice prediction on NACAQ0012 swept wing (3D, warmer temp.).
003 por s
ELE. . = 0.2
0.02
o015
% 001
N -
s '\\ 005 §
N E
A g RN =
O N ik
LR ity el N\
e SSe \\ !
Nw
€ 8a0® 1x10% 1 I T[]
N IS SN B RN AR MY X (Normal to leading edge at AoA=0 deg) [m] %% X (Normal to leading edge at AoA=0 deg) [m]
Adapted from Olivier-Gooch, C., Coder, J. 4th CFD High Lift Prediction Workshop, Fixed-Grid
RANS TFG, AIAA HLPW4 Case 241 (2D rime ice) Case 363 (3D glaze ice)

T

27/29

® The pressure drag convergence of CHAMPS is similar to the workshop resultsJ

CHAMPS —e— CFL3D FUN3D —e—
NSU3D —e—FUN3D-V
0.0175 yd

0.017
0.0165
0.016 |-
0.0155
0.015 -
0.0145
0.014 |-
0.0135

0.013
0.0e+00 5.0e-05 1.0e-04 1.5e-04

h2 = (1/N)23

%3]

» Generating results comparable to high-profile sites: Boeing, Lockheed Martin, NASA, JAXA, Georgia Tech, ...

Looking ahead:

e giving 6-7 presentations at AIAA Aviation Forum and Exposition, June 2022

o participating in 7" AIAA Drag Prediction Workshop

: (slide images taken from Eric Laurendeau’s SIAM PP22 talk, A Case Study on the Impact of Chapel within an Academic Computational Aerodynamic Laboratory, with permission)

https://chapel-lang.org/presentations/SIAM_2022_P22_Laurendeau.pdf

s
3

SUMMARY

Chapel is unique among programming languages
« built-in features for scalable parallel computing make it HPC-ready
» supports clean, concise code relative to conventional approaches
» ports and scales from laptops to supercomputers

Chapel is being used for productive parallel programming at scale

e users are reaping its benefits in practical, cutting-edge applications

« Arkouda lets Python programmers drive supercomputers from Jupyter f

If you’re interested in taking Chapel for a spin, let us know!

« we're happy to work with users and user groups to ease the learning curve

—

use BlockDist;

config const m = 1000,

alpha = 3.0;
const Dom = {1..m} dmapped ..;
var A, B, C: [Dom] real;

B
Cc

2.0;
1,0p

A = B + alpha * C;

Python3 Client

GB/s

STREAM Performance (GB/s)

MMMMMMMMM

30000
25000
20000
15000
10000

5000

0 Il Il Il)
16 32 64 128 256
Locales (x 36 cores / locale)

THE CHAPEL TEAM

Chapel is a tfeam effort—currently made up of 14 full-time employees, 2 part-time, and our director
« we also have 3 more full-time engineers joining in the next few months, and 2 open positions

Chapel Development Team at HPE

see: https://chapel-lang.org/contributors.html

and https://chapel-lang.org/jobs.html

https://chapel-lang.org/contributors.html
https://chapel-lang.org/jobs.html

CHAPEL RESOURCES

Chapel homepage: hitps://chapel-lang.org
 (points to all other resources)

Social Media:

o Twitter: @ChapelLanguage
e Facebook: @ChapelLanguage

e YouTube: http://www.youtube.com/c/ChapelParallelProgramminglLangquage

Community Discussion / Support:

e Discourse: https://chapel.discourse.group/
o Gitter: https://gitter.im/chapel-lang/chapel

o Stack Overflow: https://stackoverflow.com/questions/tagged/chapel

o GitHub Issues: https://github.com/chapel-lang/chapel/issues

—

HIGEEGCE

What is Chapel?
What's New?

Upcoming Events
Job Opportunities

How Can | Learn Chapel?
Contributing to Chapel

Download Chapel
Try Chapel Online

Documentation
Release Notes

Performance
Powered by Chapel

User Resources
Developer Resources

Social Media / Blog Posts
Press

Presentations
Papers / Publications

CHIuw
CHUG

Contributors / Credits

chapel_info@cray.com

O - A
vyEHD

The Chapel Parallel Programming Language

What is Chapel?

Chapel is a programming language designed for productive parallel computing at scale.
Why Chapel? Because it simplifies parallel programming through elegant support for:

« distributed arrays that can leverage thousands of nodes' memories and cores

« a global namespace supporting direct access to local or remote variables

« data parallelism to trivially use the cores of a laptop, cluster, or supercomputer
« task parallelism to create concurrency within a node or across the system

Chapel Characteristics

« productive: code tends to be similarly readable/writable as Python
« scalable: runs on laptops, clusters, the cloud, and HPC systems

« fast: performance competes with or beats C/C++ & MPI & OpenMP
« portable: compiles and runs in virtually any *nix environment

* open-source: hosted on GitHub, permissively licensed

New to Chapel?

As an introduction to Chapel, you may want to...

« watch an overview talk or browse its slides

read a blog-length or chapter-length introduction to Chapel
learn about projects powered by Chapel

check out performance highlights like these:

PRK Stencil Performance (Glop's) NPB-FT Performance (Gop's)

Giop/'s
) §
L A\“‘ evi
\ |
\
Gopis
st
\
1

Locales (x 36 cores / locale) Locales (x 36 cores / locale)

* browse sample programs or learn how to write distributed programs like this one:

use CyclicDist; // use the Cyclic distribution Llibrary
config const n = 100; // use --n=<val> when executing to override this default

forall i in {1..n} dmapped Cyclic(startIdx=1) do
writeln("Hello from iteration ", i, " of ", n,

" running on node ", here.id);

https://chapel-lang.org/
https://twitter.com/ChapelLanguage
https://www.facebook.com/ChapelLanguage/
http://www.youtube.com/c/ChapelParallelProgrammingLanguage
https://chapel.discourse.group/
https://gitter.im/chapel-lang/chapel
https://stackoverflow.com/questions/tagged/chapel
https://github.com/chapel-lang/chapel/issues

SUMMARY

Chapel is unique among programming languages
« built-in features for scalable parallel computing make it HPC-ready
» supports clean, concise code relative to conventional approaches
» ports and scales from laptops to supercomputers

Chapel is being used for productive parallel programming at scale

e users are reaping its benefits in practical, cutting-edge applications

« Arkouda lets Python programmers drive supercomputers from Jupyter f

If you’re interested in taking Chapel for a spin, let us know!

« we're happy to work with users and user groups to ease the learning curve

—

use BlockDist;

config const m = 1000,

alpha = 3.0;
const Dom = {1..m} dmapped ..;
var A, B, C: [Dom] real;

B
Cc

2.0;
1,0p

A = B + alpha * C;

Python3 Client

GB/s

STREAM Performance (GB/s)

MMMMMMMMM

30000
25000
20000
15000
10000

5000

0 Il Il Il)
16 32 64 128 256
Locales (x 36 cores / locale)

CO‘

THANK YOU
https://chapel-lang.org
@ChapelLanguage Q

